TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Migration state among jobs in Apache Flink

Baikousis loannis

Thesis Committee

Prof. Antonios Deligiannakis (Supervisor)
Prof. Minos Garofalakis

Prof. Vasilios Samoladas

~—

St

Abstract

On a daily basis more and more data is produced and needs to be
processed to extract useful information. Specifically, processing data
streams is vital and requires high-performance resources to query them in
real time. Big Data processing frameworks have been developed to handle
efficient complex queries on data streams. As the amount of data expands,
the frameworks have to adapt to processing requirements, thus it is essential
to support updates and upgrades both in hardware and software
infrastructures over time. Therefore, migration mechanisms have been
developed in order to give the ability to frameworks to evolve, guaranteeing
no data losses.

In this diploma thesis we provide a migration algorithm in Apache Flink
which gives you the opportunity to manage many operator states among
different Flink jobs and submit them into another cluster with no data losses.
Additionally,it enables us to merge, split or rescale jobs in order to adapt to
processing requirements. Our algorithm is based on the State Processor API
which is provided by Flink and it is implemented on RapidMiner Studio which
gives us the ability to design workflow easily and quickly.

To validate our approach, we designed some workflows using simple
operators on RapidMiner studio and present a complete detailed cluster-
mode execution with many test-cases as merging and splitting the workflows
and migrating the state without data losses proving the correctness of our
migration algorithm.

/=
St

NeplAnyn

KaBnuepwd, Té00 Kal meplogdtepa dedouéva mapdyovtal KAvovTog
tnv ene€epyacia avtwv pellovoc onuaoiog OVTOOWOTE va €EAYOLUE TNV
xprown mAnpogopia. EWOkéTEPpa n enegepyacia powv dedopévwy elval
CwTWKNG onuoaolog Kat amattel YnAwv €MBOCEWY LITOAOYLOTLKOUG TOPOULG
WOTE VO UMOPECOVE VO KAVOLUE EMEPWTACELG OE TIPAYHATIKS Xpdvo o€ auTd.
MNa avtdv Tov Adyo, £xouvv dnuiovpynbel big data frameworks ta omnola £€xouvv
TNV dvvaTtdTNTA Vo EMEEEPYAOTOOV KOL VO XELPLOTOOV amodoTikd olLvOeTa
EMEPWTAMATA TAVW 0€ Poéc Oedopévwv. Ooo o dykoC Twv dedopévwy
MEYaAWveLl Ta frameworks mpémnel va mpooapudélovTal OTLC QMALTHOELC TIOU
xpeldlovtal ywa TNV enegepyacia TOLG, OLVEMWG €lval ONUAVTIKO va
déxovtal TakTikd avapBabuioelc oe LAKO Kal Aoylopikd. MNa tov Adyo autd
éxouvv avantuyfel pnyaviopol mov di{vouvv TNV duvatdTNTA VA UMOPOLY va
ovaBaduLotolv XwelC Kaplo anwAeLlo SedoUEVWY.

e auTAY TNV OMAWMPOTLKA epyacia mapovoldletal évac aAyoplouog
METOPOPAC Tou state xpnowuomnowwvtag to Apache Flink framework, o omnoiog
Ma¢ &ivel tnv duvatdTnTa va ene€epyactolue operator states avdueoa oe
dlapopeTikd Flink jobs kot va petagépovue to state oe GAAa clusters xwpig
Kaplo anwAcla 6edopEvwy. AKOpa pag 6ivel TNV duvaTOTNTA VA EVWOOULE,
va dlaxwploovue N va KAvoupe rescale ta jobs WOTE va MPOCAPHUOCTTOOV OTLC
EMEEEPYNOTIKEG amaltrioels. O aAydplBuoc BaoiCetal oto State Processor API
rov napExetatl and to Flink kat elvat vAomolnuévog oto RapidMiner Studio to
ormolo pag d&lvel TNV duvatdTNTA va OYEOLAOOLUE €UKOAQ Kol ypriyopa
workflows.

Ma va EMKLUPWOOVUE TNV 0pBdTNTA TNG vAomolnong MOG, EXOLUE
oxedbldoel pepikd workflows oto RapidMiner Studio ta omola meptéyouvv
amAOOC TEAEOTEC KOl TOPOLOLACOLHE ML OVAAUTLIKHY TEPLYPAPH TNG
eKTEAEONG o€ cluster-mode maipvovtog¢ MEPMTWOEL OTWG N €vwon Kot o
dlaxwpLopdc toug xwpelc va xdvovtal dedopéva KaBWE Kal N LETAPOPA TOL
state anodelkvoovtag £€TaoL TNV 0pOOTNTA TOL AAYOPI(BUOL paG.

/=
St

Acknowledgments

First of all, I would like to thank my supervisor professor, Prof. Antonios
Deligiannakis, who directed and guided me properly for this diploma thesis. |
am also grateful to the other two committee professors, Prof. Minos
Garofalakis and Prof. Vasilios Samoladas for their support.

In addition, | am thankful to my parents and friends who helped me to
great extent to finish this diploma thesis and supported me over the years.

/=
St

Contents

Y 011 =T o! F PP SPPPPTP 3
=701 N g1 U] o PP 4
ACKNOWIBAGIMENTS. ...ttt et e e e e e e e e e e e e sk bbbttt e e et e e e e e e e e e e eeaeeaaeeees 5
1O 0] 01 (=] 0] £ TP PPPPTRUP 6
10 LU ST 1= o] = T 7
I (0 To 18 o1 1o o IO PP PP PP P PP PSPPPPPPIN 8
1.1, TRESIS OULINE...ceiiiiie ettt ettt e e e e e e e e e e e s e s et b e e e e e e eeeeeeenne 9
pZ A o = od 1= TN 1o PP 10
2.1 DALASEE AP ... et e e et e e e aa s 10
2.2 DAtaSIream AP ... e 10
2.3 Programs and DataflOWs.ooiiiiiiiiiiiiie et 10
2.4 Parallel DAtaflOWS.oooiiiiiii e 12
R = 1 =110 I @ 1= = o] S 13
2.6 Checkpoints and SAVEPOINTSccoiiiiiiiiiiiii ettt e e e e e eennne 13
2.7 STAE BACKENT ...ttt e e e e e e e e e e e e e e eae 13
2.7.1 Memory State BACKENdoooiiiiiiiiiiiie e 14
2.7.2 FileSystem State BaCKeNdcccuuuiiiiiiiiiiiii e e e e e et e e e e e e e e ees 15
2.7.3 ROCKSDB State BACKENTuuuiiiiiiiiiiiiiiiei et 16
2.8 UNIify DINAIY TOMMALoooiiiiiieee et e e e e e e e e e e e e e e e b eeeeeenes 17
2.9 State ProCeSSOr APo 18

G T = 1] T 1 T T S (0 o | (o T 19
3.1 RaAPIAMINET EXIENSIONScoiiiiiiiiiiitittte ettt ettt e e et e e e e e e e e e e e e e ennnnnnene 19
A, IMPIEMENTALION.cii ittt et e n b e e e e 22
4.1 The Migration AlGOrTNML..........cooii e e e e 22
4.1.1 Steps of the AIGOTRM........ oo e e 22

4.2 RAPIAMINET STUGIO. ...ttt ettt eeennnanes 24
N ST v 101U o] o =T = 1 (o £ TP PPPPRPPPPP 24
4.2.2 Restart IMplementation.............oooiiiiiiiiiii e e 25

5. EXperimental EXECULION.coiiiiiii it e et e e e e e e e e e et e e e e e aa e e eaneeeeas 27
5.1 SPIit-MEIrge EXAMPIE.eeeiiiiiieeie et a e e e e 27
5.2 Migration @XaAMPIE... ... eene 35

/=
St

[@f0] o (o3 [(0] o TP 37

(R E] (ST (=T A1 38

Figure 1.
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10

Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26.
Figure 27:
Figure 28:

EXE@CULION Of & SIMEAIM.....coiiii e e e e e e et e eeeeeenas 11
Parallel @XECULION.coiieieeeeei e s e e e e e e e e e e e e e e eeeseaaeennnnes 12
Memory State Backend diagram.............oooviiiiiiiiiiiiiiii e 14
File System State Backend diagram...............ceeiiiiiiiiiiiiiiiiiiiee e 15
RocksDB State Backend diagram............ccooviiiviiiiiiiiiiiiiiii e eeee e e 16
Unify binary format SChema...........oooiiiiii e 17
A WOrkflow conSiStS Of ONE JOD......coiiiiiiiiiiie e 21
Implementation of the Streaming NeSt Operator...........cccuueiiieiiiiiiii e, 21
The Streaming Nest operator to create the job...........cooeee i, 27
. A workflow consists of two Aggregate Stream OpPeratorS.........cocoveevvvvieererineeeeenennnnn. 27
The Json file to run a job WithOut reStart.............cooooiiiiiiiiii e 28
The submitted job 0N the CIUSTEN...........coiiiieeeee e 28
The results of the new job after data production............ccccceoveiiiii i, 29
A WOrkflow conSISts Of tWO JODS........ccuiiiiiiiiii e 30
Implementation of the first Streaming Nest operator................vvciiiiieeiieeeeie e, 30
Implementation of the second Streaming Nest Operator...............oooeeevvvviiiiinneeeeeennns 31
The Json file in order to split a workflow to two jObS.............oovviviiiiciieee e, 32
The submission of the NEW JODS............ e 32
The generated files on hdfs both for the jobs1 and job2..............ccccccciiiiiiiinn. 33
The results of the new jobs after the data production.............ccccceevviiiiiiiiireie e, 33
The merged workflow that consists of two Aggregate operators...........cccuvuueeeeeeeeenns 34
The json file in order to Merge tWo JODS...........uviiiiiiiiii e 34
The generated files on hdfs for the JODL.........coooiiiiiiii 35
The submission of the new job and the cancellation of the previous ones................ 35
The results which are produced by the new job..........cccoooriiii i, 35
The results of the Produced data............coueeeeiiiiiiiiiie e 36
The Json file to migrate the State............oooiviiiiiiiiiiice e 37
The results which are produced on the Technical University cluster......................... 37

/=
St

1. Introduction

Nowadays, the amount of data and information is increasing rapidly
and it is vital to process and analyze it in real-time. More and more data is
produced on a daily basis, from different sources like social media or loT,
making its analysis necessary in order to extract useful information and
features. For this reason, frameworks have been developed, which enable us
to process huge amounts of data very fast guaranteeing high accuracy and
efficiency.

In this day and age, data science is one of the most significant
scientific fields which constitutes an indispensable part of machine learning
and data mining, sciences which are essential for technological evolution. It
is not possible to express the definition of data science using strict terms but
in simple words:

“Data science is an interdisciplinary field that uses scientific methods,
processes, algorithms and systems to extract knowledge and insights from
many structural and unstructured data.”[0]

Frameworks that enable developers to develop high efficient workflows
to process data, for example Apache Flink which we use in this diploma
thesis, become more and more vital in data science. Thus, developers with
high skills on these frameworks are necessary in every data analysis process.
Many technological companies took advantage of this fact and developed
softwares, like RapidMiner studio, in order to give the ability to everyone
with basic knowledge of data analysis to design high efficient data analysis
workflows.

The processing frameworks are usually set up in distributed computer
clusters and the most important features which are vital to provide a
framework is a fault tolerant mechanism and a restart strategy plan which
ensures non data losses. In many cases we take the advantage of these
mechanisms to build a migration scheme in order to migrate the state in
another computer cluster or update the current one.

In this diploma thesis we inroduce a flexible migration mechanism in
order to give users the ability to migrate a Apache Flink framework workflow
implemented in RapidMiner studio without any data loss. Additionally, this
mechanism enables you to reformat any workflow, adding or subtracting
operators to provide new features in data analysis, rescale the parallelism of
a workflow to adapt to the process requirements and merge or split different
workflows to new ones, guaranteeing no loss of data.

/=
St

https://en.wikipedia.org/wiki/Data_science

1.1. Thesis outline

® Chapter 2

In this chapter we provide an overview of the Apache Flink
framework and the usage of DataStream and Dataset APIs in it.
Moreover, we analyze how Apache Flink manages the data via
dataflows and how it parallelizes its processing. In addition, we
will describe in simple terms what is State and State Backend
and how we get snapshots. Finally, we present the State
Processor APl and give some code examples.

® Chapter 3
In the second chapter, we present the RapidMiner Studio
and analyze some useful abilities that it provide us. Furthermore,
we see the extension of the RapidMiner Studio and give a
workflow example.

® Chapter4
This chapter contains the main implementation and it is
divided into two sub-chapters. In the first sub-chapter we will
describe what changes we made in the RapidMiner Extension
and in the second one we present the Migration Algorithm and
how it works.

® Chapter 5
In the fifth chapter we will see some execution examples
which include important circumstances in order to handle the
migration of a state. Additionally, we will analyze a step by step
way to merge and split workflows in order to create a new one,
which is a combination of others.

® Chapter 6

The final chapter contains a recap both of the provided
algorithm and the implementation in RapidMiner Studio as a
conclusion.

/=
St

2. Apache Flink

Apache Flink[1] is a distributed processing engine and an open source
data analytics framework for batch and stream processing in real time.
Apache Flink allows stateful computation over unbounded and bounded data
streams at any scale, in high performance computations at in-memory
speed. Furthermore, it is designed to run in all common environments and
provides data distribution and fault tolerance mechanism. It requires
compute resources in order to execute applications and integrates with all
common cluster resource managers or as stand-alone cluster.

Flink provides APIs[2] in order to process data, followed by dedicated
libraries, for common use cases.

2.1 DataSet API[3]

It enables you to apply transformations like filters, mapping, grouping
and others on data sets which are bounded and created from different
sources as files or collections. Furthermore, the results of the
transformations are returned via sinks into distributed files or standard
output.

2.2 DataStream API[4]

DataStream API provides a range of operators which are very common
in stream processing such as windowing, and is based on functions like
map(), aggregate() and reduce() giving us the ability to interact with
streams. It [5] also uses a data stream class to represent collections of data
in a Flink program which can be bounded or unbounded. It is essential to add
at least one source to read and apply DataStream API methods to a data
stream and one or more sinks as output.

2.3 Programs and Dataflows[6]

An example of a simple dataflow is provided in this section. The
dataflows are basically directed acyclic graphs (DAGs) with a start (source)
and an end (sink).

10

/=
St

https://ci.apache.org/projects/flink/flink-docs-stable/dev/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.9/concepts/programming-model.html#programs-and-dataflows
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/batch/
https://docs.cloudera.com/csa/1.2.0/flink-overview/topics/csa-flink-overview.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/datastream_api.html#what-is-a-datastream
https://flink.apache.org/flink-applications.html

In this example which is provided below, the data is read by a kafka
source as a stream of string which is our source operator of the dataflow.
After this, data is passed into a map operator in order to be transformed into
an Event stream. Now, another transformation is applied in the stream which
uses a keyby operator, a window operator and finally a function to process
and transform the stream into a Statistics DataStream. In the last step, the
stream was written into a Bucketing sink.

DataStream<String> lines = env.addSource|

new FlinkKafkaConsumer<>(.)); [7

DataStream<Event> events = lines.map((line) -> parse(line));]— Transformatior

DataStream<Statistics> stats = events
keyBy("id")
.timeWindow({Time.seconds(18))
.apply(new MyWindowAggregationFunction());

— Transformatior

stats.addSink(new BucketingSifgath)); } Sink

<=

Source Transformation Sink
Operator Operators Operator

/ ' N \

keyBy()/
Source mapl(} window()/ Sink

\ | apply()

Stream

!

Streaming Dataflow

Figure 1: Execution of a stream.

11

/=
St

2.4 Parallel Dataflows[7,8]

A Flink program consists of multiple tasks and every task is split into
several parallel instances for execution and each parallel instance processes
a subset of the task’s input data. Parallelism is the number of parallel
instances of a task.

As mentioned in the Flink documentation programs in Flink are parallel
and distributed. During execution, a stream has one or more stream
partitions, and each operator has one or more operator subtasks. The
operator subtasks are independent, and executed in different threads.

keyBy() Streaming Dataflow
Sourca map() window(}/ Sink {condensed view)
apply(]

Operator Stream @

i keyBy(y

Source map()] i window(y
f11 i G i apply)
\ #py
Operator Stream Sink
Subtask Fartition i i i Streaming Dataflow
)] ! (parallelized view)
i keyBy()/
Source i map(] i window()/ !
(2] 2] i applyl)

parallelism = 2

parallelism = 1

Figure 2: Parallel execution.

Data can be transported via streams between two operators in a one-
to-one pattern which preserves the partitioning and ordering of the
elements., or in a redistributing pattern in which streams change the
partitioning of streams. At the Redistributing pattern each operator subtask
sends data to different subtasks, depending on the selected transformation.
For example keyBy() repartition the stream depending on the key. In a
redistributing exchange the ordering among the elements is only preserved

12

/=
St

https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/parallel.html#parallel-execution
https://ci.apache.org/projects/flink/flink-docs-release-1.9/concepts/programming-model.html#parallel-dataflows

within each pair of sending and receiving subtasks, but the parallelism is
different regarding the order in which the aggregated results for different
keys arrive at the sink.

2.5 Stateful Operators [9]

Stateful operator is an operator that has the ability to store and access
information of previous multiple events in case you want to collect or extract
features independently of any window operator and with no data loss
guarantee. The state has a key/value store format and is partitioned and
distributed with the streams which are provided in the stateful operator.

2.6 Checkpoints and Savepoints [10]

Apache Flink provides a flexible fault tolerance mechanism based on
distributed checkpoints, which is very useful in case of failure. A checkpoint
is an asynchronous snapshot of the states of operators which are automated
by the program. When the application fails, the program which uses
checkpoints, resumes the process from the last completed checkpoint in
order to ensure no data losses when it recovers.

Savepoint is a state snapshot mechanism which is non automated like
checkpoints. A user can trigger a savepoint manually to take a state
snapshot to update the application or migrate it in another cluster.

2.7 State Backend [11]

The state backend is responsible for the representation of the state
internally and “how and where” it is persisted upon checkpoints. Apache
Flink has three available state backends:

® MemoryStateBackend
® FsStateBackend
® RocksDBStateBackend

13

/=
St

https://ci.apache.org/projects/flink/flink-docs-master/ops/state/state_backends.html
https://cwiki.apache.org/confluence/display/FLINK/FLIP-47%3A+Checkpoints+vs.+Savepoints
https://ci.apache.org/projects/flink/flink-docs-release-1.9/concepts/programming-model.html#stateful-operations

2.7.1 Memory State Backend [12,14]

This storage stores the data in the memory of each task manager’s
Heap as objects. Some disadvantages of its use are that the size of each
state is limited and an aggregate state must fit into the JobManager memory
to avoid overloading. In contrast, the Memory State Backend is extremely
fast due to the fact that it keeps the state in memory.

In addition, it is encouraged for local development and debugging. This
is the default backend used by Flink in case nothing is configured. The
Memory State Backend should be used only experimentally, in local setups
and cases with very small states a as result of the limitations.

o \
il ~
r-

Hea)
g Heap (containing working state)]
Job Manager —Checkpoint—— Task Manager
Save to HDFS
on savepoint
HDFS cluster

Figure 3: Memory State Backend diagram.

14

/=
St

https://towardsdatascience.com/heres-how-flink-stores-your-state-7b37fbb60e1a
https://ci.apache.org/projects/flink/flink-docs-master/ops/state/state_backends.html#the-memorystatebackend

2.7.2 FileSystem State Backend [13,14]

FsStateBackend holds in-flight data of the current state in the
TaskManager’'s memory but it stores the checkpoint on the filesystem (HDFS/
S3) rather than job manager memory. JobManager's heap memory holds only
useful metadata (in case of high availability). It is at your own risk to
configure it properly in order to avoid large checkpoint metadata because
the state backend stores small state chunks directly in metadata.

The Filesystem State Backend allows us to work with jobs with states
more flexibly but is also limited by heap memory and is recommended to be
used in cases with less data and high-performance requirements.

Heap (contain only metadata)

Job Manager — Updaie ._}

| [Heap (containing working state)] |
Metadata Task Manager

Checkpoint

l

HDFS cluster

Figure 4: File System State Backend diagram.

15

/=
St

https://towardsdatascience.com/heres-how-flink-stores-your-state-7b37fbb60e1a
https://ci.apache.org/projects/flink/flink-docs-master/ops/state/state_backends.html#the-fsstatebackend

2.7.3 RocksDB State Backend [15,14]

The RocksDB state Backend holds in each TaskManager’'s memory a
small amount of data in a RocksDB database which is important for
accessing into the FileSystem. The RocksDB creates checkpoints into a
durable file system (like HDFS) directories which are defined by the user.
Only a little metadata is stored in JobsManager's heap memory in case of
high availability. It is the only FileSystem that offers incremental checkpoints
which are essential to reduce checkpointing time due to the fact that
incremental checkpoint record only changes between a previous and current
checkpoint.

This type of State Backend is useful in case you have very large states
and long windows because you have no limitations on storage owing to the
fact that you are able to use all your disk storage.

Heap [Heap (containing RocksDB memitable)

A

Job Manager Task Manager

-

[Locai disk (containing spillover state) |

.\.

Checkpaint

HDFS cluster

Figure 5: RocksDB State Backend diagram.

16

/=
St

https://towardsdatascience.com/heres-how-flink-stores-your-state-7b37fbb60e1a
https://ci.apache.org/projects/flink/flink-docs-master/ops/state/state_backends.html#the-rocksdbstatebackend

2.8 Unify binary format [16]

From the 1.9 version of Apache Flink and thereafter, a unify binary
format across state backend savepoints is provided in order to be
compatible in case of restart, giving you the ability for changes like backend.
Up to 1.8 version of Flink this important ability is not provided and it is at
your own risk to create your type serializers in case of changes or migration.
The main goal of this change is to unify the savepoint format among all state
backends for keyed states with the advantage of being more future-proof
and applicable for new state backends.

“We propose to unify the binary layout for all currently supported
keyed state backends to match the layout currently adopted by
RocksDB, for all levels including the layout of contiguous state values
of a key group as well as layout of individual state primitives.”

In Rocks DB it is not possible to know the number of (namespace,
partition key) state value mappings when taking a snapshot. For this reason,
RocksDB backend writes metadata along with the stream of contiguous state
values in a key group. The MSB of the last state value of a keyed state is
flipped, to indicate the last value of this state.When it finds this flipped bit it
knows that the next value will be a state ID which indicates the next value is
another new keyed state. It terminates when it reads an
END_OF KEY_GROUP_MARK.

State ID (short)
State 0
State value @ State value X (flipped MSB)
State ID (short)
State 1
State value @ State value Y (flipped MSB)
State ID (short)
State M State value @ State value Z (flipped MSB)
END_OF_KEY_GROUP_MARK (@xFFFF)

Figure 6: Unify binary format schema.

17

/=
St

https://cwiki.apache.org/confluence/display/FLINK/FLIP-41%3A+Unify+Binary+format+for+Keyed+State

2.9 State Processor APl [17,18]

State Processor API realised in 1.9 version of Apache Flink is an API
that enables you to read, write and modify Savepoints and Checkpoints using
the functionality of the DataSet API. It provides you with the ability to work
with partitioned and non- partitioned state. State Processor API provides a
public interface in order to load an existing savepoint with a command like:

ExecutionEnvironment bEnv = ExecutionEnvironment.getExecutionEnvironment();
ExistingSavepoint savepoint = Savepoint.load(bEnv, "hdfs://path/", stateBackend);

Additionally, you can access the state data by specifying the operator
uid, the state name and the type information:

DataSet<Integer> listState = savepoint.readListState("uid", "state”, Types.INT);
DataSet<Integer> unionState = savepoint.readUnionState("uid", "state”, Types.INT);

DataSet<TupleZ<Integer, Integer>> broadcastState = savepoint.readBroadcastState("uid", "state”, Types.INT, Types.INT);

Two more features which are provided by the State Processor APl are
the creation of a new savepoint or the extension of the current one. This very
useful functionality provides you with the flexibility to interact with states
and snapshots and enables you to change the main “body” of a savepoint.
For example, it is possible to specify a new state backend and change the
maximum parallelism. Furthermore, you can add multiple operators in a
current savepoint or create a new one with your new features and write it
anywhere you want.

These lines of code show how can you create a new Savepoint with specific
State Backend and operators:

Savepoint
.create(stateBackend, maxParallelism)
.withOperator(“uid”, transformation)
.withOperator(...)
.write(path)

The following code shows how can you modify a Savepoint:

exlstingSavepoint
.removeOperator(oldOperatoruid)
.withOperator(oldOperatorUid, transformation)
.write(path)

18

/=
St

https://cwiki.apache.org/confluence/display/FLINK/FLIP-43%3A+State+Processor+API
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/libs/state_processor_api.html

3. RapidMiner Studio

RapidMiner Studio[19] is a software designer application that enables
everyone to build easily and quickly complex analytical processes in the data
science sector providing a friendly user graphical interface. RapidMiner
studio offers a wide range of extremely useful operators in order to combine
them and make your own analytics designs as data preparation, machine
learning, deep learning, and predictive analytics. Every process consists of
operators and every operator is responsible for one and only task which
takes as input the output of the previous operator and offers an output to the
next one. The insertion of an operator into the design process is very simple
and done with a “drag and drop” of the operator into the process. The next
step that you have to make is to connect the new operator to the others and
to configure it whether it is necessary. Finally, you have to press the “play”
button and your process will be alive.

Furthermore, the flow design is represented internally in RapidMiner as
a XML file and it is responsible for the graphical representation in the user
interface. In addition, it provides you with some useful recommendations to
correct your design and error message in the event of troubleshoot. It is
worth mentioning that a debugging system is offered by RapidMiner studio
and gives you the ability to set breakpoints between operators in order to
supervise the workflow partially. Thus, the user has full control of the process
and is able to design it as he wishes.

3.1 RapidMiner Extensions [20]

RapidMiner studio contains over 1.500 operations in order to give the
opportunity to everyone to implement any professional data analysis process
as data partitioning and market-based analysis. Furthermore, every tool that
someone needs to process the data is included in it and is developed
efficiently to offer the user high performance. Extensions can easily be
imported into the standar version of the RapidMiner studio adding new
operators and functionality such as the Rapood extension which connects the
RapidMiner studio with the Hadoop cluster to push the calculations there
from high analytics processes.

RapidMiner develops a new extension for streaming processing using
Apache Flink and Apache Spark frameworks and in this diploma thesis we will

19

/=
St

https://marketplace.rapidminer.com/UpdateServer/faces/category.xhtml?categoryId=4
https://rapidminer.com/products/studio/feature-list/

focus on Apache Flink implementation. Moreover, regarding the design
implementation, the extension contains a StrimingNest operator which is
actually the Flink Job. Inside any StreamingNest operator you can insert
streaming operators. A wide range of streaming operators are offered to you
from the extension and some of the most important are described below:

® Kafka Source operator: When you use a Kafka Source operator you
have to specify the host, the port and the name of the Kafka topic. It
reads a steam of data, at Json format, and passes it to the next
operator.

® Kafka Sink operator: The Kafka Sink operator takes as input a
stream of data as Json format and writes it into a Kafka
Topic.Additionally, as in Kafka Source you have to specify the host, the
port and the name of the Kafka topic.

® Aggregate operator: The most useful streaming processes (min,
max, count,sum,avg) are implemented in this operator. The user must
choose one of them in every single aggregate operator in order to
create his own functionality. A stream is inserted to it and after a
window time, which is specified by the user, an output stream is
produced.

® Join operator: The Join Operator takes as input two data streams and
joins them under a specified key. The produced stream has the values
of both the input streams and the join key as Json format.

® Duplicate operator: This operator takes as input a data stream and
splits it into two new streams which are the same as the first. The
Duplicate operator is very useful because it gives you the opportunity
to process the same stream in different ways.

20

/=
St

For example, a workflow is provided below in which there is a
streaming Nest operator to initialize the Flink job.

Retrieve localhost flinkConn Streaming Nest
c out [} con | out res
in out res

Figure 7: A workflow consists of one job.

Inside it, data is read from a kafka topic using a Kafka Source operator.
The data passes in an Aggregate operator that calculates the sum of the
value and finally it writes it in another kafka topic via a Kafka Sink operator.

Retrieve localho...

ladii

Kafka Sink

con %

Retrieve localho... Kafka Source Aggregate Stream e

c out con % out inp -Q-> out

Figure 8: Implementation of the Streaming Nest operator.

21

/=
St

4. Implementation

4.1 The Migration Algorithm

The implementation of the migration algorithm is related to the State
Processor APl because it uses its “under the hoop “classes and methods. The
State Processor APl requires , as referred in the documentation[18,19],
arguments as the name of the State Descriptor and the Type Info which ,in
many cases, is impossible to know about and has limited functionality. The
Migration Algorithm provides the ability to merge or split savepoints , to
change the parallelism and the absolute paths of a savepoint.

The Migration Algorithm takes as input a List of savepoint paths in
which the savepoints exist, a List of operator UIDs in which will contain the
new savepoint and the new savepoint path in which the produced savepoint
will be written. Moreover, the algorithm copies the state file into the new
savepoint directory and open it in order to access the data of operators
which they are specified by the input UIDs. Then, it changes the absolute
paths of the specified operators using the new one and copies the data of
them without any change. Finally, it creates the new Metadata file using the
new operators and writes it into the new savepoint direcotry.

4.1.1Steps of the Algorithm

1. The Apache Flink hashes every operator UID using the
murmur3_128 hash function to secure that every UID is distinct. In the
first step the algorithm hashes the UIDs via murmur3 128 hash
function in order to be able to compare them with the hashed UIDs of
the savepoints.

2. In the second step, all the savepoint files are copied into the new
savepoint directory, without the metadata file.

22

/=
St

https://cwiki.apache.org/confluence/display/FLINK/FLIP-43%3A+State+Processor+API
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/libs/state_processor_api.html

3. The savepoints are loaded into a Savepoint List using the
SavepointLoader class.In this way we have access to every

OperatorState.

4. In the fourth step, it merges all the OperatorStates into a new
OperatorStates List in order to manage them in the next step.

5. Select which of the operator states will exist into the new

savepoint. To do that we compare the operator UIDs from the list with
the produced UIDs from the first step.

6. It changes the absolute paths of the States that will be included
in the new savepoint.
6.1. For every Operator state, it changes the raw and the

managed state absolute paths.

6.1.1. It gets every state as a List of keyed state _handle

6.1.2. From the keyed_state_handle List gets the
delegate_state_handle as File_state_handle or
ByteStream_state handle.

6.1.3. It constructs a new state _handle and copies the data of the
previous one in order to avoid the State Descriptor, the
BootstrapTransformation and the Type Info requirements.
Additionally, it changes the absolute paths using the new
savepoint directory.

6.1.4. It constructs a new key group state handle with the new
absolute paths and deletes the old one.

6.2. It adds the new State into the new operator states List.

7. A new Savepoint Metadata is created using the new operator
states List and the new savepoint directory.

8. It gets the constructor of the ExistingSavepoint class and
constructs the new Savepoint using the new Metadata file.

9. Finally, it copies back the state files into the old savepoint

directories because they were deleted. That happens in case another
job requires one or more savepoints which we have processed. Thus,
the implementation does not take extra snapshots whether an old one
exists.

Furthermore, by applying this technique we take a deep dive into Flink
state in order to process it without data losses. We have no data losses
because we do not get access to real data but we copy it as bytes and we
change only the absolute paths in order to get access to different savepoint
directories. Thus, if we combine the change of the absolute paths in a

23

/=
St

savepoint together with the ability to merge or split operator states from
different savepoints we are able to manage multiple savepoints in order to
produce a new one with specific characteristics and states.

4.2 RapidMiner Studio

4.2.1 Stateful operators

In this segment it is important to say that the RapidMiner Studio is
used for the code design and not for the operator implementation. The
algorithm implementation is general and adaptable in any case irrespective
of the job’s implementation.

The RapedMiner extension does not offer stateful operators and the
interaction with states is not possible, thus it is our responsibility to convert
the non-stateful operators into stateful and set to a unique uid that is
produced from the core automatically. Firstly, to make the operators stateful
we add a ValueState in the main process of the operator. This state is in Json
format, to be adoptable with the whole design which RapidMiner Studio
provides and it contains all the useful information about the process. After
that we are able to take a snapshot of the operator state and process it.

It is essential to say that every name of the operators which are added
to the workflow is distinct. This fact gives us the opportunity to set this
disting name as the unique ID of the process state. Thus, we have a unique
ID generated automatically from the system and, in addition, we know
exactly which id corresponds to which operator state due to the fact that the
RapidMiner Studio enables us to supervise the design.

Additionally, we set the state Backend using the setSatateBackend
instruction of Flink framework. It is essential to initialize the state Backend
due to the fact that many clusters do not include it in the configuration file.
Furthermore, when you set the state Backend, you have to define the
checkpoint directory which is vital in case you want to take snapshots. It is
not possible to take a snapshot of the state if a cluster configuration does not
include the checkpoint directory or if you do not set it on your own.

24

/=
St

4.2.2 Restart Implementation

What changes we have made to implement the restart and migration

strategy in RapidMiner extension are described in this section. Because we
have no full access to RapidMiner studio we use a Json file as input which
contains some arguments which are vital for our design and produced easily
from the core.

Json file fields:

restart: type: boolean -> true if you want to restart a job
fromExistingSavepoint: type: boolean -> true if you want to restart
a job from an existing savepoint

AllowNonRestoreStates: type: boolean -> allow to restore the state
if any operator is missed

cancel job: type: boolean ->true if you want to cancel the running job
after the snapshot

checkpoint dir: type: String -> the new checkpoint directory (it is
important in case that the checkpoint directory is not configured)

jobs: type: List< job name, job ids, new savepoint path, existing
savepoint paths,host, port,target directory >

O job name: String-> the name of the job that you want to restart
(if there is only one you can skip this field by set as Default value
")

O job ids: List <String> -> the job ids from which you get the
savepoints

O new savepoint path: String -> the new savepoint path (It fails
to restart if it exists)

O existing savepoint paths: List<String> -> the existing
savepoint paths from which you restart the job (in case the
“fromExistingSavepoint” is true)

O host: type:String -> the host name of the cluster in which the
job ids runs

O port: type: Integer -> the port of the host cluster in which the
job ids runs

o target directory: type: String -> the directory in which the
snapshots will be saved (it is important in case the savepoint
directory is not configured)

25

/=
St

In case of restart we check if there are existing savepoints that take as
input arguments into the main migrate algorithm. If we do not already have
the savepoints to create the new ones, the restart scenario takes place and
takes care of this. In this case, savepoints are taken for every job id, which
are included in the Json file, using the REST API of Flink and the job canceled
if it is necessary. The RequestBody of the POST and GET requests, which are
used to trigger the savepoint and retrieve the savepoint path, is completed
via information that the Json file provides. When it has all the appropriate
savepoint paths, the migrate algorithm is called and takes as input
arguments the savepoint paths along with all the operator uids, which exist
in this StreamingNest operator, and the new savepoint directory.

26

/=
St

5. Experimental Execution

In this section we provide some examples and we will see how to split,
merge and migrate jobs which are designed in RapidMiner studio and how
our implementation is adapted in any required situation.

5.1 Split-Merge example

Firstly, we have designed a simple workflow using a Flink Retrieve
connection and a Streaming Nest operator. A KafkaSource operator
connected via a Kafka Retrieve is included into the Streaming Nest operator.
Its output connects with the input of an Aggregate Stream operator which
calculates the sum of the input. Subsequently, its output is connected with
another Aggregate Stream operator which calculates the sum of the input
again. Finally, the output of the second Aggregate Stream operator is
connected with a Kafka Sink operator which writes the output in a topic. The
connection of the Kafka Sink operator being via a Kafka Retrieve connection.

Retrieve localhost flinkConn Streaming Nest

f’ out con | out res
in out res

Figure 9: The Streaming Nest operator to create the job.

Retrieve cluster... Kafka Sink
f' out con §g
inp
Retrieve cluster ... Kafka Source Aggregate Stream Aggregate Stream (2)
f’ outF ﬂ con §g outF ﬂ inp D outF ﬂ inp D out’)

Figure 10: A workflow consists of two Aggregate Stream operators

27

/=
St

After the signing of the workflow we have to configure the Json file. We
do not want to restart our workflow using other jobs, thus both the restart
parameter and the “fromExistingSavepoint” will be “false”. In addition, we

must configure the checkpoint dir correctly. We don't care about the other
parameters.

5.10.26.123: apps/savepoint/checkpoints"®,
:"true”

Figure 11: The Json file to run a job without restart.

We submit the job on the cluster and produce some data via a Kafka
producer into the Source topic.

Job Name Start Time Duration End Time Tasks Status

2020-10-27 16:35:50 31s - m m

job3

Figure 12: The submitted job on the cluster

28

/=
St

~ACibaikousis@clu@4: fusr/hdp/current/kafka-broker$ bin/kafka-console-producer.sh

broker-1ist clu@z2.softnet.tuc.gr:6667,clue3.softnet.tuc.qr:6667,cludd.softnet. tu
.gr:6667,cludé.softnet.tuc.gr:6667 --topic testl

":"a","valuel":"1"

", "valuel™:"1'

oo Q@

1
1
1
1
X
1
1
1

et e el el el el el el el

"valuel":"1'

ibaikousis@cluo4: fusr/hdp/current/kafka-broker
File Edit View Search Terminal Help
"SUM-SUM-valuel":"24.0","word":'

"SUM-SUM-valuel":"33.0","word":'
[" SUM-SUM-valuel":"43.68","word":"

Figure 13: The results of the new job after data production.

The data stream passes through the workflow and is written into the
Sink topic. The results are provided below:

Furthermore, we will split the workflow into two different jobs and each
of them will contain only one Aggregate Stream operator. Thus, we need two
Streaming Nest operators to implement the two different jobs as below:

29

/=
St

Retrieve cluster ... Streaming Nest

C out con _|_ out [ES
in out fes
res
Retrieve cluster ... Streaming Nest (2)
c out can _|_ out
in out

Figure 14: A workflow consists of two jobs.

The new workflows contain the same Aggregate Stream operators as
the first one. It is vital in case of restart that the operator’'s name has to be
the same as the first due to the fact that the name is the UID of the operator.
The Kafka Source (2) operator reads data from the topic of the Kafka Sink
operator.

Retrieve cluster ... Kafka Sink

.C out can §g

inp

Retrieve cluster ... Kafka Source Aggregate Stream

.C out can & out inp .Q.’ out

Figure 15: Implementation of the first Streaming Nest operator.

30

/=
St

Retrieve cluster ... Kafka Sink (2)

f’ out can §g

inp

Retrieve cluster ... Kafka Source (2) Aggregate Stream (2)

out can out . inp D -:-ut
f: %

Figure 16: Implementation of the second Streaming Nest operator.

Thereafter, we configure the Json file to restart the new workflows
using the states of the first one. Thus the restart flag has to be “true”, the
fromExistingSavepoint “false”, in case we want to cancel the running job, the
cancel job has to be “true” , otherwise “false”, the AllowNonRestoreStates
has to be “true” and the checkpoint dir must be configured correctly. In the
jobs field we have two elements, each of them must have the name of our
job as job name, as job ids we have one element with the job id of the
running job. Additionally, we have to configure the host, the port and the
target directory properly.

31

/=
St

"restart":"true"
“fromExisting oint":"false",
"cancel job":"true",

"jobs": [
"job name":"jobl",

["7bB5T3be3831610944
int path":"hdfs ; /savepoint/savepoints/testl”,

jepoint/savepoints”,

epoint/checkpoints"®,
"AllowNonR

Fiaure 17: The Json file in order to solit a workflow to two iobs.

Job Name Start Time Duration End Time Tasks Status
job2 2020-10-27 16:49:21 13s m m
jobl 2020-10-27 16:48:46 49s m m

Completed Job List

Job Name Start Time Duration End Time Tasks Status

job3 2020-10-27 16:35:50 12m 47s 2020-10-27 16:48:37 E Flgure

18: The submission of the new jobs.

32

/=
St

Furthermore, two savepoints are generated by the Migration algorithm
into specific locations, each of which restarts the corresponding job.

[john@john-All-Series:~S hadoop fs -1s hdfs://45.10.26.123:9000/apps/savepoint

ound 2 items

Hrwxr-xr-x - softnet supergroup 0 2020-10-27 1 o 123:9000/apps/savepoint/checkpoints

drwxr-xr-x - softnet supergroup 0 2020-10-27 1 .1 123:9000/apps/savepoint/savepoints

[john@john-All-Series: hadoop fs -1s hdfs://45.10.26. g s/save savepoints

ound 3 items

drwxr-xr-x - softnet supergroup 0 2020-10-27 8 o 6.123:9000/apps/savepoint/savepoints/savepoint-7b65f3-c023312afb96
drwxr-xr-x - john supergroup 0 2020-10-27 16:48 .1 123:90800/apps/savepoint/savepoints/testl

drwxr-xr-x - john supergroup 0 2020-10-27 16: o 6.123:9000/apps/savepoint/savepoints/test2

ljohn@john-All-Series:~S hadoop fs -1s hdfs://45.10.26.123: savep t/savepoints/test1l

1 john supergroup 1218 2020-10-27 16:48 hdfs://45.10.26.123:9000/apps/savepoint/savepoints/testl/ metadata
3 john supergroup 1940 2620-10-27 8 hdfs://45.10 :9000/apps/savepoint/savepoints/testl/ebafeacc-775e-47d0-bd83-a3d304859361
-1s hdfs://45.10.26.123:9000/apps/savep t/savepoints/test2

1 john supergroup 1218 2020-10-27 16:49 hdfs://45.10.26.123:9000/apps/savepoint/savepoints/test2/ metadata
3 john supergroup 1956 2020-10-27 16:49 hdfs://45.10.26.123:9000/apps/savepoint/savepoints/test2/a047a83b-9445-4bd7-84d5-68fbbo3faade

Figure 19: The generated files on hdfs both for the jobs1 and job2.

We produce some data into the Kafka Source topic. The sum of each
operator continues the sum of the first workflow without data losses as we
can see on the screenshots below:

File Edit Y r Search Terminal Help
broker-1ist clu@z.softnet.tuc.gr:6667,clu@3.softnet.tuc.qr:6667,clud4.softnet.tu
7,cluds.softnet.tuc.gr:6667 --topic testl

"a","valuel":"1"}
","valuel 1"}
", "valuel :
", "valuel
","valuel
","valuel
", "valuel
", "valuel
","valuel
", "valuel

,_.
[S S S

e e

ch Terminal Help
24.0" ,"word":"a"}
33.0","word":"a"}
43.0","word":"a"

ibaikousis@clu04: fusr/hdp/current/kafka-broker

File Edit View Search Terminal Help

er$ bin/kafka-console-consumer.sh -
,clud3.softnet.tuc.gr:6667,cludd.soft
et.tuc.gr: ,cluds.softnet.tuc.gr:6667 --topic test3 --from-beginning
"SUM-SUM-valuel":"54.8" ,"word":"a"}

Figure 20: The results of the new jobs after the data production.

33

/=
St

Afterwards, we will provide an example in which we will merge the
previous two jobs into the first one.

Retrieve cluster ... Kafka Sink
f’ DUt::I con %
- inp
Retrieve cluster ... Kafka Source Aggregate Stream Aggregate Stream (2)
f’ out) ﬂ con §g out’j ﬂ inp .D-p out’) ﬂ inp .Q.. out’)

Figure 21: The merged workflow that consists of two Aggregate operators

Thus, we have to configure the Json file properly in order to take
savepoints from every running job. We need the restart flag to be “true”, the
fromExistingSavepoint “false”, the cancel job or has to be “true” or “false” in
order to cancel the jobs or not, the checkpoint dir has to be configured with
the checkpoint directory properly and the AllowNonRestoreStates must be
“true”. Additionally, the jobs field consists of one element with the job name
as the job name of the new job and the job ids consists of the job ids of the
running jobs. The other fields as the host, the port, the new savepoint path
and the target directory have to be defined correctly.

Figure 22: The json file in order to merge two jobs.

34

/=
St

In addition, the savepoint of the new workflow are generated by the
implementation into the new savepoint path which is defined into the Json
file and the new job are submited on the cluster.

JohnMJohn All-Series:~S$ hadoop fs -1s hdfs://45.108.26.123:90008/apps/savepoint/savepoints

- softnet supergroup -10- H hdfs: .18.26.123:9000 /apps/savepoint/savepoints/savepoint-7b65f3-c023312afbge
- softnet supergroup -10- H hdfs: .10.26. :9000 /apps/savepoint/savepoints/savepoint-9f30f9-009142cac8b3
softnet supergroup -10- 6 hdfs: .26.123:9000 /apps/savepoint/savepoints/savepoint-f58774-1c9b3bboees3
- john supergroup -10- 6:48 hdfs: .26. 19000 /apps/savepoint/savepoints/testl
- john supergroup -10- H hdfs: .26.123:9000 /apps/savepoint/savepoints/test2
= john supergroup (5] -10- H hdfs: 6.123:9000/apps/savepoint/savepoints/test3
Ijohn@john-All-Series:~S$ hadoop fs -ls hdfs://45.10.26.123: 9000,:’app5,’savepolnt;‘savep:)lnts,’trst}
Found 3 items
- 3 john supergroup 1956 2020-10-27 16:57 hdfs://45.10.26.123:9000/apps/savepoint/savepoints/test3/1f60ee25-461f-4fb5-a3a6-d280334df8a9
3 john supergroup 1940 2020-10-27 16:57 hdfs://45.10.26.123:9000/apps/savepoint/savepoints/test3/9c914940-2323-4b24-9dfe-0d54a2cc7dc8
1 john supergroup 2412 2020-10-27 16:57 hdfs://45.10.26.123:9000/apps/savepoint/savepoints/test3/_metadata

Figure 23: The generated files on hdfs for the job1.

Job Name Start Time Duration End Time Tasks Status

job3 2020-10-27 16:5T:44 2m4ls - m

Completed Job List

Job Name Start Time Duration End Time Tasks Status
job2 2020-10-27 16:49:21 8mb5s 2020-10-27 16:57:26 H
jobl 2020-10-27 16:48:48 8m39s 2020-10-27 16:57:25 H

Figure 24: The submission of the new job and the cancellation of the previous ones.

Furthermore, some data is produced by a Kafka producer into the
Kafka Source operator topic in order to check the results which are written
into the Kafka Sink operator topic. The results continue the sums of the
previous jobs with no data losses as we can see on the screenshot below.

ibaikousis@cluo4: fusr/hdp/current/kafka-broker
File Edit View Search Terminal Help
€.gr:6667,clud6.softnet.tuc.gr:6667 --topic testil
"a","valuel":"1
25 tvalued it
a","valuel”:"1
a","valuel”
a","valuel
a","valuel”
"a","valuel"
a
a
a
a
a

,"valuel”
,"value
,"valuel”
,"valuel”
,"valuel":

iy S S W B i i

.
H
.

File Edit View h Terminal Help
SUM-SUM-valuel":"33.0","word":"a
{"SUM-SUM-valuel”:"43.0" ,"word":"a"}

{"SUM-valuel":"11.0","word":"a"}
"SUM-SUM-valuel":"66.0","word":"a

Figure 25: The results which are produced by the new job.

()
L >}

Summarizing, we provided an extended example which includes many
cases in order to prove the correctness of the implementation. The cases of
the split and merge are checked by the execution example and the results of
this are provided on the screenshots successfully.

5.2 Migration example

Finally, we provide a simple example regarding migration of a state in
order to test it between different clusters.

Firstly, we want to migrate a job from the localhost Flink setup on the
cluster of the Technical University of Crete. We submit a job that contains
two sum Aggregate Stream operators connected. Then, we produce some
data into a Kafka topic of the localhost Flink setup:

Output_consumer
File Edit View Search Terminal Help

"SUM-SUM-valuel”:"3.08"
"SUM-SUM-valuel”:"7.0"

n
]

n
?

Figure 26. The results of the produced data on localhost cluster.

In order to migrate the state, we made some changes in the Json file.
First of all, we specify the host and the port of which the job is running.
Moreover, we set the new checkpoint and savepoint directories. The Json file
provided below:

36

St

——

jepoint/savepoints/teste2”,

repoint/savepoints”®,

vepoint/checkpoints",

Figure 27: The Json file to migrate the state.

After the execution the new job is submitted on the new cluster
successfully and some data is produced by us to check that the migration
completed with no data losses.

ibaikousis@clu04: fusr/hdp/fcurrent/ka...

File Edit View Search Terminal Help

"SUM-SUM-valuel”:"12.0" ,"word":"a"}

Figure 28: The results which are produced on the Technical
University cluster.

As we can see on the screenshot above, the sum continues to increase
after the migration of the state on the new cluster.

37

/=
St

Conclusion

In this diploma thesis we proposed a Migration Algorithm in Apache
Flink framework with the ability to split, merge and rescale operator states. A
job can easily migrate on another cluster without data losses and no extra
requirements, as the state descriptor and Type info, using our
implementation. The algorithm is based on the State Processor API of Flink
using many methods and classes of it.

Additionally, we use the RapidMiner Studio in order to apply our
algorithm due to the fact that it gives the opportunity to design workflows
quickly and easily. Changes have been added in the extension by us in order
to automate the restart process using a Json file as input and the REST API
which is provided by Flink.

In the final step, we provided execution examples which covers a wide
range of use cases of the state migration in combination with the merging
and the splitting of workflows. We analyzed ito a extended the steps of the
design and the configuration of the Json file in order to restart any workflow
using proper parameters.

38

/=
St

References

[0] Data science: https://en.wikipedia.org/wiki/Data_science

[1] Apache Flink: https://docs.cloudera.com /csa/1.2.0/ flink -overview /
topics /csa-flink -overview.html

[2] Flink APIs: https://flink.apache.org/flink-applications.html

[3] DataSet API: https://ci.apache.org/projects/flink/ flink-docs-release-1.11/
dev/batch/

[4] DataStream API: https:// ci .apache.org /projects /flink/flink - docs-stable /
dev/datastream_api.html

[5] What is a DataStream : https://ci .apache.org /projects /flink/ flink-docs-
stable /dev/datastream_api.html#what-is-a-datastream

[6] Programs and Dataflows: https://ci.apache.org/projects/flink/ flink- docs-
release-1.9/concepts/programming-model.html#programs-and-dataflows

[7] Parallel Dataflows: https://ci.apache .org/ projects/flink /flink-docs -release
-1.9/ concepts /programming-model.html#parallel-dataflows

[8] Parallel Execution : https://ci.apache.org/projects /flink/flink-docs-release-
1.9 /dev /parallel.html#parallel-execution

[9] Stateful Operators : https://ci.apache.org/projects/flink /flink-docs-
release-1.9/ concepts/programming-model.html#stateful-operations

[10] Checkpoints and Savepoints :
https://cwiki.apache.org/confluence/display/ FLINK/FLIP-
47%3A+Checkpoints+vs.+Savepoints

[11] State Backend : https://ci.apache.org /projects/flink/flink-docs
-master/ops /state /state_backends.html

39

/=
St

https://docs.cloudera.com/csa/1.2.0/flink-overview/topics/csa-flink-overview.html
https://docs.cloudera.com/csa/1.2.0/flink-overview/topics/csa-flink-overview.html
https://ci.apache.org/
https://ci.apache.org/projects/flink/flink-docs-master/ops/state/state_backends.html
https://cwiki.apache.org/
https://cwiki.apache.org/confluence/display/FLINK/FLIP-47%3A+Checkpoints+vs.+Savepoints
https://ci.apache.org/projects
https://ci.apache.org/projects/flink/flink-docs-release-1.9/concepts/programming-model.html#stateful-operations
https://ci.apache.org/projects/flink/flink-docs-release-1.9
https://ci.apache.org/projects/flink/flink-docs-release-1.9
https://ci.apache.org/projects/flink/flink-docs-release-1.9/concepts/programming-model.html#parallel-dataflows
https://ci.apache.org/projects/flink/flink-docs-release-1.9/concepts/programming-model.html#parallel-dataflows
https://ci.apache.org/projects/flink/flink-docs-release-1.9/concepts/programming-model.html#parallel-dataflows
https://ci.apache.org/projects/flink/
https://ci.apache.org/projects/flink/flink-docs-release-1.9/concepts/programming-model.html#programs-and-dataflows
https://ci.apache.org/projects/flink/flink-docs-stable/dev/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/datastream_api.html#what-is-a-datastream
https://ci.apache.org/projects/flink/flink-docs-stable/dev/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/batch/
https://flink.apache.org/flink-applications.html
https://flink.apache.org/flink-applications.html

[12] The MemoryStateBackend : https://ci.apache.org/projects/flink/ flink-
docs -master /ops/state /state_ backends.html#the-memorystatebackend

[13] The FsStateBackend :https://ci.apache.org/projects/flink/flink-docs-
master /ops/state/ state backends.html#the-fsstatebackend

[14] Here’s How Apache Flink Stores Your State data:
https://towardsdatascience. com /heres- how-flink-stores-your-state-
7b37fbb60ela

[15] The Rocksdbstatebackend: https://ci.apache.org/projects/flink/flink-docs-
master /ops/state/state_ backends.html#the-rocksdbstatebackend

[16] Unify binary format : https://cwiki.apache.org/confluence/display/FLINK /
FLIP-41%3A+Unify+Binary+format+for+Keyed+State

[17] State Processor API : https://ci.apache.org/projects/flink/flink -docs-
release -1.11/dev/libs/state_processor_api.html

[18] FLIP-43: State Processor API: https://cwiki.apache.org/confluence/
display /FLINK/FLIP-43%3A+State+Processor+API

[19] RapidMiner Studio: https://rapidminer.com/products/studio/feature-list/
[20] RapidMiner Extensions:

https://marketplace.rapidminer.com/UpdateServer /faces/category.xhtml?
categoryld=4

40

/=
St

https://marketplace.rapidminer.com/
https://rapidminer.com/products/studio/feature-list/
https://cwiki.apache.org/
https://cwiki.apache.org/confluence/display/FLINK/FLIP-43%3A+State+Processor+API
https://ci.apache.org/projects
https://cwiki.apache.org/confluence/
https://towardsdatascience/
https://ci.apache.org/
https://ci.apache.org/projects/flink/flink-docs-master/ops/state/state_backends.html#the-memorystatebackend
https://ci.apache.org/projects/flink/flink-docs-master/ops/state/state_backends.html#the-memorystatebackend

	Abstract
	Περίληψη
	Acknowledgments
	Contents
	Figure Table
	1. Introduction
	1.1. Thesis outline
	2. Apache Flink
	2.1 DataSet API[3]
	2.2 DataStream API[4]
	2.3 Programs and Dataflows[6]
	2.4 Parallel Dataflows[7,8]
	2.5 Stateful Operators [9]
	2.6 Checkpoints and Savepoints [10]
	2.7 State Backend [11]
	2.7.1 Memory State Backend [12,14]
	2.7.2 FileSystem State Backend [13,14]

	2.7.3 RocksDB State Backend [15,14]
	2.8 Unify binary format [16]
	2.9 State Processor API [17,18]

	3. RapidMiner Studio
	3.1 RapidMiner Extensions [20]

	4. Implementation
	4.1 The Migration Algorithm
	4.1.1 Steps of the Algorithm

	4.2 RapidMiner Studio
	4.2.1 Stateful operators
	4.2.2 Restart Implementation

	5. Experimental Execution
	5.1 Split-Merge example
	5.2 Migration example

	Conclusion
	References

