
TECHNICAL UNIVERSITY OF CRETE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Stochastic Optimization on Tensor Factorization and
Completion

by

Ioanna Siaminou

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE MASTER OF SCIENCE OF

ELECTRICAL AND COMPUTER ENGINEERING

1/3/2021

THESIS COMMITTEE

Professor Athanasios P. Liavas, Thesis Supervisor
Professor George N. Karystinos

Associate Professor Vassilis Samoladas

2

3

Abstract

We consider the problem of structured canonical polyadic decomposition (CPD). If the

size of the problem is very big, then stochastic optimization approaches are viable al-

ternatives to classical methods, such as Alternating Optimization (AO) and All-At-Once

(AAO) optimization. We extend a recent stochastic gradient approach by employing an

acceleration step (Nesterov momentum) in each iteration. We compare our approach with

state-of-the-art alternatives, using both synthetic and real-world data, and find it to be

very competitive. Furthermore, we examine the drawbacks of a parallel implementation

of our accelerated stochastic algorithm and describe an alternative method that deals

with these limitations. Finally, we propose an accelerated stochastic algorithm for the

Nonnegative Tensor Completion problem and its parallel implementation via the shared–

memory API OpenMP. Through numerical experiments, we test its efficiency in very large

problems.

4 Abstract

5

Acknowledgements

First, I would like to thank my thesis supervisor Prof. Athanasios Liavas for his continuous

guidance throughout this thesis. Furthermore, I would like to thank the group members

Giannis, Christos and Paris for their advice and help. Working with them was one of the

most fruitful and productive experiences in my academic years. Last but not least, I would

like to thank Giorgos for his continuous encouragement and support all this time. Finally,

I must express my gratitude to my family, who were always there for me throughout my

years of study. This thesis would not have been possible without them. Thank you.

6 Acknowledgements

7

Table of Contents

Acknowledgements . 5

Table of Contents . 7

List of Figures . 9

List of Abbreviations . 11

1 Introduction . 13

1.1 Notation . 13

2 Mathematical Background . 15

2.1 Tensor Preliminaries . 15

2.1.1 Canonical Polyadic Decomposition (PARAFAC model) 16

2.1.2 ALS algorithm . 16

2.2 Stochastic Optimization . 17

2.2.1 Convergence Results . 18

2.2.2 Determination of Stepsize . 18

2.2.3 Variants of SGD . 18

3 Stochastic Canonical Polyadic Decomposition 21

3.1 Model Formulation - BrasCPD and AdaCPD 21

3.2 Accelerated Stochastic CPD - the algorithm 22

3.3 Numerical Experiments . 25

3.4 Conclusions . 29

4 Parallel Implementation . 33

4.1 Naive approach . 33

4.2 A multi-threaded approach . 33

4.3 Numerical Experiments . 34

4.4 Conclusions . 35

5 Stochastic Tensor Completion . 37

5.1 Tensor factorization with missing elements 37

5.1.1 Nonnegative Matrix Completion . 37

5.1.2 Parallel Implementation of Stochastic AO NTC 41

5.2 Numerical Experiments . 42

5.2.1 Model Selection problem . 42

8 Table of Contents

5.3 Conclusions . 44

6 Conclusion and Future Work . 45

Bibliography . 47

9

List of Figures

2.1 Stochastic Gradient descent for Least Squares problem 1
2m

∑m
i=1(aTi x− bi)2

for m = 500. The constant and variant stepsizes are α = B
ρ , and αk = B

ρ
√
k
.

The parameters B, and ρ are set to ‖x∗‖2, and LB+ ‖ATb‖2, respectively

where L is λmax(ATA). 19

3.1 Noiseless case for tensor with I1 = I2 = I3 = 300, and R = 20, 50. Also{
Ai
}3

i=1
= R+. 26

3.2 Noiseless case for tensor with I1 = I2 = I3 = 300, and R = 100, 200. Also{
Ai
}3

i=1
= R+. 27

3.3 Noisy case for tensor with I1 = I2 = I3 = 100, R = 50. Also
{
Ai
}3

i=1
= R+. 28

3.4 Noisy case for tensor with I1 = I2 = I3 = 200, R = 100, |F i| = 500. Also{
Ai
}3

i=1
= R+. 29

3.5 Noisy case for tensor with I1 = I2 = I3 = 200, R = 100, |F i| = 100. Also{
Ai
}3

i=1
= R+. 30

3.6 Noisy case for tensor with I1 = I2 = I3 = 200, R = 30, |F i| = 500. Also{
Ai
}3

i=1
= R+. 30

3.7 Noisy case for tensor with I1 = I2 = I3 = 200, R = 30, |F i| = 100. Also{
Ai
}3

i=1
= R+. 31

3.8 Indian Pines dataset for R = 10 (top), R = 100 (bottom). 31

3.9 PaviaU dataset for R = 50 (top), R = 200 (bottom). 32

3.10 AdaCPD algorithm for the real data datasets for different values of η, β =

10−6, R = 100, |F i| = 500. 32

4.1 Execution time of the while loop for a tensor of dimensions 800×800×800,

with R = 15, 50, via parallel ASCPD. 35

4.2 Speedup attained for a tensor of dimensions 800×800×800 with R = 15, 50,

via parallel ASCPD. 35

4.3 Mean execution time of the fiber–sampling step for a tensor of dimensions

800× 800× 800, with R = 15, 50. 36

4.4 Speedup attained for a tensor of dimensions 100 × 100 × 100 × 100 with

R = 50, via parallel ASCPD. 36

5.1 Execution time(Left), Attained Speedup(Right) for Chicago Crime dataset. 42

5.2 RFE vs different values of Rank. 43

5.3 RFE vs different values of Ranks. 44

10 List of Figures

11

List of Abbreviations

ADMM Alternating Direction Method of Multipliers

AGD Accelerated Gradient Descent

ALS Alternating Least Squares

AO Alternating Optimization

AOO All-at-Once Optimization

CANDECOMP Canonical Decomposition

CPD Canonical Polyadic Decomposition

i.i.d. independent and identically distributed

NAG Nesterov’s Accelerated Gradient

MNLS Matrix Nonnegative Least-Squares

MU Multiplicative Updates

NMC Nonnegative Matrix Completion

NTC Nonnegative Tensor Completion

NTF Nonnegative Tensor Factorization

PARAFAC Parallel Factor Analysis

PGD Projected Gradient Descent

RMSE Root Mean Square Error

SGD Stochastic Gradient Descent

12 List of Abbreviations

13

Chapter 1

Introduction

Recently, the need to understand and analyze multi-dimensional data and their dependen-

cies has led to the extended use of tensors, a multi-dimensional mathematical object, with

high interpretability. Tensors, and tensor algebra are used in a variety of applications and

scientific fields from medicine to geodesy. For instance, in cases where a matrix suffices to

represent the relationship of the data at given point in time, tensors are used for temporal

analysis of the data. For example, an fMRI scan can be represented by a 3–rd order tensor

X , where its element corresponds to a specific part of the brain and its state in time [1].

An overview of tensor applications can be found in [2]. Canonical Tensor Decomposition

(CPD) or Parallel Factor Analysis (PARAFAC) is a well known model to data scientists

since it can extract meaningful structure from a given dataset. Alternating Optimiza-

tion (AO), All-at-Once Optimization(AOO), and Multiplicative Updates (MUs) are the

workhorse methods for CPD. In case of constrained tensor decomposition, especially the

case of Nonnegative Tensor Factorization problem (NTF), a new scheme is proposed that

makes use of momentum in [3]. In [4], a Gauss-Newton type algorithm is employed to

solve NTF.

However, due to the information explosion and the continuous data collection, CPD of

very large tensors may be prohibitive. In the literature, different approaches are introduced

in order to deal with large-scale problems in the context of CPD. Distributed programming

and shared memory APIs are extensively used to retain the scalabitity of the CPD model.

Recently, randomized techniques have gained much attention, since they are relatively

easy to implement, have lower computational cost and can guarantee accurate solutions.

Tensor Factorization with missing elements or Tensor Completion is another inter-

esting application of the CPD model. In this setting, a set of observations is organized

in a N–mode tensor X . Using only the available elements, accurate estimations for the

missing ones can be extracted. Recommendation systems which are heavily used in ML

applications, are related to Matrix/Tensor Completion problems. We highlight the Netflix

Prize competition where the efficiency of Matrix Completion was shown [5].

1.1 Notation

Throughout this thesis, vectors and matrices are denoted by lowercase and uppercase bold

letters, for example x and X. Tensors are denoted by calligraphic capital letters, namely

X . ‖ · ‖F denotes the Frobenius norm of the matrix or tensor argument. The identity

matrix is denoted by the letter I. The sets R(
∏N
n=1 In) and R(

∏N
n=1 In)

+ denote the sets of

N -th order real and real nonnegative tensors, respectively. The inequality A − B � 0

14 Chapter 1. Introduction

means that the matrix A−B is positive semidefinite. Finally, MATLAB notation is used

when it seems appropriate.

15

Chapter 2

Mathematical Background

We proceed with some definitions in the context of tensors and the CPD model. For

further details we refer the reader to [6] and [7]. Finally, we make an introduction to

Stochastic Gradient Descent (SGD), an optimization algorithm heavily used in Machine

Learning field [8], [9].

2.1 Tensor Preliminaries

Definition A.1 Let a ∈ RN , b ∈ RP , and c ∈ RJ . The outer product of a and b is

defined as the rank-one matrix with elements

[a ◦ b]n,p = anbp, (2.1)

for all n ∈ {1, . . . , N}, p ∈ {1, . . . , P}, and the outer product of a, b and c is defined

as the rank-one tensor with elements

[a ◦ b ◦ c]n,p,j = anbpcj , (2.2)

for all n ∈ {1, . . . , N}, p ∈ {1, . . . , P} , and j ∈ {1, . . . , J}.
Definition A.2 Let A ∈ RN×M and B ∈ RP×K . The Kronecker product (or tensor

product) of A and B is defined as the matrix

A⊗B =


A1,1B · · · A1,MB

...
. . .

...

AN,1B · · · AN,MB

 ∈ RNP×MK . (2.3)

Definition A.3 Let A ∈ RN×M and B ∈ RP×M . The Khatri-Rao product of A

and B is defined as the matrix

A�B =
[
A:,1 ⊗B:,1 · · · A:,M ⊗B:,M

]
∈ RNP×M . (2.4)

Definition A.4 Let A ∈ RN×M and B ∈ RN×M . The Hadamard Product or

elementwise matrix product of A and B, is a matrix of size N ×M , and is defined as

[A ~ B]n,m = an,mbn,m, (2.5)

for all n ∈ {1, . . . , N}, m ∈ {1, . . . ,M}.
Definition A.5 The n-mode unfolding or matricization of a tensor X ∈ R(

∏N
n=1 In),

16 Chapter 2. Mathematical Background

is a
N∏

m=1,m 6=n
Im × In matrix where

X(n)(j, in) = X (i1, i2, . . . , iN), (2.6)

where, j = 1 +
∑N

k=1,k 6=n(ik − 1)Jk and Jk =
∏k−1
m=1, m 6=n Im.

2.1.1 Canonical Polyadic Decomposition (PARAFAC model)

Consider a tensor X o ∈ RI1×I2×···×IN that admits a factorization of the form

X o = 〚Ao(1), . . . ,Ao(N)〛 =

R∑
r=1

ao(1)
r ◦ · · · ◦ ao(N)

r , (2.7)

where Ao(i) = [a
o(i)
1 · · · a

o(i)
R] ∈ RIi×R, with i ∈ {1, . . . , N}. We observe the noisy tensor

X = X o + E, where E is the additive noise. Then, estimates of Ao(i) can be obtained by

computing matrices A(i) ∈ RIi×R, for i ∈ {1, . . . , N}, that solve the optimization problem

min
A(1),...,A(N)

fX

(
A(1), . . . ,A(N)

)
, (2.8)

where fX is a function that measures the quality of the factorization. A common choice

for fX is

fX

(
A(1), . . . ,A(N)

)
=
∥∥∥X − 〚A(1), . . . ,A(N)〛

∥∥∥2

F
. (2.9)

If X̂ = 〚A(1), . . . ,A(N)〛, then for an arbitrary mode i, the corresponding matrix unfolding

is given by

X̂(i) = K(i)A(i)T . (2.10)

where we define K(i) as

K(i) = A(N) � · · · �A(i+1) �A(i−1) � · · · �A(1). (2.11)

Thus, fX can be expressed as

fX (A(1), . . . ,A(N)) =
∥∥∥X(i) − X̂(i)

∥∥∥2

F
. (2.12)

The expressions form the basis of the ALS method for tensor factorization, in the sense

that, for fixed matrix factors A(j) with j 6= i, we can update A(i) by solving a least squares

problem.

2.1.2 ALS algorithm

The ALS algorithm is the workhorse method for problem (2.8). At each iteration, ALS

solves

A(i) = argmin
A

‖X(i) −K(i)AT ‖2F , (2.13)

2.2. Stochastic Optimization 17

in a cyclical manner for i = 1, 2, . . . N .

In the unconstrained case, there is a closed form solution to the problem (2.13). Specif-

ically, if K(i) is full rank, we have

A(i) =

((
K(i)TK(i)

)−1
K(i)TX(i)

)T
. (2.14)

Note that K(i)TK(i) = ∗Nn=1,n6=iA
(n)TA(n).

The product of the last two terms in (2.14) is known as matricized tensor times Khatri-

Rao product (MTTKRP) and is the main computational bottleneck of the ALS algorithm.

The MTTKRP costs O(
∏N
n=1 InR) operations which can be very large even if the dimen-

sions are quite small.

2.2 Stochastic Optimization

In this section, we briefly discuss the Stochastic Gradient Descent algorithm (SGD). SGD

gained attention in the recent years due to its efficiency in large scale problems. More

specifically, SGD alleviates the computational cost at each iteration, by employing an

estimate of the gradient of the cost function f(·) instead of computing the true one. In

case of a decomposable cost function f : RN → R, namely

f(x) =
1

m

m∑
i=1

fi(x), (2.15)

SGD solves the optimization problem

min
x∈RN

1

m

m∑
i=1

fi(x), (2.16)

by performing one call to the stochastic oracle at each iteration of the algorithm. Given

an initial point x0 ∈ RN the stochastic gradient step is defined by

xk+1 = xk − αk∇fik(xk), (2.17)

where ik is chosen randomly from the set {1, 2, . . . ,m}, according to a probability distri-

bution. Thus, the sequence {x} is a stochastic process.

We remind the reader that the estimate of the gradient −∇ikf(xk)
1 may not be a

descent direction of f(xk). In some cases, the optimum can be attained if −∇ikf(xk) is

a direction of descent in expectation. Note that problem (2.16), is referred as Empirical

Risk Minimization in Machine Learning literature.

1The estimates −∇ikf(xk) are referred as noisy estimates of the full gradient, rather than a single
component of it.

18 Chapter 2. Mathematical Background

2.2.1 Convergence Results

We continue with some theoretical results for SGD algorithm applied on cost functions

with different properties. We also refer to the analogous results of GD (full batch GD in

this context) for the sake of comparison. For the case of L–smooth and µ–strongly convex

function f(·), via full-batch GD, the error between the value of f(·) at iteration k, with

the optimal value x∗ satisfies [10], [9]

f(xk)− f(x∗) ≤ O(ρk), (2.18)

where ρ ∈ (0, 1). The result (2.18) is commonly known as linear convergence. To attain

accuracy of ε, with ε > 0, one has to perform O(log(1/ε)) iterations with total computa-

tional cost of O(m log(1/ε)). For the SGD algorithm, for the same class of functions f(·),
we have

E [f(xk)− f(x∗)] ≤ O(1/k), (2.19)

which is usually called sublinear convergence. In a similar manner, the number of iterations

required for ε–optimality is O(1/ε). Although, the number of iterations required via SGD

may be greater than its full-batch counterpart, in case of big data (m very large), the total

cost O(m log(1/ε)) may be prohibitive.

2.2.2 Determination of Stepsize

The sequence of stepsizes {αk} in (2.17) is often challenging to determine. Various schemes

are proposed, from constant to diminishing stepsizes at every iteration. Although there

are convergence results concerning both fixed and diminishing stepsizes, a combination

of the two is commonly used in practice. In most cases, the mechanism for computing

the stepsize αk employs all the knowledge for the current problem. In Figure 2.1, the

performance of SGD for two different stepsizes {αk} is illustrated.

2.2.3 Variants of SGD

We briefly discuss the most notable variants of SGD in the optimization and machine

learning literature. Most of the variants can be classified either as noise reduction SGD

or stochastic second order methods. Initially, we mention a noise reduction method, the

Mini–batch algorithm. Through the name, one can quickly deduce that mini-batch lies in

between SGD and full–batch method. Specifically, a mini-batch approach employs small,

randomly selected sets Sk ⊆ {1, 2, . . .m} to make an estimate of the gradient, at each step

of the algorithm.

Also, an adaptive scheme on the batch size can be used in order to obtain a less noisy

estimate of the gradient. For example, in [9] a method with a geometrically increasing

batch is described. The discussion about noise reduction methods, would be incomplete

without mentioning Stochastic Variance Reduced Gradient (SVRG) [11] and SAGA [12].

Both methods, for certain classes of cost functions, can achieve linear convergence. How-

ever, they have a bigger per iteration cost than SGD. Adam [13], a first order stochastic

2.2. Stochastic Optimization 19

0 0.5 1 1.5 2 2.5

10
4

10
-2

10
-1

constant stepsize

diminishing stepsize

Figure 2.1: Stochastic Gradient descent for Least Squares problem 1
2m

∑m
i=1(aTi x−bi)2 for

m = 500. The constant and variant stepsizes are α = B
ρ , and αk = B

ρ
√
k
. The parameters

B, and ρ are set to ‖x∗‖2, and LB + ‖ATb‖2, respectively where L is λmax(ATA).

algorithm is used extensively in neural network training process. For example, Keras [14],

one of the most successful machine learning libraries these days, contains Adam (among

other adaptive stochastic methods) in its set of optimizers.

In the sequel, we mention the second–order stochastic methods. Various schemes have

been proposed in the literature, based on different choices for the second order information.

We refer to Adagrad [15], an adaptive method that incorporates knowledge from previous

iterations in order to tune in a more efficient manner the current step size. For a more

detailed presentation of the SGD variants see [9], [16].

Finally, the role of momentum in SGD is explored in [17]. In [18], a method that

exploits the Nesterov acceleration scheme is presented.

20 Chapter 2. Mathematical Background

21

Chapter 3

Stochastic Canonical Polyadic

Decomposition

Randomized techniques for solving problem (2.8) became very popular since they combine

lower computational cost with sufficiently good accuracy. There are numerous works that

employ different randomization techniques. Sub-sampling of the target tensor X using

regular sampling method has been introduced in [19]. Also, in [20], entries of the target

tensor are sampled in a random manner and the respective blocks of the latent factors are

updated at each iteration. In [21] and [22], a distributed framework is employed, where

smaller replicas of the target tensor are independently factored. The resulting factors of

each independent decomposition are effectively merged at the end to obtain the final latent

factors.

In vanilla ALS, the MTTKRP is considered the “heavy burden” of the method. Con-

sequently, a group of algorithms is developed towards the alleviation of the MTTKRP on

the overall computational cost. A fiber sampling technique is used in [23] and [24]. With

this approach, at each iteration the whole factor is updated, in contrast to [20]. This

scheme facilitates the adaption of constraints on the latent factors.

3.1 Model Formulation - BrasCPD and AdaCPD

The BrasCPD algorithm of [24], uses a stochastic approach for the update of each factor

by randomly sampling fibers from the tensor X ∈ R(
∏N
i=1 Ii). More specifically, if the

mode–i fibers are indexed by F i ⊂ {1, 2, . . .
N∏

m=1,m 6=i
Im}, where the mode–i fibers are the

rows of X(i), we obtain a smaller problem than (2.13). Namely, for each iteration k, we

have

minf
(i)
k (A(i)), (3.1)

where

f
(i)
k (A(i)) = ‖X(i)(F ik, :)−K

(i)
k (F ik, :)A(i)T ‖2F . (3.2)

BrasCPD combines a fiber sampling technique, with ALS algorithm. In more detail, at

each iteration k, a mode i is picked randomly. Then, |F i| mode–i fibers are sampled.

Finally, the update of factor A(i) is performed via

A
(i)
k+1 = A

(i)
k − αk∇f

(i)
k (A(i)), i = 1, 2, . . . N, (3.3)

22 Chapter 3. Stochastic Canonical Polyadic Decomposition

where the matrix ∇f (i)
k (A(i)) is a stochastic approximation of the gradient

∇A(i)fk(A
(1),A(2) . . .A(N))

of the full problem (2.13) w.r.t factor A(i)1. The matrix ∇f (i)
k (A(i)) is computed via

∇f (i)
k (A(i)) = A

(i)
k K

(i)T
k (F ik, :)K

(i)
k (F ik, :)−XT

(i)(F
i
k, :)K

(i)
k (F ik, :). (3.4)

The other factors do not change during iteration k, that is, for j 6= i, A
(j)
k+1 = A

(j)
k . Note

that the computational cost of the MTTKRP drops to O(|Fi|RIi) flops. In the method

described above, one stochastic gradient step is performed at each iteration, concerning a

random set of fibers of the initial tensor X . The stepsize parameter sequence αk follows the

Robbins - Monro update rule [8]. The performance of the algorithm is mainly determined

by the step-sizes αk [9]. In BrasCPD, diminishing step-sizes are employed, namely, αk =
α
kβ

, for appropriate values of parameters α and β. A method based on Adagrad [15], called

AdaCPD, has also been proposed in [24]. The AdaCPD computes the necessary step-sizes

using an accumulated-gradient mechanism with parameters η > 0, β > 0, and ε > 0,

namely

α
(i)
k =

η(
β +

∑k
l=1∇f

(i)
l (A)

)1/2+ε . (3.5)

3.2 Accelerated Stochastic CPD - the algorithm

In this section, we describe the proposed method Accelerated Stochastic CPD (ASCPD).

Following the sampling scheme introduced in [24], [23] we form the sketched problem w.r.t

the factor A(i)

minf
(i)
k (A(i)), (3.6)

where f
(i)
k (A(i)) = ‖X(i)(F ik, :)−K

(i)
k (F ik, :)A(i)T ‖2F . However, instead of a simple gradient

step, we perform an iteration of Accelerated Gradient Descent or Nesterov Accelerated

Gradient (NAG) [10, p. 91]. First at each iteration k, we compute the Hessian matrix

H
(i)
k := ∇2f

(i)
k (A(i)) = K

(i)T
k (F ik, :)K

(i)
k (F ik, :)⊗ I.

In the sequel, we compute the quantities L
(i)
k (smoothness parameter), and µ

(i)
k (strong-

convexity parameter). We update the factor via

A
(i)
k+1 = Y

(i)
k −

1

L
(i)
k

∇f (i)
k (Y

(i)
k), (3.7)

followed by a momentum step (Nesterov momentum)

Y
(i)
k+1 = A

(i)
k+1 + γk(A

(i)
k+1 −A

(i)
k). (3.8)

1Note that, the gradient ∇f(A(1),A(2) . . .A(N)) ∈ RI1×R × RI2×R × · · · × RIN×R of problem (2.8), is
a block matrix, where block i is the gradient w.r.t the factor A(i).

3.2. Accelerated Stochastic CPD - the algorithm 23

The quantity ∇f (i)
k (Y

(i)
k) is the gradient calculated at Yk

(i), namely

∇f (i)
k (Y

(i)
k) = Y

(i)
k K

(i)T
k (F ik, :)K

(i)
k (F ik, :)−XT

(i)(F
i
k, :)K

(i)
k (F ik, :). (3.9)

We highlight that each factor A(i) has its own sequence Y(i). The parameter γk in

the interpolation step (3.8), denotes the momentum parameter and is computed via

γk =

1−
√

µ
(i)
k

L
(i)
k

1 +

√
µ
(i)
k

L
(i)
k

. NAG algorithm for L-smooth, µ-strongly convex problems, achieves

an accuracy of ε in

O

(√
L

µ
log

1

ε

)
, (3.10)

iterations. The performance of NAG algorithm, depends heavily on the condition number

of the problem, namely the condition number of the matrix H
(i)
k . Ill-conditioned Hessian

matrices H
(i)
k may occur, when |F i| < R. To counter the ill–conditioned cases that may

arise, we add a proximal term to the sketched problem (3.6). Thus, we obtain

min
A(i)

f
(i)
k (A(i)) +

λ
(i)
k

2
‖A(i) −A

(i)
k ‖

2
F , (3.11)

where the proximal parameter λ
(i)
k is tuned according to the problem. In more detail,

the value of λ
(i)
k increases, to attain small change on the current factor, between two

consecutive iterations. In the presence of noise, we should opt for higher values of λ
(i)
k .

On the contrary, in well-conditioned cases the proximal parameter λ
(i)
k may set to 0 (or

values < 1). In our implementation we use the L
(i)
k parameter to tune λ

(i)
k , according to

the rule

λ
(i)
k =

 µ
(i)
k , if

L
(i)
k

µ
(i)
k

< C,
L
(i)
k
C , otherwise.

(3.12)

where C is a constant with values C = 10, 102, 103. The modified gradient for problem

(3.11) is

∇f (i)
k (Y

(i)
k) = Y

(i)
k

(
K

(i)T
k (F ik, :)K

(i)
k (F ik, :) + λ

(i)
k I
)

−
(
XT

(i)(F
i
k, :)K

(i)
k (F ik, :) + λ

(i)
k A

(i)
k

)
. (3.13)

Also, note that we set L̃
(i)
k = L

(i)
k + λ

(i)
k , µ̃

(i)
k = µ

(i)
k + λ

(i)
k and we use 1

L̃
(i)
k

to update the

factor A
(i)
k+1 in (3.7). The ASCPD algorithm follows in Algorithm 1.

The quantities L
(i)
k , µ

(i)
k are computed through an eigen/singular value decomposition,

with computational cost O(R3). Thus, the complexity scales cubicly in R. However, in

this framework, the value of R is usually small. In cases of large values of R, more efficient

methods for computing eigenvalues can be used to obtain L
(i)
k and µ

(i)
k .

24 Chapter 3. Stochastic Canonical Polyadic Decomposition

Algorithm 1: ASCPD

Result: {A(i)}Ni=1

1 Input: tensor X ,A
(i)
0 = Y

(i)
0 , i = 1, . . . , N , blocksizes Bi = |F i|, i = 1, . . . , N .

2 k = 0;
3 while terminating condition is not satisfied do
4 Uniformly sample i from {1, 2 . . . N} ;
5 Uniformly sample Bi mode-i fibers;
6 Compute stochastic gradient using (3.13);

7 Compute L
(i)
k , µ

(i)
k , and λ

(i)
k ;

8 Compute A
(i)
k+1 using (3.7) ;

9 Compute Y
(i)
k+1 using (3.8) ;

10 k = k + 1;

11 end

LS problem with constraints

We consider the case where various constraints are imposed on the latent factors. We

solve a constrained version of the sketched problem (3.6). The efficient solution of such

problems is possible, since there are optimal algorithms for different constraints. Proximal

Gradient Descent (PGD) [25] is the mainstream algorithm for constrained optimization.

Specifically, via PGD we can solve problems of the form

min
A(i)∈Ai

f
(i)
k (A(i)) +

λ
(i)
k

2
‖A−A

(i)
k ‖

2
F . (3.14)

Note that Ai denotes the constraint set for each factor A(i). Similarly to the proposed

algorithm, we do not solve the problem (3.14), but we perform one step of PGD. We define

hi (·) as the indicator function of the set Ai. In general, the update step of PGD is an

optimization problem itself

A
(i)
k+1 = argmin

A(i)

hi

(
A(i)

)
+ ‖A(i) − (A

(i)
k − αk∇f

(i)
k (A(i)))‖2F . (3.15)

Problem (3.15) is called proximal operator of hi (·), namely

A
(i)
k+1 = proxhi

(
A

(i)
k − αk∇f

(i)
k (A(i))

)
. (3.16)

For example, in the case where we enforce nonnegative constraints on factors {A(n)}Nn=1,

the proximal operator hi (·) is simply the max(0, ·) operator. In the ASCPD algorithm,

the PGD step becomes

A
(i)
k+1 = proxhi

(
Y

(i)
k −

1

L̃
(i)
k

∇f (i)
k (Y

(i)
k)

)
. (3.17)

3.3. Numerical Experiments 25

Ranks
R=20 R=50 R=100 R=200

NALS 6.5497e-06 1.0109e-04 2.8427e-04 4.3066e-04

BrasCPD α = 0.1 1.5683e-06 1.9975e-05 5.6623e-05 1.4222e-04

BrasCPD optimal 2.6926e-16 9.9118e-12 2.5192e-06 7.6814e-04

AdaCPD 2.4895e-14 7.4076e-06 0.0037 0.0027

ASCPD C = 102 7.3521e-16 1.0083e-15 1.2200e-15 6.7577e-11

ASCPD C = 103 7.4460e-16 1.5204e-15 2.3261e-15 1.3805e-04

Table 3.1: Results for the noiseless case, for different ranks R

3.3 Numerical Experiments

In this section, we present the results of some numerical experiments for the proposed

ASCPD algorithm versus its stochastic counterparts. We explore the performance of the

algorithm through noiseless and very noisy settings, and present the results for different

values of blocksize |F i| and regularization parameter λ(i). Also, we illustrate the perfor-

mance against deterministic algorithms that solve the same problem. The relative tensor

reconstruction error mk = ‖X−X̂‖F
‖X‖F , where X̂ is the estimated tensor, is used in the major-

ity of the following experiments to evaluate the performance. Note that here k denotes a

full -iteration, the number of iterations required to traverse the whole tensor. The results

for every experiment, are extracted after 10 Monte-Carlo trials. The following experiments

are implemented in MATLAB.

Noiseless Case

For the noiseless case, the performance of the algorithm is pretty impressive. However, it

should be made clear that the noiseless sketched problem (3.6) is ease, due to the possible

repetition of the data. For the matter of completeness, we illustrate the performance of

the algorithm for the noiseless case.

In Figures 3.1, 3.2, we illustrate the performance of the ASCPD algorithm versus

the BrasCPD, AdaCPD and NALS algorithms [26] on a medium sized tensor. We set

I1 = I2 = I3 = 300, and create a tensor X o ∈ RI1×I2×I3 , whose latent factors are drawn

from an i.i.d. uniform distribution in [0, 1]. We set the blocksize |F i| = 100 for all

stochastic algorithms. BrasCPD parameters α, β are set to 0.1 and 10−6, respectively. In

AdaCPD, we choose η = 1 and β = 10−6. We test various values for C, namely C = 102, 103

for the ASCPD algorithm.

Noisy Case

We generate a 3–rd order tensor X o ∈ RI1×I2×I3+ , via uniformly drawn latent factors.

Throughout this section, we consider the noisy case, namely

X = X o + σεE,

where E ∼ N (0, σ2
ε) denotes the additive noise. In our experiments, we consider different

values of SNR, which is defined as

26 Chapter 3. Stochastic Canonical Polyadic Decomposition

0 5 10 15 20
10

-15

10
-10

10
-5

10
0

(a) R = 20

0 5 10 15 20
10

-15

10
-10

10
-5

10
0

(b) R = 50

Figure 3.1: Noiseless case for tensor with I1 = I2 = I3 = 300, and R = 20, 50. Also{
Ai
}3

i=1
= R+.

SNR =
‖X o‖2F
σ2
ε ‖E‖2F

.

We evaluate the standard deviation for the different values of SNR via the aforementioned

formula. First, we set I1 = I2 = I3 = 100, |F i| = 500, R = 50 and we test the performance

of the ASCPD algorithm versus the NALS, BrasCPD and AdaCPD algorithms for SNR

6.98dB and 20dB. For BrasCPD we set α = 0.1 and for AdaCPD we have η = 1. For the

parameter C, we set C = 102, 103. In Figure 3.3, we illustrate the results. We observed

that in very noisy cases, the proximal parameter should be set to λ
(i)
k =

L
(i)
k

C , where C < C.

In Figure 3.4, we illustrate the results for I1 = I2 = I3 = 200, |F i| = 500, R = 100 for

SNR 10dB and 30dB. In Figure 3.5, we change the blocksize to |F i| = 100. In Figure 3.6,

we illustrate the results for I1 = I2 = I3 = 200, |F i| = 500, R = 30 for SNR 10dB and

30dB. In Figure 3.7, we set |F i| = 100 and we keep the rest of the parameters the same.

We observe that

3.3. Numerical Experiments 27

0 5 10 15 20
10

-15

10
-10

10
-5

10
0

(a) R = 100

0 5 10 15 20
10

-6

10
-4

10
-2

10
0

(b) R = 200

Figure 3.2: Noiseless case for tensor with I1 = I2 = I3 = 300, and R = 100, 200. Also{
Ai
}3

i=1
= R+.

1. in the low SNR cases, the deterministic algorithm outperforms all stochastic ap-

proaches. The relative performance of AdaCPD and ASCPD depends on the block

size; for “small” block sizes, AdaCPD outperforms the ASCPD, while, for “large”

block sizes, the opposite happens.

2. in the high SNR cases, the ASCPD outperforms all other methods; we note that the

BrasCPD with locally optimal step-size in some cases outperforms AdaCPD.

Real Data

We test the ASCPD algorithm on real datasets to evaluate its performance on real appli-

cations. Similarly to [24], we use the Indian Pine and PaviaU datasets which in fact are

Hyperspectral Images (HSIs). HSI sensors collect data in a group of images, on different

wavelength ranges. The resulting data-cube is a third order tensor. The Indian Pine

dataset is of size 145 × 145 × 220 and consists of data acquired with the AVIRIS sensor,

on Indian Pines site in Indiana (USA). The PaviaU dataset has size 610× 340× 103 and

28 Chapter 3. Stochastic Canonical Polyadic Decomposition

0 5 10 15 20 25 30

0.41

0.42

0.43

0.44

0.45

(a) SNR = 6.98dB

0 5 10 15 20 25 30

0.1

0.15

0.2

0.25

(b) SNR = 20dB

Figure 3.3: Noisy case for tensor with I1 = I2 = I3 = 100, R = 50. Also
{
Ai
}3

i=1
= R+.

consists of a scene of Pavia University in Italy2. We test the performance of BrasCPD,

AdaCPD and ASCPD on both datasets. For all algorithms we use |F i| = 500. As a

performance measure we use the metric mk, which is evaluated at each iteration. We

illustrate the results in Figures 3.8, and 3.9.

AdaCPD parameter η

We tested the performance of AdaCPD for various values of η. AdaCPD does not need

manual (and sometimes exhausting) tuning of the stepsize, however, it is not immune to

bad values of η. We have noticed that the parameter η ,that gives the best performance on

the current setting, is higher. In Figure 3.10, we illustrate the results for different values

of the parameter η for Indian Pines and PaviaU datasets. The value of β seems to not

affect the results.

2Both datasets are available in http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_

Sensing_Scenes.

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

3.4. Conclusions 29

0 5 10 15 20

0.305

0.31

0.315

0.32

0.325

0.33

0.335

(a) SNR = 10dB

0 5 10 15 20 25 30

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b) SNR = 30dB

Figure 3.4: Noisy case for tensor with I1 = I2 = I3 = 200, R = 100, |F i| = 500. Also{
Ai
}3

i=1
= R+.

3.4 Conclusions

In both noiseless and noisy cases, the tuning of the problem parameters is crucial. First,

the regularization parameter λ
(i)
k should admit a different computation (different value of

C) depending on the noisy level of the problem. When noise is present, in cases with very

low SNR (SNR < 10dB), higher values of |F i| are favorable. In higher SNR cases, the

parameter tuning is more flexible. We also implemented the ASCPD algorithm in C++

using the Eigen Library for fast computations [27]. Through experiments, we observed

that the main bottleneck of ASCPD is no longer the MTTKRP, but the sampling of fibers

from the tensor X . In the next Chapter we present a framework that may overcome this

overhead.

30 Chapter 3. Stochastic Canonical Polyadic Decomposition

0 5 10 15 20

0.305

0.31

0.315

0.32

0.325

0.33

0.335

(a) SNR = 10dB

0 5 10 15 20 25 30

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b) SNR = 30dB

Figure 3.5: Noisy case for tensor with I1 = I2 = I3 = 200, R = 100, |F i| = 100. Also{
Ai
}3

i=1
= R+.

0 5 10 15 20

0.32

0.34

0.36

0.38

0.4

(a) SNR = 10dB

0 5 10 15 20 25 30

0.05

0.1

0.15

0.2

0.25

(b) SNR = 30dB

Figure 3.6: Noisy case for tensor with I1 = I2 = I3 = 200, R = 30, |F i| = 500. Also{
Ai
}3

i=1
= R+.

3.4. Conclusions 31

0 5 10 15 20

0.32

0.34

0.36

0.38

0.4

(a) SNR = 10dB

0 5 10 15 20

0.05

0.1

0.15

0.2

0.25

(b) SNR = 30dB

Figure 3.7: Noisy case for tensor with I1 = I2 = I3 = 200, R = 30, |F i| = 100. Also{
Ai
}3

i=1
= R+.

0 2 4 6 8 10

10
-1

10
0

(a)R = 10

0 5 10 15 20

10
-1

10
0

(b)R = 100

Figure 3.8: Indian Pines dataset for R = 10 (top), R = 100 (bottom).

32 Chapter 3. Stochastic Canonical Polyadic Decomposition

0 5 10 15 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)R = 50

0 5 10 15 20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)R = 200

Figure 3.9: PaviaU dataset for R = 50 (top), R = 200 (bottom).

1 2 3 4 5 6 7 8 9 10

iterations

10
-1

10
0

(a) Indian Pines dataset

1 2 3 4 5 6 7 8 9 10

 iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) PaviaU dataset

Figure 3.10: AdaCPD algorithm for the real data datasets for different values of η, β =
10−6, R = 100, |F i| = 500.

33

Chapter 4

Parallel Implementation

In this chapter, we examine a possible parallel implementation of ASCPD. We explain the

reasons that may render stochastic methods not suitable for parallelization and we describe

in detail an alternative method that may overcome these limitations. We highlight that

we refer to thread–level parallelism using the shared memory API openMP and the Eigen

Library.

4.1 Naive approach

At first glance, similarly to ALS CPD approach, we try to compute in parallel the MT-

TKRP. However, the “reduced” MTTKRP in ASCPD method, demands a much smaller

number of arithmetic operations at each iteration. Through numerical experiments, we

did not observe significant speedup using different number of threads. We conclude that,

for medium scale problems the serial version of ASCPD is pretty competitive and the

computation of MTTKRP in parallel may show an improvement in very large problems,

where the blocksize Bi needs to be significantly high.

4.2 A multi-threaded approach

The main bottleneck of ASCPD is the sampling of the tensor X as well as the computation

of the cost function. Since we only obtain the tensor X in the main memory, we need a

more efficient way to sample the set of mode–i fibers at each iteration. Inspired by [28], we

fork t threads via the OpenMP directive #pragma omp parallel, where each one is

responsible for the sampling of B
i

t mode–i fibers. At each iteration k, each thread computes

its local Hessian matrix, L
(i)
k , µ

(i)
k and the momentum parameters, and then, updates its

local copy of the factor A
(i)
k and the interpolation sequence Y

(i)
k . The local factors of the

t threads in the team, are reduced and scaled to the global variables
{

A
(i)
p

}N
i=1

, every p

iterations. The algorithm follows in Algorithm 2.

The parameter p regulates the frequency of the reduction of the local variables. A

straight-forward way to tune parameter p is to decrease its value with the increase of the

working threads. Since the local Bi is smaller when the number of the available threads

increases, the global variables need more frequent update.

The presented method is memory bounded though. We only have the tensor available

in the main memory (the mode–1 matricization X(1)), which is stored in a column-major

structure. Thus, the way we access the tensor to acquire the randomly selected fibers is not

optimal for all modes. To address the possible stall of the CPU, we sort the indices that

34 Chapter 4. Parallel Implementation

Algorithm 2: Parallel ASCPD

Input: X ,
{

A
(i)
0

}N
i=1

, Bi,with i = 1, . . . N,R, p

1

{
Y

(i)
0

}N
i=1

=
{

A
(i)
0

}N
i=1

2 k = 0
3 while (1) do
4 if (term cond is TRUE) then
5 break
6 else
7 #pragma omp parallel
8 Select mode i (same for every thread)
9 Sample Bi/t mode–i fibers

10 Compute L
(i)
k , µ

(i)
k

11 Update local A(i) and local Y(i)

12 if k%p then
13 for i = 1, . . . , N do

14 global A(i) += 1
num threads

{
A

(i)
t,k

}num threads

t=1

15 global Y(i) += 1
num threads

{
A

(i)
t,k

}num threads

t=1

16 k = k + 1

17 return
{

A
(i)
k

}N
i=1

.

correspond to the fibers selected by each thread. In this way, the fibers to be extracted

might be closer and we can exploit the system cache in a more efficient way by enforcing

spatial locality.

To reduce the overhead induced by the cost function computations, we also compute

it in parallel, using the memory friendly method of partial MTTKRP by Giannis Papa-

giannakos.

4.3 Numerical Experiments

We test our parallel approach by creating a tensor X ∈ R800×800×800
+ , with R = 15, 50. We

measure the total execution time of the parallel ASCPD algorithm for different number

of threads, namely t = 1, 2, 4, 6. We use the speedup attained by the different values of t

as the metric to evaluate the performance of the parallel implementation. For the serial

version, we set Bi = 2000. For the synchronization parameter p, we examined various

values between 100 − 1000. Through numerical experiments, we concluded that for this

experiment, p = 1000 is a good choice. In cases where more working threads are available,

the value of p should be inversely proportional to the number of threads. The results

are extracted after 5 Monte-Carlo experiments. In Figures 4.1 and 4.2, we illustrate the

attained speedup for R = 15, 50 and the total execution time of ASCPD (while loop).

In Figure 4.3, we illustrate the mean execution time of the fiber–sampling step, which is

the main bottleneck. In Figure 4.4, we present the results for a 4–th order tensor with

4.4. Conclusions 35

dimensions I1 = I2 = I3 = I4 = 100 and R = 50. In both cases, we observed that the

attained speedup for t > 4 is not significant at all, in some cases the total execution time

may be higher for t = 6. This is probably a result of the “cache thrashing”. However, due

to the nature of the algorithm, a possible solution is not straight-forward.

1 2 4 6

Number of threads

100

120

140

160

180

200

220

240

260

T
im

e
 (

s
e
c
)

269.4

144.5

116.6

122.7

216.2

115.1

 91.2

 97.1

R=50

R=10

Figure 4.1: Execution time of the while loop for a tensor of dimensions 800 × 800 × 800,
with R = 15, 50, via parallel ASCPD.

1 2 4 6

Number of threads

1

2

3

4

5

6

S
p
e
e
d
u
p

1.0

1.9

2.3
2.2

1.0

1.9

2.4

2.2

R=50

R=10

linear speedup

Figure 4.2: Speedup attained for a tensor of dimensions 800× 800× 800 with R = 15, 50,
via parallel ASCPD.

4.4 Conclusions

In this Chapter, we examined a possible parallelization of ASCPD. We mentioned a naive

approach where MTTKRP can be computed in parallel as well as a multi–threaded ap-

proach where each thread contributes to the update of the factor. Through numerical

experiments, we conclude that due to the nature of stochastic algorithms, parallel im-

plementations are not as straight-forward and efficient (in terms of speedup) as their

deterministic counterparts.

36 Chapter 4. Parallel Implementation

1 2 4 6

Number of threads

70

80

90

100

110

120

130

140

T
im

e
 (

s
e
c
)

143.4

 87.0

 67.5

 71.2

142.5

 87.8

 67.3

 69.6

R=50

R=10

Figure 4.3: Mean execution time of the fiber–sampling step for a tensor of dimensions
800× 800× 800, with R = 15, 50.

1 2 4 6

Number of threads

1

2

3

4

5

6

S
p
e
e
d
u
p

R=50

linear speedup

Figure 4.4: Speedup attained for a tensor of dimensions 100×100×100×100 with R = 50,
via parallel ASCPD.

37

Chapter 5

Stochastic Tensor Completion

5.1 Tensor factorization with missing elements

Let X o ∈ RI1×···×IN be a N -th order tensor, which admits the CP decomposition (2.7).

Namely X o = 〚Ao(1), . . . ,Ao(N)〛 where Ao(i) = [a
o(i)
1 · · · a

o(i)
R] ∈ RIi×R, with i ∈ NN .

Also, assume a noisy tensor X = X o + E, where E is the additive noise. We define

Ω ⊆ {1 . . . I1} × {1 . . . I2} × · · · × {1 . . . IN} as the set of indices of the observed entries of

X . Let M be a tensor of the same size as X , with entries M(i1, i2, . . . , iN) equal to one

or zero based on the availability of the corresponding element of X . That is

M(i1, i2, . . . , iN) =

{
1, if (i1, i2, . . . , iN) ∈ Ω,

0, otherwise.
(5.1)

We consider the tensor completion problem

min fΩ

(
A(1),A(2) . . . ,A(N)

)
+ λ

2

∑N
i=1

∥∥A(i)
∥∥2

F
, (5.2)

where

fΩ

(
A(1),A(2), . . . ,A(N)

)
=

1

2

∥∥∥M~
(
X − 〚A(1),A(2), . . . ,A(N)〛

)∥∥∥2

F
. (5.3)

If X̂ = 〚A(1),A(2), . . . ,A(N)〛, then, for an arbitrary mode i, the corresponding matrix

unfolding is given by

X̂(i) = A(i)
(
A(N) �A(N−1) � · · · �A(i+1) �A(i−1) � · · · �A(1)

)T
. (5.4)

Thus, fΩ can be expressed as

fΩ(A(1),A(2), . . . ,A(N)) =
1

2

∥∥∥M(i) ~
(
X(i) − X̂(i)

)∥∥∥2

F
, i ∈ NN , (5.5)

where M(i), and X(i) are the matrix unfoldings of M and X , with respect to the i-th

mode, correspondingly.

5.1.1 Nonnegative Matrix Completion

Similarly to AO NTF, we consider the Nonnegative Matrix Completion (NMC) problem,

the building block of AO Nonnegative Tensor Completion (AO NTC). Assume matrices

X ∈ RP×Q, A ∈ RP×R, B ∈ RQ×R. Also, let Ω ⊆ {1 . . . P}×{1 . . . Q} be the set of indices

of the known entries of X, and M be a matrix with the same size as X, with elements

38 Chapter 5. Stochastic Tensor Completion

M(i, j) equal to one or zero based on the availability of the corresponding element of X.

We consider the problem

min
A≥0

fΩ(A) :=
1

2
‖M ~

(
X−ABT

)
‖2F +

λ

2
‖A‖2F , (5.6)

which is of the form of (5.5) plus a regularization term. The gradient and the Hessian of

fΩ, at point A, are given by

∇fΩ(A) = −
(
M ~ X−M ~ (ABT)

)
B + λA, (5.7)

and

∇2fΩ(A) =
(
BT ⊗ IP

)
diag (vec (M)) (B⊗ IP) + λIPR. (5.8)

We solve problem (5.6) with a stochastic variant of the first-order optimal (Nesterov-type)

algorithm. In more detail, at each iteration l of the stochastic algorithm, we define a new

set of indices Ω̂ ⊂ Ω, and a matrix M̂l, of the same size as M, as

M̂l(i, j) =

{
1, if (i, j) ∈ Ω̂,

0, otherwise.
(5.9)

The acquisition of Ω̂, at each iteration l, can be done in various ways. In our implemen-

tation, the subset Ω̂ is created in a random manner. More specifically, at each iteration l,

and for each row p, we sample from M(p, :) a fixed size of nonzero elements Bl
p (blocksize

per row). We note that Bl = |Ω̂| and that Bl
p = Bl

P .

At each iteration l of Stochastic NMC, the gradient and the Hessian of f
Ω̂

, at point

A, are given by

∇f
Ω̂

(A) = −
(
M̂l ~ X− M̂l ~ (ABT)

)
B + λA, (5.10)

and

∇2f
Ω̂

(A) =
(
BT ⊗ IP

)
diag

(
vec

(
M̂l
))

(B⊗ IP) + λIPR. (5.11)

We highlight that we update each row p of the matrix A by computing the corresponding

row of the gradient (5.10).The algorithm follows in Algorithm 3. In line 12 of Algorithm

3, we compute the “local” Hessian matrix for each iteration l and row p, namely

Hl,p = BTdiag
(
M̂l(p, :)

)
B + λI, (5.12)

and its maximum eigenvalue. For notational convenience, we denote Algorithm 3 as

Aopt = S NMC(X,M,B,A∗, λ).

AO Stochastic NTC algorithm

In Algorithm 4, we present the Stochastic AO NTC algorithm. We start from an initial

point
{

A
(i)
0

}N
i=1

and solve, in a circular manner, Matrix Least Squares problems, based on

5.1. Tensor factorization with missing elements 39

Algorithm 3: Stochastic Nesterov-type algorithm for NMC

Input: X,M∈ RP×Q, B∈ RQ×R, A∗∈ RP×R, λ
1 A0 = Y0 = A∗
2 l = 0
3 while (1) do
4 if l >= MAX INNER then
5 break
6 else
7 for p = 1 . . . P do

8 M̂l(p, :) = sample(M(p, :))

9 Wl(p, :) = −
(
M̂l(p, :) ~ X(p, :)

)
B

10 Zl(p, :) =
(
M̂l(p, :) ~

(
Yl(p, :)B

T
))

B

11 ∇f
Ω̂

(Yl(p, :)) = Wl(p, :) + Zl(p, :) + λYl(p, :)

12 Hl,p = BTdiag
(
M̂l(p, :)

)
B + λI

13 Ll,p = max

(
eig (Hl,p)

)
14 ql,p = λ

Ll,p

15 Al+1(p, :) =
(
Yl(p, :)− 1

Lp
∇fΩ(Yl(p, :))

)
+

16 α2
l+1,p = (1− αl+1,p)α

2
l,p + ql,pαl+1,p

17 βl+1,p =
αl,p(1−αl,p)

α2
l,p+αl+1,p

18 Yl+1(p, :) = Al+1(p, :) + βl+1,p (Al+1(p, :)−Al(p, :))

19 l = l + 1

20 return Al.

the previous estimates. We denote as K(i) =
(
A

(N)
k � · · · �A

(i+1)
k �A

(i−1)
k+1 � · · · �A

(1)
k+1

)
.

Algorithm 4: Stochastic AO NTC

Input: X , Ω,
{

A
(i)
0

}N
i=1

, rank R.

1 k = 0
2 while (1) do
3 for i = 1, 2, . . . N do

4 A
(i)
k+1 = S NMC

(
X(i),M(i),K

(i),A
(i)
k , λ

)
5 if (term cond is TRUE) then break; endif
6 k = k + 1

7 return
{

A
(i)
k

}N
i=1

.

To update the matrix A
(i)
k , we use the S NMC(X(i),M(i),K

(i),A
(i)
k , λ) method, where

we compute the following quantities.

40 Chapter 5. Stochastic Tensor Completion

Analysis of major computations

Computation of Wl(p, :)

For every mode i = 1 . . . N , the p-th row of W(i), which will be denoted as ii from now

on, can be computed as

Wl
(i)(ii, :) = −

(
M̂l(ii, :) ~ X(i)(ii, :)

)
K(i). (5.13)

A direct implementation of this multiplication may be prohibitive since, in many applica-

tions, the values of Ii for i = 1, 2, . . . N may be of the order of millions or even billions. In

order to reduce the computational complexity, we use only the randomly sampled entries

of X(i)(ii, :) and the respective rows of K(i). More specifically, let the randomly sampled

entries(
ii, i

q
1 + · · ·+ ii−1

∏
m=1...i−2

Im + ii+1

∏
m=1...i−1

Im + · · ·+ iqN

m 6=i∏
m=1...N−1

Im

)
∈ Ω̂, (5.14)

for q = 1, . . . , Bl
i,ii

that correspond to X(i)(ii, :). For notational convenience, we set clq =(
iq1 + · · ·+ ii−1

∏
m=1...i−2 Im + ii+1

∏
m=1...i−1 Im + · · ·+ iqN

∏m6=i
m=1...N−1 Im

)
. The clq-th row

of the Khatri-Rao product corresponds to

P(clq, :) = A
(N)
k (iqN , :) ~ · · ·~ A

(i+1)
k

(
iqi+1, :

)
~ A

(i−1)
k+1

(
iqi−1, :

)
~ · · ·~ A

(1)
k+1 (iq1, :) . (5.15)

Thus, the computation of the ii-th row of Wl
(i) reduces to

Wl
(i) (ii, :) =

Bli,ii∑
q=1

X(ii, c
l
q)P(clq, :). (5.16)

For each row Wl
(i)(ii, :) the computational complexity is O

(
Bl
i,ii
·R
)

. Thus, the overall

complexity to compute Wl
(i) is O

(
Bl ·R

)
.

Computation of Zl(p, :)

Following similar arguments, it can be shown that for each l-th inner iteration, the ii-th

row of Z(i) can be computed as

Zl(i) (ii, :) =

Bli,ii∑
q=1

(
Y

(i)
l (ii, :) P(clq, :)

T
)
P(clq, :). (5.17)

Similarly, analogous quantities can be computed for the update of the other factors. Each

computation of Zl(i) (ii, :), requires O
(
Bl
i,ii
·R
)

arithmetic operations. The total com-

plexity to compute the matrix Zl(i) is O
(
Bl ·R

)
.

5.1. Tensor factorization with missing elements 41

Computation of the “local” Hessian matrix and its maximum eigenvalue

In the sequel, we describe the computation of the Hessian matrix and its maximum eigen-

value. More specifically, we have

H
(i)
l,ii

= K(i)Tdiag
(
M̂l(ii, :)

)
K(i) + λIR. (5.18)

However, similarly to the previous quantities, we do not use the whole K(i). In more

detail, we compute

H
(i)
l,ii

=

Bli,ii∑
q=1

P(clq, :)
TP(clq, :) + λIR, (5.19)

which requires O(Bl
i,ii
·R2) operations. Therefore, the overall complexity to compute the

matrix H
(i)
l,ii

for every row ii, is O(Bl · R2). Instead of using the “classic” Eigenvalue

Decomposition (which requires O(R3) operations), we use the Power Iteration method to

compute the maximum eigenvalue of the Hessian matrix H
(i)
l,ii

, in order to determine the

parameter Ll,ii . At each iteration of the Power Iteration we perform O(R2) arithmetic

operations. The Power Iteration converges linearly to the “dominant” eigenvector, and

the error asymptotically decreases by a ratio λ1
λ2

, where λ1 > λ2 are the the most dominant

eigenvalues [29]. We note that in our experiments we observed that λ1 � λ2 and kp < R,

where kp denotes the number of iterations of the Power Iteration method. We conclude

that the complexity of line 12 in Algorithm 3 over all P , is O
(
(Ii +Bl) ·R2

)
.

Computation of the momentum parameter β

We also examine a variant of the Algorithm 3, where the momentum parameter βl,ii is

computed as

βl,ii =
1−√ql,ii
1 +
√
ql,ii

. (5.20)

The difference in the performance using (5.20) and the one in lines 15-16 of Algorithm 3 is

insignificant. However, in our experiments we use relation (5.20), since it is less complex.

5.1.2 Parallel Implementation of Stochastic AO NTC

In this Section, we proceed with the analysis of a parallel implementation of Stochastic AO

NTC. We employ the OpenMP API which is suitable for our multi-threading approach.

The update of each row can be done independently, therefore, lines 8-17 of Algorithm

3, can be computed separately by each available thread. More specifically, OpenMP

provides the directive #pragma omp parallel for, which forks a team of threads to

execute a block of code, that begins with a for loop. Iterations are divided among the

available threads. Usually, block partitioning is selected, which means that, for a total

of n iterations and t number of threads, each thread executes n
t iterations. We provide a

high level algorithmic sketch of our implementation.

42 Chapter 5. Stochastic Tensor Completion

Algorithm 5: Parallel Stochastic Nesterov-type algorithm for NMC

Input: X,M∈ RP×Q, B∈ RQ×R, A∗∈ RP×R, λ
1 A0 = Y0 = A∗
2 l = 0
3 while (1) do
4 if l >= MAX INNER then
5 break
6 else
7 #pragma omp parallel
8 for p = 1 . . . P do
9 lines 9-17 of Algorithm 3 . . .

10 l = l + 1

11 return Al.

5 10 15 20 25 30 35 40

Number of Threads

10
1

10
2

10
3

T
o

ta
l
T

im
e

rank R=10

rank R=30

rank R=50

5 10 15 20 25 30 35 40

Number of Threads

0

5

10

15

20

25

30

35

40

S
p

e
e

d
u

p

Linear Speedup

Actual Speedup R=10

Actual Speedup R=30

Actual Speedup R=50

Figure 5.1: Execution time(Left), Attained Speedup(Right) for Chicago Crime dataset.

5.2 Numerical Experiments

We consider the real sparse dataset Chicago Crime, which concerns crime reports in the

city of Chicago starting from January 1st 2001 up to December 11th, 2017 [30]. Data are

arranged in a 4–th order tensor X ∈ R6,186×24×77×32
+ with 5330673 non-zeros. Each mode

of the Chicago crime tensor represents a specific feature. In more detail, the modes corre-

spond to day-hour-community-crimetype, where community is one of the communities

of Chicago, and the non-zeros represent the number of reports of a specific type of crime.

In Figure 5.1, we plot the execution time and the attained speedup for the Chicago Crime

dataset for t = 1, 8, 20, 40.

5.2.1 Model Selection problem

Real Data

We test our algorithm on the MovieLens 10M dataset [31], which contains 10000054 ratings

of movies by 71567 users. More specifically, we arrange the MovieLens dataset in a 3–rd

order tensor of size 71567× 65133× 730, with the last dimension denoting the timestamp

5.2. Numerical Experiments 43

0 20 40 60 80 100

Different values of Rank

0.0595

0.06

0.0605

0.061

0.0615

0.062

0.0625

Estimate rank

Figure 5.2: RFE vs different values of Rank.

of the rating organized in seven-day-wide ranges.

We use the Stochastic AO NTC in order to choose the appropriate model for our data.

We test our method using different values for the rank R. Namely, inspired by the work in

[32] and [33], we set R = 1, 5, 10, 15, 20, 25, 30, 40, 60, 100. In more detail, we first split the

MovieLens dataset into two sets. The first one is the train set, which we will use to train

our model for the different values of rank, and the test set, to assess our predictions. We

keep the convention of 80% - 20% for the train and test sets. The outer iterations are set

to k = 20, where as MAX INNER = 1, to prevent the overfitting on the sampled entries.

Also, we set Bl = 0.3 |Ω| and λ = 0.001. As a metric we use the relative factorization

error (RFE)

RFE =
‖Xtrue −Xest‖F
‖Xtrue‖F

, (5.21)

where both Xtrue,Xest have non zero values in the positions indicated by the test set. In

Figure 5.2, we illustrate the results of the aforementioned model selection process. We

observe that R = 10, gives the lowest RFE on the test set, thus we can claim that R = 10

is a good choice for our data.

Synthetic Data

Similarly, we evaluate the performance of our stochastic algorithm on the aforementioned

model selection problem for synthetic data. We create a nonnegative sparse tensor X of

dimensions 500× 500× 500 with true rank R = 10 and 0.1% nonzero entries. In addition,

noise is added to the tensor entries, resulting in a SNR = 15dB noisy setting. We solve

the NTC problem using Algorithm 5 by setting R = 1, 5, 8, 10, 12, 15, 20, 35, 50. We set

λ = 0.01, the maximum number of outer iterations k is set to 300, MAX INNER = 1 and

Bl = 0.5 |Ω|. We again split to 80%-20% for the train and the test set. RFE is used again

as the performance metric. In Figure 5.3, we illustrate the results.

44 Chapter 5. Stochastic Tensor Completion

0 10 20 30 40 50

Different values of Rank

0.05

0.06

0.07

0.08

0.09

0.1

Estimate rank for 15dB

Figure 5.3: RFE vs different values of Ranks.

5.3 Conclusions

We considered the Nonnegative Tensor Completion problem and an efficient stochastic

method to solve it. Through different problem settings and numerical experiments, we

conclude that our stochastic approach of NTC can be a competitive method in the fields

of Optimization and Machine Learning.

45

Chapter 6

Conclusion and Future Work

In this work, we explored the efficiency of Stochastic Optimization in conjunction to Ten-

sor Factorization/Completion problems. For dense tensors, we proposed a new stochastic

method where Nesterov acceleration was employed to improve the performance of the ex-

isting stochastic algorithms. Furthermore, we considered a stochastic variation of NAG to

solve the NTC problem and its parallel implementation using the OpenMP API. Through

numerical experiments, we showed the efficiency of both algorithms on NTF/NTC prob-

lems.

In Chapter 4, we explored the limitations of a parallel implementation of ASCPD.

Also, we considered an alternative of ASCPD which can be solved in parallel, with the

same accuracy as the serial ASCPD. However, since randomized problems are memory-

bounded, the parallel version seems to not attend the same scalability as its deterministic

counterparts. The development of a better parallel scheme of ASCPD is a future work

subject.

46 Chapter 6. Conclusion and Future Work

47

Bibliography

[1] C. F. Beckmann and S. M. Smith, “Tensorial extensions of independent component

analysis for multisubject fmri analysis,” Neuroimage, vol. 25, no. 1, pp. 294–311,

2005.

[2] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to tensor decompositions

and their applications in machine learning,” arXiv preprint arXiv:1711.10781, 2017.

[3] A. M. S. Ang, J. E. Cohen, N. Gillis, and L. T. K. Hien, “Accelerating block coordinate

descent for nonnegative tensor factorization,” arXiv preprint arXiv:2001.04321, 2020.

[4] N. Vervliet, A. Themelis, P. Patrinos, and L. De Lathauwer, “A quadratically con-

vergent proximal algorithm for nonnegative tensor decomposition,” arXiv preprint

arXiv:2003.03502, 2020.

[5] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel collaborative

filtering for the netflix prize,” in International conference on algorithmic applications

in management. Springer, 2008, pp. 337–348.

[6] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM

Review, vol. 51, no. 3, pp. 455–500, September 2009.

[7] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and

C. Faloutsos, “Tensor decomposition for signal processing and machine learning,”

IEEE Transactions on Signal Processing, vol. 65, no. 13, pp. 3551–3582, 2017.

[8] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of

mathematical statistics, pp. 400–407, 1951.

[9] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale ma-

chine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[10] Y. Nesterov, Introductory lectures on convex optimization. Kluwer Academic Pub-

lishers, 2004.

[11] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive

variance reduction,” in Advances in neural information processing systems, 2013, pp.

315–323.

[12] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental gradient

method with support for non-strongly convex composite objectives,” in Advances

in neural information processing systems, 2014, pp. 1646–1654.

48 Bibliography

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[14] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

[15] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning

and stochastic optimization,” Journal of machine learning research, vol. 12, no. Jul,

pp. 2121–2159, 2011.

[16] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with the stochastic

average gradient,” Mathematical Programming, vol. 162, no. 1-2, pp. 83–112, 2017.

[17] I. Gitman, H. Lang, P. Zhang, and L. Xiao, “Understanding the role of momentum in

stochastic gradient methods,” in Advances in Neural Information Processing Systems,

2019, pp. 9630–9640.

[18] Z. Allen-Zhu, “Katyusha: The first direct acceleration of stochastic gradient meth-

ods,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 8194–8244, 2017.

[19] C. I. Kanatsoulis and N. D. Sidiropoulos, “Large-scale canonical polyadic decomposi-

tion via regular tensor sampling,” in 2019 27th European Signal Processing Conference

(EUSIPCO), 2019, pp. 1–5.

[20] N. Vervliet and L. De Lathauwer, “A randomized block sampling approach to canon-

ical polyadic decomposition of large-scale tensors,” IEEE Journal of Selected Topics

in Signal Processing, vol. 10, no. 2, pp. 284–295, 2015.

[21] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Parcube: Sparse paralleliz-

able tensor decompositions,” in Joint European Conference on Machine Learning and

Knowledge Discovery in Databases. Springer, 2012, pp. 521–536.

[22] N. D. Sidiropoulos, E. E. Papalexakis, and C. Faloutsos, “Parallel randomly com-

pressed cubes: A scalable distributed architecture for big tensor decomposition,”

IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 57–70, 2014.

[23] C. Battaglino, G. Ballard, and T. G. Kolda, “A practical randomized cp tensor de-

composition,” SIAM Journal on Matrix Analysis and Applications, vol. 39, no. 2, pp.

876–901, 2018.

[24] X. Fu, S. Ibrahim, H.-T. Wai, C. Gao, and K. Huang, “Block-randomized stochastic

proximal gradient for low-rank tensor factorization,” IEEE Transactions on Signal

Processing, 2020.

[25] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and Trends® in Op-

timization, vol. 1, no. 3, pp. 127–239, 2014.

[26] A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and N. D. Sidiropoulos, “Nesterov-

based alternating optimization for nonnegative tensor factorization: Algorithm and

parallel implementation,” IEEE Transactions on Signal Processing, vol. 66, no. 4, pp.

944–953, 2017.

https://github.com/fchollet/keras

49

[27] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.

[28] P. Jiang and G. Agrawal, “Adaptive periodic averaging: A practical approach to

reducing communication in distributed learning,” 2020.

[29] S. F. Quarteroni A., Sacco R., Numerical Mathematics, vol. 37, ch. Approximation

of Eigenvalues and Eigenvectors (5.3.1).

[30] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis. (2017)

FROSTT: The formidable repository of open sparse tensors and tools. [Online].

Available: http://frostt.io/

[31] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,”

ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, Dec. 2015. [Online]. Available:

https://doi.org/10.1145/2827872

[32] G. Lourakis and A. Liavas, “Nesterov-based alternating optimization for nonnegative

tensor completion: Algorithm and parallel implementation,” 06 2018, pp. 1–5.

[33] L. Karlsson, D. Kressner, and A. Uschmajew, “Parallel algorithms for tensor comple-

tion in the cp format,” Parallel Computing, vol. 57, pp. 222–234, 2016.

http://frostt.io/
https://doi.org/10.1145/2827872

	Acknowledgements
	Table of Contents
	List of Figures
	List of Abbreviations
	Introduction
	Notation

	Mathematical Background
	Tensor Preliminaries
	Canonical Polyadic Decomposition (PARAFAC model)
	ALS algorithm

	Stochastic Optimization
	Convergence Results
	Determination of Stepsize
	Variants of SGD

	Stochastic Canonical Polyadic Decomposition
	Model Formulation - BrasCPD and AdaCPD
	Accelerated Stochastic CPD - the algorithm
	Numerical Experiments
	Conclusions

	Parallel Implementation
	Naive approach
	A multi-threaded approach
	Numerical Experiments
	Conclusions

	Stochastic Tensor Completion
	Tensor factorization with missing elements
	Nonnegative Matrix Completion
	Parallel Implementation of Stochastic AO NTC

	Numerical Experiments
	Model Selection problem

	Conclusions

	Conclusion and Future Work
	Bibliography

