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Abstract

In recent years, studying affect in computer-user interactions, video games, and
even live streams has become increasingly popular. Objectively measuring the
emotional experience of an audience has important implications in revenue gen-
eration and user retention. What has been relatively unstudied is user modeling
by affect, especially in the context of video games. In this thesis, an initial frame-
work and proof-of-concept for creating an affective agent is presented, which
leverages user provided annotations to change agent behavior towards display-
ing a specific emotion while trying to complete a behavioral objective.

To create this agent, a tool for sourcing annotations was created and used
to form a dataset with affective annotations. Then, the dataset was tested for
validity by running supervised learning experiments. Using a form of Deep Q
Learning, along with the dataset, a set of agents was created with each hav-
ing a different objective. A primary Reinforcement Learning agent focused on
completing the environment and each of the rest focused on maximizing an
emotion. Lastly, the set of agents was combined in a ratio to form composite
agents that focused on both affect and behavior, with certain combinations be-
ing successful at both.
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Chapter 1

Introduction

This thesis was setup with an ambitious goal: creating an agent who considers emotion while completing a
primary objective. In the field of Affective Computing, there have been efforts in combining Reinforcement
Learning and Emotion, as well as the study of emotion on its own [12]. However, integrating emotion into
an agent has mostly focused on improving performance. In this thesis, the objective will be on modeling
the affect and the behavior of an agent via the Reinforcement Learning paradigm, while not compromising
the agent’s performance.

The subject of this thesis, being a novel pursuit, created a number of challenges which had to be over-
come; from selecting the environment to creating objective metrics for measuring a subjective notion.
Each step in creating the agent has been split into its own self-contained chapter, consisting of an in-
troduction, methodology and results of experiments, if the chapter includes them. In total, 6 chapters
comprise the body of this thesis, an overview of which will be covered in brief in the next section.

1 Thesis Contribution

The main contributions that stem from this thesis are an end-to-end process for creating affective agents
and a set of tools for undergoing that process. The process for creating an agent is outlined below and
consists of 8 steps, split into 5 parts that mirror the structure of the thesis. The initial steps focus on
the creation of a dataset that contains affective annotations, using an annotation tool developed for this
thesis. Following, there’s an optional analysis step that tests the dataset using supervised learning to show
its validity. The next steps use the dataset to assist in creating a conventional Deep Q Learning agent and
to train a set of a affective agents. Lastly, the agents developed are combined in order to create an agent
that considers both emotion and its primary objective.

Select Environment

Create Experiment

Collect Data
from Annotators

Form Data
into Dataset

Create
Reinforcement
Learning Agent

Create
Affective
Agents

Combine
Agents into

Composite Agent

Preparation Dataset Creation Agent Training Agent Combination

Inference
and Imitation

Learning

Initial Analysis
(optional)
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1.2. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

2 Thesis Structure

Emotion is a human centric notion, that has to be sourced from people, who can take the form of an-
notators, experiencing the environment and relaying their emotions. While affective annotation datasets
exist, there is no candidate dataset which combines affective annotations with a Reinforcement Learn-
ing friendly environment. Therefore, one will have to be created, presenting an opportunity to start from
scratch and select the tools that will be well tailored for this pursuit. The first three content chapters cover
the creation and study of this dataset, along with the technical choices that were made.

Chapter 2 explains the technology choices that were taken, as well as the tool that was created to
source annotations for the affective dataset. OpenAI’s Retro environment [13] was chosen as the environ-
ment platform and a desktop-based annotation app was created.

In the next chapter, Chapter 3, the simplistic dataset that was created for this thesis is presented, which
is objective in nature, along with its qualitative data. It features the game Super Mario Bros (NES), due to
its popularity, and consists of 54 first-party annotated 2 minute playthroughs that are each annotated
according to the Pleasure Arousal Dominance (PAD) psychological model, with binary annotations. The
playthroughs are limited to the first world of Super Mario Bros.

Lastly, in Chapter 4, an initial inference experiment is created and performed on the dataset. The ex-
periment is comprised of state-action pair to affect inference and imitation learning. The goal of this ex-
periment is two fold: to show the validity of the dataset and create an initial case study for the thesis while
solving a simpler problem. Hyperparameter tuning is much simpler on a supervised learning problem, and
the model that was created in this chapter, with its hyperparameters, is carried over to the next chapters
as is.

The next three chapters focus on creating the agent. Deep Q Learning (DQN) was selected as the base
algorithm, incorporating improvements from Deep Q Learning from Demonstrations [6] so the dataset can
be used as demonstrations.

In Chapter 5, a base DQN agent is created that focuses on completing the first level of Super Mario
Bros (NES). Performance varies between various runs and training steps, but once in a while the model
weights are such that the agent completes the level from start to finish most of the time. The weights of
that agent are carried over to the next chapters.

Chapter 6 creates 3 Affective (AF) agents (one for each emotion) that have as a goal to maximize the
expression of their respective emotion. They use a modified form of Deep Q Learning from Demonstrations
that works in an offline manner (using just demonstrations) while remaining compatible with the RL agent.
Two objective metrics for affective learning are developed, in order to measure affective performance.
Those are imitation percent and imitation action rank when there is an annotation. Transfer learning using
the base model layers of the RL agent is utilized to improve and stabilize the Affective agent performance.

In the final chapter, Chapter 7, composite agents are created by combining the RL and AF agent’s
Q functions in a ratio. The composite agents for each emotion perform better than just the AF agent
and produce visually different playstyles, which are presented using a tool developed for this chapter.
The different playstyles are different in the ways that are expected for each emotion and are up to the
expectations that were set for this thesis, rendering it a success.

A conclusion and future works chapter follows, Chapter 8, which closes this thesis. In it, the limitations
of the dataset and training paradigm are discussed, as well as ideas and possible adaptations for future
work.

7



Chapter 2

Annotation Tool

During the research for this topic it was observed that a candidate dataset for this problem does not exist.
Furthermore, little work has been done in annotating actual Reinforcement Learning environments with
any state, not just emotional. As such, the work of this thesis would have to begin with producing a tool
and a workflow for collecting this type of data.

In this chapter, we’ll discuss the process in which a tool for this purpose was developed, by going
through the project requirements, the reasons behind the technologies chosen, the prior work it was based
on, and the workflow by which a dataset can be created.

1 Objective

The purpose of this tool will be to produce one or more high quality datasets which consist of short game-
play vignettes, in which a human agent plays a segment of a game and annotates how he felt. Ideally,
the data will be composed of the unchanged source state/action pairs and the highest quality traces for
a handful of annotations. Furthermore, since the annotations will have a degree of subjectivity, multiple
annotators should be used, so as to cancel out their subjectivity and reach a ground truth. Optionally, the
source environment should be stimulating and entertaining, to motivate the annotator to produce varied,
high-quality data and it should offer a large degree of freedom, so that the annotations can be then used
to influence the decisions of an agent.

2 Requirements

Having listed the target objective for this tool, we can now use it to derive its requirements. The require-
ments will be split into functional requirements and nonfunctional requirements, where the former describe
the core elements of the tool and the latter describe the way the tool will operate.

2.1 Functional Requirements

The functional requirements are the following:

Allow Human control of a traditional reinforcement learning environment A human agent or player
should be able to take control of an environment and play through it as if he is a reinforcement learning
agent, with intuitive and familiar controls.

Allow Annotation of Environment traces Starting from a collection of recordings, a human annotator
should be able to go through them and add annotations. This is equivalent to third person annotations.

8



2.2. REQUIREMENTS CHAPTER 2. ANNOTATION TOOL

Allow for First Person Annotations By combining the two previous requirements, a human annotator
should be able to perform first person annotations, by first playing a section of the environment and then
replaying it while performing the annotation.

Allow For Fixing Mistakes The tool should be designed so as to allow the user to undo parts of his
annotation and redo them without having to start over.

Allow For Playback After performing an annotation, both the annotator and the experiment coordinator
should be able to play it back, to verify it was done correctly.

Allow for Defining Annotations The experiment coordinator should be able to define the annotations
that will be used for the production of the dataset, by listing their name, type and description. The type of
annotations will be analyzed in a later section.

Allow for Designing the Environment The experiment coordinator should be able to, without much effort,
create one or more master traces of the environment, in which he plays a large section of it and record the
states in it. Afterwards, by going through the traces, he should be able to dump initial states, which can
then be shuffled and randomly chosen for the annotator playthroughs.

2.2 Nonfunctional Requirements

The nonfunctional requirements concern data quality, reliability, and ease of use.

Record Complete Source Data The data produced by the tool should be close to or equivalent to those
a reinforcement learning agent would use to train on. This requirement is as much concerned with com-
pleteness (storing all available data such as actions, sensor activations) as with quality (avoiding the use
of lossy compression).

Limit the Recording Space The annotation data should be able to be transmitted from the annotator’s
computer to a central server, assuming for a poor internet connection while at the same time taking into
account the disk space that will be required in the annotators computer. As such, after a typical annotator
has finished annotating, the tool shall take no more than 512 MB on his computer and require less than
128 MB of data to be uploaded.

Allow for Multiple Inputs The tool should conform to the user, and as such should allow for the use of a
controller or the keyboard and contain alternative keybinds to conform to the needs of the annotator.

Allow for custom Keymaps The experiment coordinator should be able to define the mapping of key
bindings to actions in the environment, per environment, and key bindings to annotation, per annotation
type. Some annotation types may be best suited to using the scroll wheel, while others to key presses.

Support Custom Color Palettes Annotators may need to trace more than one annotation per session.
If the annotations are only distinguished by their name, then the annotator will have to glance over and
read it every time he forgets. Even worse, if by confusion the wrong emotion is annotated, the data will be
invalid. A way for solving this would be to add customizable color palettes, so the current annotation is
distinguishable at a glance, by color.

Window Size similar to Fovea The window size of the tool and all the information on it shall be around
the size of the Fovea of the annotator (the part of the eye that is the clearest), which is around the size of
the palm of his hand when held at arm’s length. The annotator shouldn’t redirect his gaze to perceive the
current annotation state, thereby losing focus of the environment.

9



2.3. TECHNOLOGY CHOICES CHAPTER 2. ANNOTATION TOOL

Portability The tool should be able to run on any computer, without the need of installation of itself or
any other dependency, and after the annotation is done it should be removed without leaving a trace.

3 Technology Choices

In this section we’ll analyze the technologies that were considered for this project, the ones that were
chosen, and the reason behind those choices.

3.1 Backend Language

The natural choice of language of this tool is Python, since that is where most Reinforcement Learning
research is performed on, and as such it has the largest number of environments with the greatest support.
The alternatives, JavaScript, Java, and CPP, either support few reinforcement learning environments or
offer no actual advantages over Python. An added benefit of Python is that the code that will produce the
environment will be exactly the same as the one that will be used to train on.

3.2 Environment Technology

For the underlying technology, Unity and OpenAI’s Retro Gym were considered, ultimately opting for OpenAI
Retro.

3.2.0 A Case for Unity

Unity has become a strong contender in the research and indie development fields due to its flexible license
model and its affordable asset marketplace. By using Unity, a sole developer can quickly and affordably
produce a product that uses high quality assets.

Furthermore, Unity has made investments in the ML field by producing a library called ML-agents [7],
which allows for connecting python ML algorithms, made with PyTorch and TensorFlow, to the Unity en-
vironment. The ML-agents toolkit allows a researcher to create custom environments and custom agents
which can then pipe data into the python interpreter and be used to train a model. Afterwards, Unity fea-
tures built-in support for Neural Networks, so the final weights can then be integrated into it and used to
control an agent in an end product. On the other hand, Unity also has serious drawbacks, which is why it
wasn’t chosen.

Unity has a high resource requirement, so it would take up valuable resources from the training al-
gorithm and would limit sample collection speed. That can somewhat be dealt with by training multiple
agents in parallel, each in a little pen, but that would limit the richness of the environment. Similarly, due
to its resource requirements it would be difficult to set up training in the cloud, so training would have to
be done locally.

Moreover, Unity, being a modern engine, features a huge state space which would be impossible to
input into an agent. As such, it would be impractical to feed the agent 4k renders or what is shown to the
annotator. It’s more likely that a collection of virtual sensors would be placed on the agent and they’d be
the ones to feed him with data. This also raises questions of what the ideal storage format of the traces
would be.

Therefore, the environments used for training would have to be handcrafted and feature different latent
spaces as input for human agents, computer agents, and recording format, placing an undue burden to
an experiment coordinator.

In conclusion, for the above reasons, the use of Unity does not meet this project’s requirements.

3.2.0 A Case for OpenAI Retro

Other than Unity, OpenAI’s Gym [2] interface has dominated the reinforcement learning space. It has done
so in such a degree that a majority of environments provide a gym interface. Having excluded Unity, OpenAI
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Gym becomes the frontier choice for the tool and a secondary choice arises: which Gym environment
should then be chosen.

After weighing performance and variety in the project’s requirements, OpenAI’s Retro project was se-
lected. Retro [13] is a gym environment built on top of RetroArch, a framework of emulators of vintage
consoles, and provides bindings and reward functions for thousands of games, while enabling the addi-
tion of new ones in a simple manner. In addition, compared to similar projects, it’s well supported and
mature. As such, it provides the required variety for the project and features acceptable performance.

More importantly, Retro is deterministic and provides a data format for saving traces and states into
files. Those files have a size of around 1 kB, so they can be committed into git repositories and sent through
the internet with ease, including by email.

For performance considerations, Retro is a single threaded singleton instance that can run at around
1 thousand frames per second, or 15X real time. By using Python’s subprocessing module it can then
be duplicated so as to use all available processing power, if parallel learning can be opted for, leading to a
performance of 1k frames per CPU core. The emulators feature SD resolutions, so they can be fed straight
into a CNN without pre-processing if desired, even while being trained by consumer hardware.

3.2.0 Conclusion
By taking the above into account, the tool was designed to support the OpenAI gym interface, with a deeper
integration with OpenAI Retro’s features (rewinding, audio, and states) when that is the annotation envi-
ronment.

3.3 Frontend Framework/Language

With Python being a versatile language, there are a variety of choices that were considered for the front-
end. The front-end is defined as the technology with which the user interacts with. 3 options were under
consideration: Pygame, Tk (with Matplotlib), and the Browser.

3.3.0 Tk
Tk is a legacy GUI framework developed for Unix in the 90s and is still widely used to this day. Python
features first-party support for it and a wrapper for creating interfaces with it, which is why it was consid-
ered. Since the project has limited need for GUI elements and Tk doesn’t feature gaming features such as
joystick support, robust raster options and high framerates it wasn’t chosen. Matplotlib had considerable
performance issues and wasn’t visually appealing.

3.3.0 Browser
Choosing the browser as the frontend was very appealing. After all, the volunteer annotator wouldn’t have
to download anything and his annotations would be securely stored in the cloud, preventing data loss.
However, maintaining the use of the Retro environment would mean having to render the game in the
server and then streaming the frames to the client. This would involve custom work integrating WebRTC
into the client, if optimal performance is required, and even then the latency added would be considerable.

3.3.0 Pygame

Pygame is a simple 20 year old framework for creating games in Python. It features classes for raster
drawing, audio, and key inputs, with acceptable performance. Using bit block transfer (BitBLT), a render
of the gym environment can be printed to the screen. The built in classes provide support for joystick,
mouse, and keyboard. Furthermore, the surface class can be used to draw a visually appealing annotator,
based on David Melhart’s work on PAGAN [9]. One notable downside of Pygame is the lack of antialiasing,
so graphics produced by it are jagged. However, that is an acceptable compromise.
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4 Annotations

Building on the work done by Melhart et al. [9] on the tool PAGAN, the support for three different annotation
types was added. Those are: RankTrace, BinaryTrace and GTrace, which are based on previous work in
the affective computing field.

4.1 RankTrace

RankTrace allows for the unbounded annotation of change in emotion. The gradient of the annotation
gives the moments in which there is a change in emotional charge. However, due to the unbounded nature
of the annotation, the current level of an annotation can’t be compared between annotators or within the
same annotation trace, since due to its unbounded nature there will be constant drifting away from 0.

4.2 GTrace

GTrace is an ordinal annotation tool, in which the subject notes his emotional state as a percentage using
his judgment. Since it is ordinal, it then becomes possible to compare the inter-rater agreement between
two annotators. However, it requires more attention to use while annotating.

4.3 BinaryTrace

Binary trace allows the user to press buttons to indicate positive and negative reinforcement. For fast
paced events where the user wouldn’t have time to raise and lower RankTrace, BinaryTrace can be used
as a good substitute.

12



2.5. PERFORMING AN EXPERIMENT CHAPTER 2. ANNOTATION TOOL

5 Performing an Experiment

In this section, we’ll go over the steps of undertaking an experiment using the annotation tool, from the
view of the experiment coordinator (the individual coordinating the experiment).

5.1 Defining the Experiment

Starting off, the experiment coordinator should define the experiment parameters. Those include the
Game or environment that will be tested, the length per trace that will be recorded and the annotations
that will be collected. A trace is a short vignette that is performed by the annotator in one go and after it is
done it is replayed for annotating. During a preliminary analysis of the problem, the experiment coordinator
should also note the sections of the environment that will be annotated and how much time it’s estimated
it will take. Depending on the available annotators, this will determine the total time investment that will
be required by each annotator and how many traces each one should complete.

5.2 Preparing the Environment

Having performed a preliminary analysis of the experiment, the experiment coordinator will move on to
creating the archive that will be handed to each annotator for the purposes of annotating (from here on
called the “distributable”). We’ll assume a Retro environment will be used, since scripts have been created
to aid in this process.

5.2.0 Setting up the Environment

The experiment coordinator should begin by procuring the ROM of the environment that is desired. If the
ROM has been integrated into the Retro environment already, then its folder should be copied from Retro
and modified as seen fit. Otherwise, by using OpenAI’s retro integration tool an integration can be created.
After finishing this step, the experiment coordinator should have placed the integration folder along with
the ROM into the experiment folder. This will be important in packaging, since if the experimenter would
opt to include integrations for all the games included in Retro in the executable, he would increase the
executable by hundreds of megabytes.

5.2.0 Performing Playthroughs

Retro environments are deterministic. Thereby, by having a certain section of the environment in mind,
the experimenter can devise a number of playthroughs that provide a high degree of coverage within the
solution space of the environment. These playthroughs will provide the starting places for the annotators,
so they should be thorough enough to allow access to the desired state space within the trace time limit,
but not more, so as to intrude into the annotator’s decision process as minimally as possible.

The experiment coordinator will now perform these playthroughs using the example scripts provided.
Within the playthrough environment, the experimenter gains access to a rewind function, so he can sculpt
the play trace completely as he sees fit. As an example, in Mario, the killing of enemies or dying can be
avoided in order to ensure that the score isn’t interfered with and that the starting lives are fixed. After
performing the trace in a satisfactory manner and hitting a keybind, the experimenter will see a replay of
the trace to verify it’s correct. When the replay is finished, the play trace will be saved to the folder and with
the prefix that were provided.

5.3 Creating a Pool of Starting States

Having a number of playthroughs in his possession, the experimenter will now dump the starting states
for the annotators. By using a script similar to the example ones provided he will launch a replay of the
playthrough for dumping states. In this mode, he gains access to fast forward and rewind functions. When
the playthrough reaches a state which is desirable, the experimenter can, by pressing a button, dump it into
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a file suffixed by the current frame. Attention should be paid for these states to be uniformly sampled since
if they are not, by being selected at random, they will cause the dataset to contain an overrepresentation
of a certain part of the state space.

5.4 Packaging

Having the states and the integration files in his possession, the experimenter can now move into packag-
ing the experiment for distribution.

By referencing the spec and script files provided the experimenter will create an executable using pyin-
staller. This executable is completely stand alone and doesn’t leave a trace on the system after running.
The only action required by the annotator for it to run is opening it.

A pdf file with instructions can be supplied alongside the executable to prepare the annotator. It would
be impractical and tedious for those instructions to be included into the executable and it is one of the
downsides of choosing this technology stack. However, the reader is encouraged to try if he wishes.

The executable with the pdf should then be placed into a folder and that folder should be zipped to
produce the annotator’s distributable. It is important for the zip to have an inner folder to increase the
chance that it will be unzipped and, since the recording folder is created alongside the executable, it will
reduce the probability of the recordings being lost.

In the time of writing, the distributable size is around 60 MB, with most of the space being taken up by
numpy optimization binaries. They could possibly be removed by compiling numpy without them, which
would halve the size of the distributable.
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6 Recording a Trace

In the following section we’ll accompany an annotator as he records and annotates a trace. The annotation
will take place in the game Super Mario Bros (NES), using the distributable built for the next chapter.

6.1 Opening the Executable

When the executable opens, the annotator is presented with a splash screen that lists the basic game con-
trols and waits for a keypress. The annotator is given the option to play with the arrow keys or WASD. In ad-
dition, although undocumented in the distributable, there is support for XBOX 360 (and similar) controllers.
It is assumed most annotators won’t have access to a controller so its not included in the instructions.

6.2 Starting to Play

After pressing any key (or button), the annotator begins the play trace. Rewind is disabled to capture candid
gameplay, so the annotator is forced to go through unpleasant states.

There are two ways for the game to end: losing completely (all lives, in which case the gym environ-
ment sets done to true) and for the maximum trace length set during the design to elapse. Above the
(disabled) annotator there is a two tone progress bar to represent the progression of time. For the case
when the environment completes, and to avoid low quality recordings, the progress bar has a blue section
in the beginning. If the game stops before the blue section completes, the recording is scrapped and the
annotation part is skipped.

(a) Initial Splash Screen (b) Playing the Game
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6.3 Pausing Feature

If the annotation tool loses focus or the annotator hits the pause keybind, the playthrough is paused as
shown below. This function works both when annotating and playing and allows the annotator to take a
break. If the annotator wants to stop, the annotation tool can be closed at any time by hitting the x on top
of the program, and only the last halfway done annotation will be lost.

6.4 Annotation Introduction

After the play trace finishes, assuming it’s longer than the minimum length, the annotator is presented
with an introduction to the annotation he will be asked to perform. This introduction, supplemental to the
one provided in the pdf, provides a simple description of the annotation and the controls that can be used
for it. Depending on the annotation, the presented controls will change. For example, when annotating
with RankTrace, the scroll wheel should be used, where with BinaryTrace it’s more convenient to use key
presses.

Since the annotations in the following section will be done according to the PAD model and there are
three of them, three distinct palettes were created to represent them. For pleasure, yellow and purple were
chosen as the main hues.

(a) Paused Game State (b) Annotation Introduction
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6.5 Performing an Annotation

After skipping the introduction, the trace which was recorded previously is replayed and the annotator is
tasked with annotating it. The box that was previously reserved with the words “Playing Game” is now
replaced with the annotator and the progress bar now represents the final length of the trace. The anno-
tator is now given the ability to rewind and fast forward, so as to ensure the highest annotation quality, by
allowing him to correct his mistakes.

This process will repeat for each of the annotations that is desired. There are custom parameters
within the code that allow for performing a random subsection of annotations for each trace. As such, we
reduce the burden on the annotator for each trace, which is (N + 1) ∗ T , where T is the desired time, and
N the number of annotations per trace. For a 2 minute trace and three annotations that comes out to 8
minutes, reaching the limits of the annotator’s attention span.

6.6 Saving Confirmation

When the annotator has finished the annotations, he is presented with a splash screen listing the number
of traces that have been completed and optionally a target number. This target number is customizable
and offers no functional value. It is to be used as a progress reference for the annotator, representing how
much work there is left. The annotator can exceed that number if he so wishes.

The annotator is also presented with the option to “delete” the trace if he believes it wasn’t of sufficient
quality. Of course, the trace is already saved and won’t be deleted, but a file ending in “.deleted” will be
saved alongside it, allowing the experiment coordinator to include it after review.

(a) Performing an Annotation (b) Confirming the Trace
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7 Summary

The creation of this tool represents the first work to be produced during this thesis and is the pivotal step
that will allow for the production of the data that will be used in the following chapters. The creation of the
tool was successful and after testing it appears reliable and intuitive.

The data produced by the tool are complete and of the same format that will be used for training the
agent, as the annotator plays by inputting and receiving data from the environment the exact same way an
agent would. Also, by using the bk2 format of the Retro tool, each playthrough only takes up only 2 kB and
the annotations, saved as JSON, only take up 10 kB per minute per annotation, without being compressed.
As a result, they can be easily sent back by the annotator without needing a fast internet connection and
can easily be shared with the research community. The challenges of converting those files into the actual
data will be discussed in a later section.

In the following chapters, we will construct a proof-of-concept supervised learning experiment in which
the annotator will associate certain actions in the game Super Mario Bros with emotions. Then, that data
will be piped into an inference CNN which will try to predict the emotions of each state-action pair. By
successfully completing those experiment we will have proved this tool’s function end-to-end, which will
allow for moving towards the creation of an agent.
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Chapter 3

Dataset Creation

Following the creation of the tool, a dataset would have to be created in order to move to the process of
learning. For this initial attempt, a simple dataset design was chosen, for it to be feasible to be created
by one person and in a reasonable time frame. The design that was chosen was a collection of short two
minute vignettes of the first world of Super Mario Bros. Those vignettes would then be first-person an-
notated with binary annotations that follow the PAD model (Pleasure, Arousal, Dominance) with objective
annotations, to have reasonable inter-annotation agreement. In this section, we’ll analyze the available
options for datasets of this type and explain the reasoning behind the choices that were made, so as to
open the door for future work.

1 Environment Selection

Since OpenAI Retro was chosen as the environment platform, every emulator and platform that exists for
RetroArch is supported. Therefore, there’s an extensive choice of available games to act as environments.

The requirements behind such an environment are the following: It should feature a high degree of
freedom, as in the user should be able to choose different ways to complete an objective. It should be
stimulating and entertaining, to motivate the production of varied, high quality annotations. It should have
medium difficulty, since performance is a tertiary goal and it will have to be played by non-expert anno-
tators. By considering the above, Super Mario Bros (NES) was chosen, perhaps being cliche, because
of its low difficulty, entertainment value, and multiple ways to complete a level, which have an affective
dimension.

2 The Reason behind Short Vignettes

The dataset consists of short, two minute vignettes of the first world of Super Mario Bros, where the
annotator begins in a random level each time. The first world consists of four levels, each taking a minute
or so to complete.

The length of two minutes was chosen based on the attention span of annotators. Drawing from the
work of David Mehart, it’s unreasonable for an annotator to remain focused for more than 10 minutes at a
time. As such, by having 3 annotations and having to capture the replay at the start, each 2 minute vignette
takes 8 minutes to capture, reaching that limit.

Starting randomly at the first three levels and playing for two minutes produces vignettes that contain
on average a playthrough of two levels, allowing an even exploration of the dataset. Meaning that, since
54 vignettes where captured, there are 18− 36 playthroughs of each level.

3 Subjectivity in Emotions

The affective dimension is subjective and non-ordinal. That is, the emotional effect of an experience will
be different between two people and if it’s the same, it won’t be directly comparable. However, there is an
objective element to annotations which we can quantify using the tools below.
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First versus Third Party Annotation There are two forms of annotating, first party and third party. In
first party annotations, the content is annotated by the person who completed it. Whereas in third person,
content is produced and then annotated by someone else. First annotations have the advantage of being
more accurate because the annotator has experienced the content. Third party annotations, while not
as accurate, have the advantage of being able to be completed multiple times, by different annotations.
As such, they give us access to a range of analytics, such as Inter-rater agreement on exactly the same
content, discussed below.

Inter-rater Agreement Inter-rater agreement is the extent to which different annotators agree about the
annotations for a specific piece of content. High agreement confers that the annotations are objective and
are based heavily on a ground truth. Low agreement, on the other hand, is indicative of subjective content,
in which a ground truth may exist, but it’s sparse.

If the inter-rater agreement is high, constructing a dataset can be done by as few as one annotator and
can be useful with a modest size. When inter-rater agreement is low, however, multiple annotators are
needed to remove bias and a large dataset size is required to weed through the noise, thereby revealing
the ground truth in the data.

For the purposes of this thesis, as it is a first exploration, the dataset was designed to be objective,
even if in the affective domain. This allowed for one first party annotator, lowered the required size of the
dataset, and reduced the noise inherent in it. The action to annotation pairing was chosen to be according
to the table below.

Positive Negative

Pleasure Collecting Coins, Winning Losing a life or a powerup
Arousal Interacting with enemies, dangerous jumps Staying still, getting stuck

Dominance Beating Enemies Losing a life, running away from enemies

Table 3.1: The objective definitions for emotions in the dataset

4 Overview of Annotation Types

As described in the tool section, there were multiple annotation types that were built into it. Those were
RankTrace, BinaryTrace, and GTrace.

RankTrace RankTrace allows for the creation of unbounded annotations. As such, they are not directly
comparable, but by taking the derivative, which shows the affect change, they can be compared to each
other and used to train a model. They produce the most detailed annotations.

GTrace GTrace is an ordinal annotation tool. The annotator rates his feeling from −100 % to 100 %. As
a result, the annotations are directly comparable, even from different annotators, but some detail is lost.

BinaryTrace BinaryTrace is the least detailed type, allowing the annotator to choose between a Negative
and Positive emotion at any given time. This form was chosen for the dataset, since Super Mario Bros is
fast paced and having multiple affect levels did not amount to much. In addition, the form of BinaryTrace
(−1, 0, 1) made it so that it could be piped into a Deep Q Learning Network directly as a reward, without
any pre-processing.

5 Emotional Models

One of the core challenges of affective computing is quantifying emotion, which is fundamentally subjec-
tive. A solution to this problem is mapping independent (or orthogonal) elements of emotions to axis, to
form a basis with which to classify emotions. A basis is a mathematical concept which describes a set of
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orthogonal vectors whose linear combination can form any other vector. In the same manner, an emotional
basis can describe an arbitrary emotion by varying the amount of each of its elements. In psychology, this
concept is named Dimensional emotion theory [16], and usually involves Valence and Arousal [17].

5.1 Arousal

One of the core qualities of an emotion is the intensity or arousal with which it is expressed. Using this, we
can form an one dimensional basis that describes an emotion as a function of its arousal. Happiness is
high arousal, whereas Boredom is low arousal. Unsurprisingly, in works that study Affective Computing,
classifying the intensity a participant feels while interacting with a piece of software or a game is the first
target attempted [8].

5.2 Valence and Arousal

An expansion of the concept of arousal appends a second axis, which describes the Valence (or Pleasure)
of an emotion. Using just arousal isn’t enough to differentiate between happiness and anger, for example,
but by adding Valence it becomes possible. It is commonly used in affective computing, because it can
describe a breadth of emotion effectively.

5.3 PAD: Pleasure, Arousal, Dominance

Lastly, we can also append dominance to the above model, allowing differentiation between fear and anger.
The PAD model [14] is a more physiological view of emotion, initially designed for environmental psychol-
ogy, but has been successfully used for the creation of animated characters [1]. It is therefore well suited
for the construction of an in-game agent, and that was the reason it was chosen for this dataset.

Parts of this section have been referenced from [12] and [3]

6 Dataset Contents

After creating the dataset, its contents were analyzed into summaries. Below is the composition of the
dataset, in percentages, for actions and annotations. As can be noted, the dataset test and train splits are
balanced, with each having similar percentages.

The annotation has a column for each of the annotations, with the first being the primary objective
(going right). The numbers mean the following: -1 for a negative annotation, 1 for a positive annotation
and 0 for a lack of annotation. The primary objective (going right) doesn’t give negative rewards. The
dataset is imbalanced in nature, with most annotation types appearing in less than 10 % of the frames, so
the majority class (being the absence of an annotation) makes up 93 % of the dataset.

Reward Pleasure Arousal Dominance Overall

Train -1 0.00 1.42 0.26 1.36 1.01
0 48.82 94.60 87.91 95.78 92.76
1 51.18 3.98 11.82 2.87 6.22

Test -1 0.00 1.67 0.13 1.75 1.19
0 48.17 94.54 88.76 95.21 92.83
1 51.83 3.79 11.11 3.04 5.98

Table 3.2: Annotation constitution of the dataset.
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Actions were simplified into those shown in the table. The ones not mentioned are grouped into the
“Unkn” tag and constitute only 1.5 % of the dataset. The largest move, by percentage, is going right at 40 %,
followed by doing nothing at 30 %, and lastly jumping right at 15 %.

Train Test

Unkn 1.30 1.51
None 31.73 32.50
B 0.22 0.26
L 8.68 7.75
R 39.61 39.51
A 1.27 1.61
L+A 1.37 1.10
L+B 0.03 0.05
L+AB 0.00 0.00
R+A 15.65 15.59
R+B 0.14 0.11
R+AB 0.00 0.00

Table 3.3: Action constitution of the dataset.

To supplement the chapter on Affect, the following table was created. It lists, by column, the spread
of actions that was performed depending on the annotation on the train set. The first column acts as a
control and shows the overall percentage, while the last one shows the spread for when there were no
annotations.

Control Pleasure Arousal Dominance Absence

Unkn 1.30 1.73 1.56 1.52 1.24
None 31.73 30.82 12.65 18.78 34.40
B 0.22 0.00 0.92 2.34 0.11
L 8.68 13.42 16.53 28.35 7.24
R 39.61 27.64 33.50 34.73 41.06
A 1.27 4.76 1.39 1.17 1.04
L+A 1.37 5.35 2.53 2.05 1.05
L+B 0.03 0.04 0.15 0.35 0.01
L+AB 0.00 0.00 0.00 0.00 0.00
R+A 15.65 16.24 30.44 9.89 13.75
R+B 0.14 0.00 0.33 0.82 0.11
R+AB 0.00 0.00 0.00 0.00 0.00

Table 3.4: Action constitution, by annotation, of the dataset.

7 Summary

In sum, for the creation of this dataset, 54 2 minute vignettes of the first world of Super Mario Bros (NES)
were created. Each of those vignettes started from a random level, and due to its length, in average, allowed
the completion of 2 levels. At the end, each of those vignettes were first-party annotated by one annotator
according to the PAD model. In this first attempt, objective annotations were deployed to instill a ground
truth to the dataset and lower the noise due to inter-annotation disagreement.
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Chapter 4

Inference

Having the tool and dataset in hand, the problem shifts into creating a pipeline to process this data. Ques-
tions arise concerning performance, model type, hyperparameter tuning, and data quality. Surely, those
are questions that should be answered before delving into Reinforcement Learning. As such, for a first
study into this data, affective inference and imitation learning were chosen. Both are supervised learn-
ing methods, which naturally converge faster than reinforcement learning, allowing for more convenient
hyperparameter tuning and model selection.

1 Compilation

After initial experiments, it became apparent that compiling the dataset into batches, with the current
hyperparameters, would be much faster than simulating the environment with OpenAI Retro against the
whole dataset every epoch. Once the compilation process is explained, we’ll move into describing the
learning process.

1.1 Initial File Format

The dataset is composed of 54 two minute vignettes, or episodes. Each episode is made up of two files, an
annotation file and a Retro Movie or backup file. The backup file contains the starting state and following
it a series of recorded actions. Each action is a binary vector of 9 buttons, which can be either 0 or 1. The
annotation file is made up of 3 vectors, one for each emotion, which contain an annotation value for each
action (which can be −1, 0, 1).

To replay an episode, the initial state is fed into a Retro environment. Then, the recorded actions are
piped into the environment, producing sequential obs, rew, done, info environment output pairs. The out-
puts, when paired with the annotations by index, represent the full information of the episode for that
frame. That information can then be used for learning and is the same as the one an agent would have
when playing a level.

Vignettes

Replayer

Replayers

Resize +
 Grayscale

Collate into
NN input

ReplayersReplayers

Collect K inputs
into mini batch

Replay +
Output Frames

Distribute into
N replayers

Collate N
mini batches into batch 

with size M=N*K

Figure 4.1: Compilation process
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1.2 Hyperparameters

The goal of the compilation process is to take the initial backup files and convert them into batch files that
can then be directly fed into the model, without any processing. Since parts of processing are hyperpa-
rameter specific (such as input frame resolution and number), the hyperparameters will be burned into the
output files. As a result, each configuration set will have its own compiled data.

1.3 Parallel Processing

Batches should contain content from multiple episodes. If they don’t, the similar frames contained in a
batch will produce an effect akin to stochastic gradient descent even though batches are used. A solution
to this could be compiling the dataset into a memory buffer and shuffling the data. However, this is a
messy and slow solution. Moreover, OpenAI Retro is single threaded and a singleton (at most one per
process).

Therefore, to utilize multiple cores and to shuffle batches to an extent, multiple Retro environments
(which we’ll refer to as Replayers) will run at the same time using the python subprocessing module. The
frames from each Replayer will then be combined into a mini batch, and a set of mini batches from each
Replayer will be formed into a batch. The mini-batches were made to be complete, insofar as processing
is concerned, because any processing that runs in the Replayer is on a separate thread, making it hyper-
threaded.

1.4 Frame Processing

Once the Replayers start, they are allocated a portion of episodes and begin to run them. With every step,
one observation is produced. The observation is then resized and converted to grayscale. Resizing is done
using OpenCV to a resolution, after hyperparameter tuning, that is 50× 50 for CNN models and 18× 12 for
Fully Connected models. To convert to grayscale, picking the green channel or using an OpenCV grayscale
function were both found satisfactory.

1.5 Collation

Following earlier work [4], the models utilize both frame skipping and multiple frame inputs. That is, only
one every N frames is recorded, and the model is fed the last M recorded frames. As such, the Replayer
skips N − 1 frames and then saves a frame to a M sized queue. If the queue is full, those M frames, along
with rewards and annotations, are collated into an input and output pair each time there is a new recorded
frame. When enough pairs have been collected, they are formed into a mini batch and are sent to the main
process.

Since frame skipping is implemented, there comes a question of which annotation and action is kept
as an input. The action that is kept is the one that would have been taken right after the frame that was
recorded. Whereas, for the annotations and rewards of the last N frames, the N − 1 that were skipped
and the N th that wasn’t are summed and normalized so that they are in the space [−1, 1]. For supervised
learning, when other than 0 they are assumed to be −1, 1, depending on the sign, and for DQN they are
used as is, since DQN is traditionally performed using decimals within [−1, 1].

1.6 Compression

When a number of mini-batches equal to the Replayers is collected, it is formed into a batch and saved
using LZ4 compression, with the blosc library. This results in files that are 10–50 times smaller (3 MB per
batch, 200 batches) that are loaded adequately fast so as to make learning GPU bottlenecked.

2 Learning
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2.1 Actions

The actions are in the format of binary vectors of 9 boolean numbers. Those can’t be directly used to learn
on. As such, 12 boolean combinations that constitute the majority of those used were chosen as the model
actions, and the other ones were ignored. As the Replayer runs, the boolean actions are converted into the
index of the combination they matched. When running the model, a softmax layer is used, indicating the
index of the action that the model would have chosen.

2.2 Annotations

Annotations can have fractional values from [−1, 1]. If an annotation is zero, it gets classified as no an-
notation in that frame. If it’s lower than zero, it is assumed to be Negative and if it’s greater than zero it is
assumed to be Positive. Those 3 states are used with a softmax layer, so that the model predicts whether
an annotation would have been chosen at that moment, and whether it would have been positive or neg-
ative. Since there are 3 annotation types (Pleasure, Arousal, and Dominance), 3 softmax layers of size 3
are used.

3 Model Selection

In this section, we’ll talk about the types of networks that were tried and the hyperparameters inherent in
the learning process.

3.1 Fully Connected Network

To form a baseline, a number of fully connected networks was tried. The fully connected networks varied
in input size, frame number, layer size, and layer number. At the end, the most complex fully connected
network tested, which performed better than its peers, did not compare favorably to a CNN, so they were
abandoned in the following chapters.

3.2 Convolutional Neural Network

Moving on from Fully Connected networks, a large number of CNNs was tried. Here, performance also
became an issue. Feeding the raw resolution RGB image is over 10–20 times slower than using a smaller
compressed image. Therefore, the complexity of the CNN became a balance of performance to accuracy.
In the end, it was found that four 50 × 50 grayscale frames, along with a modest CNN, provided most of
the accuracy of the full resolution large CNN, so this model configuration was used from then on until the
end of the thesis.

3.3 Hyperparameters

For Inference Learning, the main hyperparameters of concern were those that affected performance and
model architecture.

In both types of networks, their input shape had to be determined, concerning resolution and how many
consecutive frames it would include. Furthermore, the layer number and the size of each one had to be
determined, as well as learning rate and L2 decay. For CNNs, the convolutional layer number and size was
also important.

Performance wise, batch size was important, as it determined VRAM use and performance. A suitable
number is large enough so as to saturate the GPU performance without being too large to fit in VRAM or
to pipeline by PyTorch.
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4 Results

The dataset was split into train and test sets, and the best CNN, FC architectures were ran 5 times. The
graphs following are the mean of those 5 runs, with a confidence interval of 95 %. The confusion matri-
ces were the best ones that appeared in those 5 runs (early stopping). Their rows sum to 100 %. Both
action and annotation models feature a variance problem, due to the small dataset, and slight overfitting
(performance drops after 50 epochs).

4.1 Imitation Learning

Imitation learning performance is satisfactory. The CNN manages to predict 65 % of actions on the test
set and 90 % on the train set, with great reliability. It has a small confidence interval. On the other hand, the
fully connected network isn’t complex enough to model the problem and has inconsistent results between
executions.

The model was trained for predicting 12 different button combinations and the rest were delegated to
the first row, named Unknown. Since some of those 12 combinations are also rare, they were merged into
the Unknown row in post-processing. Finally, the confusion matrices feature that reduced set of actions,
which constitute 97 % of the actions in the dataset. We see that the model has trouble predicting jumps
(A), confusing them for going right (R) and jumping right (R+A), as well as going left (L), mispredicting it to
staying still and going right (R).

The baseline we pick for this work is defined through the majority class. According to the contents of
the dataset, shown in Table 3.3, the majority class is going right, with a probability of 40 %.
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(a) Accuracy Graph of Action Prediction, mean of 5 runs

(b) Best Train Confusion Matrix (CNN) (c) Best Test Confusion Matrix (CNN), with early stopping

Figure 4.2: Action Accuracy Results
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4.2 Affective Learning

Since annotations are relatively rare (appear around 10 % of the time), overall accuracy isn’t all that helpful.
As such, it is combined with another type of graph, which counts the percent of the time in which there
was an annotation and the model predicted it correctly (H% = cm11+cm33∑

cm1i+cm3i
).

Here, we see the model fits correctly to the train set, but it fails to do so in a large degree on the test
set, due to the dataset size. After epoch 50, overfitting starts to occur. If we consider the fully connected
network as a baseline, the CNN performs much better, predicting correctly 25 % of annotations. However,
this causes a drop in overall accuracy. This is because the model overpredicts annotations in places where
they don’t happen, or predicts the wrong annotation in places they do. This is acceptable, up to a degree.
For this model, for each one annotation predicted correctly in the dataset, another one is predicted where
there is none.

To combat the low prediction of annotations, due to the imbalance inherent in the dataset, class weights
were tried, giving a higher loss to wrong annotations. This increased the prediction accuracy. However,
it also increased false positives from a ratio of 1 wrong annotation to 1 correct, to 5 or more wrong to 1
correct. While this may be acceptable for a credit card company and fraudulent transactions (dealing with
5 false positives for each fraudulent transaction), it is not for this application. The dataset may be imbal-
anced in the sense that annotations appear in a minority of the time, but it is balanced when it comes to
the real distribution of annotations. Meaning, data collection isn’t skewed in some way. So, by influencing
class weights we can trade higher false positives for better prediction accuracy, but not increase overall
accuracy, as we could if data collection was skewed.

The baseline for each of the graphs was set by assuming a model that chooses the majority class for
each of the annotations, which is zero. The percentage of that class can be found in Table 3.2. Since the
output of the baseline model is always zero, it doesn’t predict any annotations, so it is marked with 0 % on
the second graphs.

4.2.0 Overall Performance
Overall performance is calculated by merging the three different annotation type data into a new type, and
then performing the same calculations as they were on each type, as opposed to just taking the mean.
Therefore, annotation types contribute proportionally according to their occurrence.

The model manages to predict 45 % of positive annotations correctly, and 10 % of negative annotations.
Negative annotations were much rarer and not much focus was paid on them in the following chapters, so
their performance isn’t important. For the size of the dataset, 45 % for positive annotations is acceptable.
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Figure 4.3: Overall Annotation Accuracy Results
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4.2.0 Type Specific Performance

The objective truth behind which the annotations were created is explained at Table 3.1

Pleasure The performance on pleasure is similar to overall performance. Negative annotations mainly
appear when losing, which is rare, so the middling performance is expected.

Arousal Arousal is the most common annotation type, as it would make sense for a fast paced plat-
former. Negative annotations for this type are almost non-existent, and in hindsight there wasn’t enough
information provided by them to justify including them

Dominance Dominance is a noisy annotation type, as Mario fighting enemies and winning or losing re-
quires a longer history than the one provided to the model for it to be objective. In addition, the ways of
approaching enemies are much more varied, and so require a larger amount of data.

5 Summary

This experiment constitutes a first look and application of the tool and dataset created in the previous
chapters. Imitation and affective learning were implemented. Imitation learning had adequate accuracy,
while affective learning had low accuracy due to dataset size. Since the purpose of the dataset is to train
an agent, the results are acceptable.

This experiment sets the foundation for the following chapters. The code base, the compilation pro-
cess, the hyperparameters, and the model architecture will be carried over to the next chapters without
extensive modifications.
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Figure 4.4: Pleasure Annotation Accuracy Results
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Figure 4.5: Arousal Annotation Accuracy Results
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Figure 4.6: Dominance Annotation Accuracy Results
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Chapter 5

Reinforcement Learning

At this stage in the Thesis, we have a dataset of playthroughs and a pipeline, including a model, with which
to process them and perform supervised learning. The next step is to use this work to train an agent
using Reinforcement Learning to play the game, focusing only on the primary objective, which is going
right. This chapter starts with an overview of reinforcement learning, moves on to an explanation of the
algorithm chosen (DQfD) and the reasons behind it, and finishes by showcasing the results.

1 Overview

Reinforcement learning is a subsection of Machine Learning that focuses on training an agent to complete
a task. It is comprised by mathematical theorems that describe the world, and algorithms that utilize them
to learn to behave in an environment. In the last decade, driven by increased processing power, Neural
Networks have been incorporated into the algorithms, acting as function approximators.

For example, if an environment can be described as a Markov Decision process (which is a mathemat-
ical model), Q Learning can be used to create a policy (the best actions to take given a state to complete
an objective). Q Learning discretizes states by grouping similar states into a table and scoring them. The
grouping function is pre-decided and could be, if the state is a approximated to be a game frame, resizing
the frame into a smaller one and limiting the color depth. The Nintendo Entertainment System features
256× 240× 215 distinct frames at full resolution, when including color. A grouping function could resize it
into 12 × 10 × 5, giving a total of 12 ∗ 10 ∗ 5 = 600 states, from 2 billion ones. Deep Q learning extends Q
learning by using a neural network in the place of the table, such that the initial input state can be used as
is to produce an approximated score.

1.1 Types of Algorithms

Reinforcement learning algorithms can be grouped into three categories, depending on how they receive
experience. Those are On-Policy, Off-Policy, and Offline. The fundamental difference between them is
that On-Policy algorithms associate the states they receive when they explore with the policy they had
at that moment, whereas Off-Policy algorithms don’t. As a result, On-Policy algorithms can only learn
from their experience, where Off-Policy algorithms can use their own experience, experience provided by
demonstrators, or even other algorithms. Offline algorithms are a special type of Off-Policy algorithm,
where the algorithm doesn’t have access to the environment and has to learn from stored experience
alone. Offline algorithms are more akin to supervised learning.

1.2 Considerations

The goal of this thesis is to produce an agent that completes an objective while considering the affective
dimension, which is the affective annotations that are collected in the dataset. We’ll define the primary
objective as winning the level and the secondary objective as completing a high emotional target. For the
primary objective, we have access to a reward function (going right) that is in the dataset and that the
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agent can produce more of using the environment. For the secondary objective, the affective annotations
in the dataset can act as a reward function, meaning the agent will have access to a pool of experience
with affective rewards. However, replaying the environment will not produce additional annotations.

For the primary objective, both On-Policy algorithms and Off-Policy algorithms can be used. Given that
the focus of this thesis isn’t performance, we should use the dataset, which features playthroughs of an
expert, to teach the algorithm, if it’s convenient. However, On-Policy algorithms wouldn’t be able to use
that, because the states won’t have an associated policy. For the same reason, it will be harder to merge
the primary objective with the secondary to produce a composite agent. As such, Off-Policy algorithms
would be preferable. Since we have access to the environment, we won’t consider Offline algorithms. The
secondary objective is strictly an Offline problem, since additional data can no longer be produced.

1.3 Deep Q Learning from Demonstrations

By taking into the account the above considerations, Deep Q Learning from Demonstrations (DQfD) was
chosen. DQfD is an algorithm by Todd Hester et al. [6] that’s between offline learning and Off-Policy learn-
ing. It is an extension of Deep Q Learning that features improvements from recent papers and supports
learning in tandem from demonstrations and experience. The policy is created by demonstrations and
then fine tuned by experience. As such, the algorithm is purely exploitative, with an epsilon of 0.01. DQfD
was chosen because it can be used both for the primary objective and the secondary objective. After
training, the Q functions of the objective policies can be summed in a ratio to form a composite policy.

2 Methodology

2.1 Carryover from Inference

In the previous chapter, we created a pipeline and a compilation process with which to ingest play traces
and perform supervised learning. It featured great performance, so the majority of the codebase will be
moved forward.

The compilation process that was created will be carried over in two places. It will be used as is to
create a file based replay buffer for demonstrations, that will be run once and shared between different
configurations. For experience, parts of it will be carried into a new module, named Explorer, which will
produce batches in parallel in a similar fashion. For action selection, it will receive actions from the train-
ing model and feature a configurable epsilon policy. In addition, it will record statistics about the played
episodes, such as the mean reward, cumulative reward, and episode length. Those statistics will then be
graphed into histograms, mean curves, and highest of epoch curves.

For model choice, in the inference problem, a CNN was found to be the best performer. The same
model structure will be carried over, since the input format will remain the same. The last layer will be
replaced by N Q functions, each of which will be made up of M linear activations. Where N will be one in
Reinforcement Learning and three in Affective Learning, one for each emotion. M will be 12, one for each
action recorded from the dataset. In total, the last layer will feature N ∗M activations.

2.2 Deep Q Learning Overview

DQfD is a variation of Deep Q Learning (DQN) [11], which is an extension of Q Learning, an algorithm that
creates policies for an environment described by a Markov Decision Process (MDP).

A Markov Decision Process is defined by a set of 5 parameters (S ,A,R ,T , γ), which consists of a col-
lection of states S , a set of actions A, a reward function R(s, a), a transition function T (s, a, s ′) = P(s ′|s, a),
and a discount factor γ. The agent is given a state s ∈ S , to which he responds with an action α ∈ A, and
receives reward r = R(s,α) and next state s ′ = P(s ′|s, a). Future rewards are discounted by being multi-
plied by γ. A policy π is a mapping of states to actions, in which the discounted reward is maximized. We
define function Qπ(s,α) as the estimate of the future discounted rewards that will be accrued by taking
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action α from state s , with Q⋆(s,α) being the optimal policy determined by solving the Bellman Equation:

Q⋆(s, a) = E

[
R(s,α) + γ

∑
s′

P(s ′|s, a)max
a′

Q⋆(s ′,α′)

]

The optimal policy π is then π(s) = arg maxα∈A Q
⋆(s ′,α′).

Deep Q learning uses a neural network to approximate the Q(s, a) function. The neural network outputs
a set of values {Q(s,α; θ)|α ∈ A} for a given state s , where Q(s,α; θ) is the expected reward for taking
action α and θ are the current network weights. When training, a copy of the network, named the target,
is used to provide an approximation of the next state’s Q for calculating the loss. The target network is
updated infrequently to stabilize the Q function. Without it, the Q function would increase every iteration
and ultimately destabilize into a worthless policy. The double DQN loss [5], which incorporates target, is
defined as:

JDQ(Q) =
[
Q(st+1,α

max
t+1; θ)−

(
R(s,α) + γQ(st+1,α

max
t+1; θ

′)
)]

where θ are the main network weights and θ′ are the target network weights, synced every τ steps. To
prevent biased state selection during training, due to the current policy, mini-batches of experience are
sampled randomly when training using a replay (ring) buffer, which stores the experience that is accu-
mulated from the environment. After reaching its maximum size, the replay buffer begins to expire old
data.

2.3 Deep Q Learning from Demonstrations Overview

DQfD incorporates a pre-training phase, in which the network is fed data solely from demonstration. From
then on, it starts to accumulate experience from the environment in its replay buffer Dreplay , and excludes
demonstration data from expiration.

The demonstration data incorporates a margin classification loss [15], which penalizes the network for
producing greater or equal Q values for actions not chosen by the demonstrator:

JE (Q) = max
α∈A

[Q(s,α) + l(αE ,α)]− Q(s,αE )

where αE is the action of the expert at that state, and l is a penalizing function which is 0 when α = αE

and a positive value when not, causing values of Q(s,α) to be at least l lower than Q(s,αE ).
The n-step return loss, with n = 10 is added to both experience and demonstration data, leading to

faster learning, similar to A3C [10]:

Qn(st ,α) = rt + γrt+1 + · · ·+ γn−1rt+n−1 + γn max
α

Q(st+n,αt+n)

Jn = [Q(s,α)− Qn(st ,α)]
2

Lastly, an L2 regularization loss is applied to the weights to prevent over-fitting. The overall loss is a
weighted sum of the above losses, with λ2 being 0 for non-demonstration data:

J(Q) = JDQ(Q) + λ1Jn(Q) + λ2JE (Q) + λ3JL2(Q)

The original algorithm also features prioritized experience replay [18], increasing the probability of se-
lecting transitions that had a high loss previously.

2.4 Improvements

Traditional Q learning is typically composed of a model pair, a ring in-memory replay buffer, and one en-
vironment. The loss is calculated using tuples of (state, next_state, action, reward), excluding n-step. A
learning step is performed by first forming one or more mini-batches of tuples, learning from them, and
then having the agent play an episode in the environment, which gets stored in the replay buffer. Each of
those steps introduces performance limitations into the process.

Specifically, since the replay buffer is stored in memory, it is constrained by the available RAM. Let’s
assume that the model receives the 4 last observations to produce a policy. A simple solution would be
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to store the complete (state, next_state, action, reward) tuple in RAM for each training frame. However,
that would require 5 or 8 frames of storage, 4 for state and 1 or 4 for next_state, since state and next_state
have 3 common frames. To reduce RAM use, allowing for a larger buffer, we would store consecutive (obs,
action, rew) tuples into the buffer instead, and to form the (state, next_state, action, reward) tuple we would
merge 5 consecutive observations into state and next_state. That would produce a replay buffer that is
5–8 times smaller in size, or 9–12 times when including the n-step observation. At 1 frame stored per step
(consequtive format), if each frame is 50× 50× 3 = 7.5 kB, a 10 GB in-memory buffer would allow for 18
hours of memories, whereas for the duplicate format it would allow for 2 hours of memories (insufficient).

Unsurprisingly, the consecutive design creates performance limitations. Since the buffer stores a con-
secutive line of observations, in order to construct the loss tuple the CPU has to perform memory copy
operations to unpack the observations into the 3 required states. This introduces a CPU bottleneck. Fur-
thermore, since the buffer is consecutive, it isn’t shuffled and can not be shuffled (observations will seize
to be consecutive). By selecting states in order, the batches formed would have slices that are too similar
and produce a result similar to stochastic decent. Therefore, the indices of states have to be randomly
chosen and selected for every batch. The above result in a hard CPU limit in training speed, prompting the
creation of band-aid fixes, such as prioritized experience replay, where the priority is based on loss and not
score, so that the model can learn faster, not smarter.

The consecutive design also limits the number of environments that can be used to 1. The buffer is
consecutive so it can not be fed the output of multiple environments. If the environment is single-threaded,
this results in a slowdown proportional to the number of cores in the workstation. A band-aid solution could
be to have N replay buffers, one for each environment, so that N environments can be utilized.

The solution chosen for this thesis was to create a batch file based ring replay buffer and to use multiple
environments to form each batch. Each batch is represented by a file, which contains preformed (state,
next_state, action, reward) tuples. The file is passed through a high performance compressor that can
unload it into memory faster than a traditional memory copy operation. The compressor is efficient enough
such that the overhead of storing the same frame 10–12 times is negligible, since it compresses the tuples
100×, a magnitude of efficiency higher than required.

To mitigate the problem of stochastic descent, the input of N environments (8 were used) is used to
form each batch. Since each environment contains a different state, there’s N times the variance in the
batches, compared to a single environment. The use of multiple environments also utilizes multiple cores
effectively.

In sum, the use of preformed compressed batches ensures that the gradient descent completely uti-
lizes GPU performance, without being bottlenecked by CPU, and environment exploration completely uti-
lizes CPU performance, by being parallelized. A summary of the modified algorithm is shown below.
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Algorithm 1: Batched Deep Q Learning from Demonstrations
Input: Edemon : demonstration episodes, rexp : ratio of experience batches to demonstration batches,

etotal : number of total epochs, epretrain : pretrain initial epochs, nbatches : number of batches per
epoch, nsave : number of batches to create per epoch, nepisodes : minimum number of
episodes per epoch, ρ: model and process hyperparameters, τ : target update frequency

Initialize Ddemon buffer by compiling Edemon , taking into account ρ;
for e ← 1 to etotal do

B ← select nbatches from Dexp and Ddemon with ratios rexp , (1− rexp);
Shuffle B ;
for b in B do

Calculate loss J(Q) using target for batch b (ommit JE if b ∈ Dexp);
Perform a gradient descent step to update θ;

end
if e mod τ = 0 then

Sync target θ′ with θ
end
cep ← 0, cbatch ← 0 ; /* Number of completed episodes, saved batches */
Reinitialize agents to a random state.;
while cep ≤ nepisodes or cbatch ≤ nbatches do

Run agents in parallel to produce a varied batch, completing i episodes;
cep ← cep + i ; /* Run at least a minimum number of episodes, batches */
cbatch ← cbatch + 1 ;
if e > epretrain then

Save batch ; /* Batches in pretrain are only for measurements */
end

end
end

2.5 Environment Exploration

The target of this thesis is not to create an algorithm with the best playing performance, or with the best
learning ability. It is sufficient for the agent to be able to complete a level, even if there’s a helping hand in the
training process. In most Reinforcement Learning algorithms, the agent begins exploring the environment
at the same initial state each time, without any expert knowledge. One form of expert knowledge that was
utilized and is previously discussed is learning from observations. The two other forms that will be used
are smarter state management, and a tailored epsilon policy.

Traditionally, the agent starts in the same state every time the environment resets. To accelerate learn-
ing and to sample more of the environment in a uniform fashion, the level was split into 10 equidistant
states. The agent begins the environment in one of those 10 randomized states. Furthermore, a strict
time limit is placed on the agent. If two neighbouring states are 20 seconds apart, the episode should
expire at most after 40 seconds, so as to prevent collecting null data when the agent becomes stuck.

One additional improvement that is derived from randomized states is higher quality statistics. When
the agent always starts at the beginning of a level, if a policy error occurs at the beginning 20 % of the
level, then that will cause up to an 80 % drop in cumulative reward, even though the agent has a similar
performance to before. By integrating over the state space for starting positions, the effect of a fault in
policy is reduced, since the states from 20 % forward won’t have their cumulative reward reduced.

A traditional epsilon policy overrides the agent’s action ϵ percent of the time and chooses a random
one in an equal fashion. This creates a probability tree with one correct path, whose probability gets
exponentially smaller with each training frame that needs to be correct. In Mario, this presents the following
problem: in order for a jump to be successful Mario has to jump for at least 10 consecutive training frames.
Let’s assume Mario’s agent decides not to jump when its appropriate and can choose from 4 actions (each
action having the same 25 % probability). Even if ϵ = 0.6, the chance of completing a successful jump is
π = (0.6 ∗ 0.25)10 = 5 ∗ 10−7% = 0, so a successful policy can not be created by exploration.

One of the solutions for this problem was to use a similar composition of random actions to those in
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the dataset, Table 3.3: going right 50 %, jumping right 33 %, and staying still 16 %. The other was to use a
sticky epsilon policy. As in when a random action is chosen, it becomes sticky and overrides the model
for N training frames. A new ϵ′ has to be calculated such that random actions constitute an ϵ portion of
actions:

The problem of ϵ′’s transformation can be modeled with a geometric distribution. Let’s consider a slice
of events that occurs right after a sticky move finishes until a sticky move begins again. The agent will
choose the model output with (1 − ϵ′) probability or begin another sticky action with ϵ′ probability. If the
model output is chosen, then the cycle repeats. If a sticky action is selected then that action will lock for
N moves, with 100 % probability after which point the cycle will repeat. The moment up to selecting a
sticky action can be defined as a geometric distribution, and the number of model output actions chosen
as the failures, with choosing a sticky action being the success. If with a success N actions are completed
randomly, then beforehand there need to be M actions on average, such that:

N

M
=

ϵ

1− ϵ
⇒ M =

1− ϵ

ϵ
N

Where M is the mean of the geometric distribution, which is defined as follows:

µ =
1− p

p
⇒ M =

1− ϵ′

ϵ′
⇒ ϵ′ =

1

M + 1

Solving for ϵ′:
ϵ′ =

1
1−ϵ
ϵ N + 1

⇒ ϵ′ =
ϵ

(1− ϵ)N + ϵ

ϵ ̸=0⇒ ϵ′ =
1(

1
ϵ − 1

)
N + 1

For ϵ = 60 %, N = 10:
ϵ′ =

1(
1
0.6 − 1

)
· 10 + 1

= 13.0 %

So, instead of the probability of a successful jump being π = 5 ∗ 10−7% at any given moment, it’s π =
0.13 ∗ 0.33 = 4.3 %, which is a considerable improvement.

One further improvement in exploration vs exploitation was the use of a hybrid epsilon policy. Epsilon
is set to a high amount and decays exponentially in the following manner:

ϵexp =
1

l
e

s
d

where s is the epoch, l is a dividing constant that makes epsilon start lower than 1, and d is the constant
that sets the decay, according to how long the agent will train. As the exponential epsilon becomes lower,
a second function takes effect, which uses the mean reward of the last epoch as a signal to boost explo-
ration.

ϵrew = ϵmin + (ϵmax − ϵmin) ∗min
(
rmax − rcurr

rmax
, 0

)
where ϵmax , ϵmin define the range of epsilon required and rcurr is the current reward and rmax the typical
maximum reward.
The epsilon policies are combined to form the following composite policy:

ϵcomp = max (ϵexp, ϵrew )

Typical values for ϵrew would be in the range of 1 % to 15 %, so as the exponential epsilon decays to a lower
number, ϵrew can increase the exploration if there’s poor performance.
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3 Results

The setup described above was implemented using the first level of Mario. Then, two learning approaches
were followed, one with the modified epsilon policy and one that uses demonstrations with a minimal
epsilon. For each set of parameters multiple runs were executed. A rolling mean window was applied on
each run and they were combined to calculate the mean and confidence interval of the parameter set.

The highest score achievable for the first level of Mario, starting from the beginning, is 3100. 10 equidis-
tant starting points were used in training for the level, with each point having a maximum score proportional
to its distance from the end of the level. As such, the maximum expected mean reward for an agent is
around half of the maximum, or 1500 points.

The performance of each model changed considerably every epoch and between each execution, while
showing a trend, so after applying the window and finding the mean the performance of the algorithm will
appear lower than it is. By selecting the best model out of the best execution, the mean score will be much
closer to the maximum.

3.1 Demonstration vs Exploration

In this first set of executions, we will compare the performance of learning by demonstration (low epsilon)
and learning by an epsilon policy. The baseline will be doing neither: using a low epsilon policy with no
demonstrations, which featured a maximum score of 500 and a typical score of 280.

Demonstration varied in performance based on the ratio of experience and demonstration, with the
best being 30 % and having a maximum mean score of 1600. Following an epsilon policy, on the other
hand, had a more predictable trend. While it may seem the exploration agent is not learning, the epsilon
policy starts to have positive performance spikes after epoch 80 that exceed score 800 and reach 1000
multiple times. They do not appear in the confidence interval because a rolling window is applied to the
executions to help show a clearer trend.
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Figure 5.1: Demonstration vs Exploration
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3.2 Demonstration Ratios

One important hyper-parameter in learning was the ratio of demonstration batches to experience batches.
In the beginning of each epoch, a number of batches is selected in a predetermined ratio from the experi-
ence and demonstration replay buffers. Then they are shuffled together, leading in the model alternating
training from demonstration and experience.

In the chart below, there is a range of experience ratios from 0 % to 100 %. Having a 40 % experience
ratio would mean 40 % of batches are from the experience buffer and 40 % are from the demonstration
buffer. From ratio 50 % and beyond, the performance starts to heavily decline, showing that it is preferable
to use a majority of demonstration batches when training. The best performance is seen at around 30 %,
with 25 % having great performance and 0 % being surprisingly good, considering the environment is not
used at all.
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Figure 5.2: Experience to Demonstration ratio, plotted together

In the next page, the confidence intervals of each execution can be found. 0 % is the least stable of the
executions, with 100 % being the most stable (showing little learning).

4 Summary

In this chapter, an agent for completing the first level of Super Mario Bros was created, using a modified
form of Deep Q Learning. The agent is robust and can complete the level most of the time. Various
combinations of hyper-parameters and models were tried, with using a demonstration heavy replay buffer
with a low epsilon policy being the best. In the next chapter, 3 affective agents that focus on emotion will
be created and then combined with this one to form a composite agent.
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Figure 5.3: Experience to Demonstration ratio, with 80% confidence interval
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Chapter 6

Affective Learning

In the previous chapter, we created an agent that completes the first level of Mario by having its sole focus
on the objective. In this chapter, we’ll create a set of affective agents, who try to maximize a specific
emotion without caring for completing the level. Alongside the agents, we’ll design objective metrics for
emotion that, by using a train and test split, can be used to measure performance.

The dataset created for this thesis is based on the P.A.D. model. It contains 3 emotions, Pleasure,
Arousal, and Dominance, which will be used to create 3 Agents. Those agents will use a modified version
of Deep Q Learning from Demonstrations, so their Q functions will be able to be combined afterwards to
form a composite agent.

1 Methodology

The main limitation of training an agent to use emotions is that, unlike a traditional reward function, the
agent can’t explore the environment to receive new data. Environment exploration can’t be utilized to train
the agent. Moreover, unlike Offline learning, where access to the environment is artificially limited in train-
ing, the environment can’t be used in benchmarking the agent either. It is logical, therefore, to model the
problem using supervised learning, with the caveat that instead of a traditional softmax model, Deep Q
learning will be used.

1.1 Algorithm

The modified Deep Q Learning algorithm described in Section 5.2.4 will be utilized. Since exploring the
environment can’t be used to generate new data for an exploration replay buffer, only the demonstration
replay buffer will be used.

During testing it was found that using a blanket margin classification loss for all state action pairs is
problematic. The margin classification loss penalizes the agent for giving high Q values to actions not
chosen by the agent. This is required to balance the Q functions of actions that are not chosen in the
demonstration. When using traditional Q learning, a bad action receiving high Q value would be balanced by
having the agent explore it and add the low reward to the replay buffer. Without the exploration component,
actions not chosen by the demonstration would receive inflated Q values and have those wrong Q values
propagated to previous actions, leading to an invalid policy.

It also has an imitation learning aftereffect, in which actions of the demonstrator, who’s considered
an expert, are reinforced, regardless of their performance. This imitation learning bias is enough to strip
the effect of the affective annotations. The agent blindly imitates the expert, regardless of emotion. A
balance was found in the use of margin classification loss, by having it only apply when the agent receives
an affective reward:

JE (Q) = |R(s,αE )|
[

max
α∈A

[Q(s,α) + l(αE ,α)]− Q(s,αE )

]
where αE is the action of the expert at that state, R(s,α) is the reward function for s,α pairs, and l is a
penalizing function which is 0 when α = αE and a positive value when not, causing values of Q(s,α) to be
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at least l lower than Q(s,αE ), but now only when there is a reward.
This leads to a drop in performance, since a blanket margin classification loss allows the agent to learn

from the whole dataset, not only the minority which features rewards. To amend this, transfer learning was
utilized by having the model start using the weights of the best Reinforcement Learning model that was
produced in the last chapter.

1.2 Metrics

The goal of this chapter could be best described as a conditional imitation problem. The agent has to
imitate the expert if and only if it will be emotionally rewarded. The metrics that will be used will be focused
on that imitation learning component. There is another element of maximizing affect that wasn’t studied,
and that is how the agent navigates the environment to reach highly emotional states, by following the Q
function.

The first metric is imitation accuracy when there is an annotation. Mathematically, it is defined as the
number of actions chosen that match the demonstrator when the reward is non-zero, divided by the total
non-zero annotations.

αi% =

∑
(s,a)∈Dreplay

|R(s, a)| · [arg max (Q(s, a)) = a]∑
(s,a)∈Dreplay

|R(s, a)|

Where Dreplay is either the train or test set experience replay buffer.
The second metric that was used is average rank annotation accuracy, where rank is the position of

the action, when sorted by Q value. Mathematically, it is defined as the average of the ranks of the actions
chosen when the reward is non-zero, divided by the total non-zero annotations.

αi ,rank =

∑
(s,a)∈Dreplay

|R(s, a)| · arg max (Q(s, a))∑
(s,a)∈Dreplay

|R(s, a)|

Broadly speaking, both metrics convey the same information. As it will be shown in the results section,
there was a strong inverse correlation between the two metrics, that would render using both unnecessary.
The correlation is inverse because with a better performing model, the average rank is lower while the
prediction accuracy is higher.
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2 Results

The dataset was split into a train and test set, and two approaches were tried: transfer learning and random
initialization. Transfer learning was performed by copying the weights of the layers of an RL network, since
both architectures are the same, sans the last layer, which is different. Statistics were compiled for each
emotion separately, and then combined to form an overall metric for emotion, weighed by each emotion’s
occurrence.

Two baseline metrics are presented alongside the accuracy graphs. The baseline metric is based on
the majority class action of that emotion, according to Table 3.4. The Imitation metric is the performance
from the imitation learning figure 4.2. Since this model is based on Q learning, the action taken by the
demonstrator when there was an annotation is not necessarily the best for maximizing reward, so the
performance of imitation on the whole dataset is not necessarily indicative.

Imitation performance when there’s an annotation exceeds the baseline in accuracy. The best accuracy
was around epoch 25–50, after which point the model goes on to over-fit. There is a soft L2 weight decay
applied to the model, which was enough to make over-fitting negligible in the inference chapter, while not
lowering accuracy. Since the model stops learning after that point, it is fair to assume that over-fitting
occurs due to lack of data, both on test and train sets, and not on model architecture.

The model that is initialized randomly has a larger variance in-between executions than the one that
utilizes transfer learning (pretrain). This is logical due to the small percent of annotations in the data, which
would make learning from scratch difficult.

The annotation mean rank displays the model performance in a little more depth. For example, over-
fitting is much more visible after epoch 50, due to a rise in average ranks, where it is barely visible in
accuracy. However, unlike accuracy with the majority class, there doesn’t exist a simple way to calculate
baselines for it.

Pleasure and Arousal feature similar performance to overall, with arousal outperforming pleasure.
Since arousal is the most common annotation of the three, this is expected. Dominance hovers around
the baseline, both due to being a more complex emotion and due to having a large negative percentage,
which was largely ignored in the construction of the metrics. However, as it will be shown in Chapter 7,
even though the metrics for dominance aren’t promising, the agent does learn a useful policy from it.

3 Summary

In this chapter, 3 affective agents were developed and benchmarked using a form of supervised learning.
Testing them using the environment was ommited due to the expected low ingame performance of the
agents, when trained using affect alone, which will be shown in the next chapter. There is significant
variance in the model test results, but that is expected considering the dataset size. In the next chapter, the
3 affective agents developed will be combined with the reinforcement learning agent to form a composite
agent that considers both affect and the primary objective.
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Figure 6.1: Overall Performance
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Figure 6.2: Pleasure Performance
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Figure 6.3: Arousal Performance
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Chapter 7

Composite Learning

In the previous chapters, a dataset containing emotional annotations in the game Mario was created,
alongside 4 agents. The first agent, discussed in Chapter 5, focused entirely on completing the primary
objective, which was the level. The other three, discussed in Chapter 6, tried to maximize the emotional
charge of the agent in the three emotions contained in the dataset. All 4 agents were trained using a
variant of Deep Q learning and are based on a Q function. In this chapter, we will form composites of those
4 agents by combining their Q functions in different ratios and discuss the results.

1 Methodology

The four agents that were developed in the previous sections are carried over. They are based on Deep Q
Learning with the Q function obtained by solving the following Bellman Equation:

Q⋆(s, a) = E

[
R(s,α) + γ

∑
s′

P(s ′|s, a)max
a′

Q⋆(s ′,α′)

]

The reinforcement learning agent uses as a reward whether Mario is going right, which is the primary
objective, while the other agents consider the affective annotation directly as their reward (It is a binary
annotation with values [−1, 0, 1]), which are the secondary objectives.

The Q function defines the expected reward, in a relative sense. As in a Q value of 54.6 doesn’t tie into
the environment directly, but an action having it would be preferable to one with 30. If we want a target
that considers multiple objectives equally, say completing the level and being happy, then we should add
their Q functions before choosing an action:

Qcomp(s, a) = Qrl (s, a) + Qaf ,pleasure(s, a)

Since Q values are relative, we can add them in a ratio to influence the weight placed on each objective.
Let’s define weight w and Q function Q vectors such that:

waf =

 wpleasure

warousal

wdominance

 w =


wrl

waf ,1

waf ,2

waf ,3

 ,
∑
i∈N

|wi | = 1, wi ∈ [−1, 1]

Qaf =

 Qpleasure

Qarousal

Qdominance

 Q =


Qrl

Qaf ,1

Qaf ,2

Qaf ,3


Therefore:

Qcomp = wT · Q
The action a for state s is then chosen by:

a = arg max
α∈A

Qcomp(s,α)
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2 Results

Having created the agents, it’s relatively simple to use the math provided above to create composite agents
and test them. For each composite agent, we sample from the Q of reinforcement learning agent and the
Q of an affective agent in a ratio.

We modulate that affective ratio from 0 to 1, with 0 creating an agent purely focused on completing the
game and 1 creating an agent purely focused on maximizing affect. This ratio, as a percent, defines the X
axis. Then, using each ratio, the agent is placed in the environment and plays 50–150 episodes, using the
same environment as in training (scores are comparable). The agent is then pitted against the affective
test set, measuring imitation performance when an annotation exists. Those two metrics define the dual
Y axis of the following graphs.

2.1 One Emotion

The first set of graphs create composite agents that focus on one emotion each. The orange line and
left Y axis measure the agent’s mean cumulative reward, while the blue line and right Y axis measure the
imitation performance as a percentage on the test set. The composite Q function is calculated as follows:

Qcomp,i = (1− raf )Qrl + rafQaf ,i

At 0 %, environment performance is indicative of the reinforcement learning agent, while at 100 % af-
fective performance is indicative of the affective agent. Both curves feature a steep drop-off for all three
emotions. At either end, we create an agent that’s good only at either objective. This is expected, since we
only use one of the agents.

The golden ratio appears to be at 25 % and 75 %. At 25 %, the environment performance drop is small,
while there’s a considerable gain in imitation. At 75 %, most of the imitation gain has been achieved, so
there can be some gain in performance. In fact, for pleasure and arousal, using a small percentage of the
RL agent creates a better affective agent! Most of the tests in the next section will hover in 20 %–30 % for
the aforementioned reasons.

2.2 Negative Imitation

As a second experiment, the affective Q function was flipped, to cause the agent to counter imitate the
demonstrator when there’s an annotation. In principle, this should create an affective agent that minimizes
the his respective emotion. The composite Q function is calculated as follows:

Qcomp,i = (1− raf )Qrl − rafQaf ,i

As expected, imitation performance starts at the baseline of using just the RL agent and drops to zero as
the affect ratio is increased. There is a steep drop in environment performance as well. This is expected, as
the actions that maximize affect overlap with those that constitute a good strategy. Therefore, to minimize
affect, the agent must lose.

2.3 Multiple Emotions

As a last experiment, multiple emotions were combined. The Q functions of two emotion each time were
combined in a 50 % ratio.

Qcomp,i = (1− raf )Qrl − raf (0.5Qaf ,i + 0.5Qaf ,j)

The results are similar to the previous experiments. The imitation performance of both emotions rises.
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Figure 7.1: Creating composite Q functions by summing Affect and Objective Qs. Different Ratios Plotted.

52



7.2. RESULTS CHAPTER 7. COMPOSITE LEARNING

0% 25% 50% 75% 100%
0

200

400

600

800

1,000

1,200

1,400

Percent Affect

Cu
m
ul
at
iv
e
Sc

or
e

0

5

10

15

20

25

30

Im
ita

tio
n
%

Mean Score
Pleasure (Eval) %

0% 25% 50% 75% 100%
0

200

400

600

800

1,000

1,200

1,400

Percent Affect

Cu
m
ul
at
iv
e
Sc

or
e

0

10

20

30

Im
ita

tio
n
%

Mean Score
Arousal (Eval) %

0% 25% 50% 75% 100%
0

200

400

600

800

1,000

1,200

1,400

Percent Affect

Cu
m
ul
at
iv
e
Sc

or
e

0

5

10

15

20

Im
ita

tio
n
%

Mean Score
Dominance (Eval) %

Figure 7.2: Composite Q functions, with the affective Q sign flipped to counter-imitate.
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Figure 7.3: Composite emotions. Combining Pairs of Q affect functions in a 50% ratio instead of using 1.
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3 Trails

To add more flair to the thesis, and visually demonstrate the work, two tools to create playtrace trails of the
agents were developed. The training environment was copied into a new tool. This tool receives a starting
state and weights for each of the Q functions. Then, it generates N episodes, starting from the provided
state and using the provided weights, listing them by score.

Afterwards, one of those episodes can be input into another tool. That tool generates the frames of the
episode and then splices them together by their distance from the start, using their difference to display
Mario’s trail. Additionally, the normalized Q function is graphed on top at each moment, displaying Mario’s
expected returns.

3.1 Base RL Agent

The base RL agent leaves good a margin between enemies when jumping and avoids breaking blocks. It
has a conservative strategy that will complete the level, while minimizing the chance of loss.

Figure 7.4: Base RL agent playing through the first level of Mario
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3.2 Affective Agent: Pleasure

The RL agent Q function was combined to the Pleasure Q function using a 70 % to 30 % ratio, which retained
a large part of the playing performance. In the following images, the Pleasure Q function is graphed on its
own, not the composite one.

When starting from the initial position, the agent tries to break the first block and dies (inferred pleasure
objective). Because it is impossible to break that block without losing without going backwards, afterwards
which it has not learned.

When, due to the slight epsilon policy, it avoids the block, it jumps on top of the platform and breaks
the other one. In both cases, the Q function spikes as Mario is approaching the block, and reduces after
hitting it (as is expected).

3.3 Affective Agent: Arousal

The agent that is focused on arousal, using a 80 % RL to 20 % affect ratio, comes into closer contact with
the enemies it approaches and kills some of them. In the first image, it kills 2 of the initial enemies of the
level. And in the second it kills 2 enemies as well, while getting closer to enemies than the RL agent would
on its own. When it’s close to enemies, the Arousal Q value becomes higher.
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3.4 Affective Agent: Dominance

The dominant agent, using a 80 % RL to 20 % affect ratio, tries to kill as many enemies as possible. In one
episode, the agent kills 4 enemies.

In the first image, the first enemy of the level is killed, and the Q function spikes beforehand. In the
second image, the agent kills two enemies, having a heavy spike when killing the first enemy and a smaller
spike on the second one. In the last image, the agent kills 2 other enemies, before meeting his demise on
the 5th one, due to a missed jump. The Q function spikes correctly before all of the kills, but not when the
agent is about to die. This is surprisingly good, since it shows the agent knows it’s about to die and not kill
an enemy, even though the jump was missed only by a couple of pixels.

4 Summary

In this last section showcasing the work of this thesis, the agents that were developed in the previous
section are combined into a composite agent. Then, they are evaluated using objective metrics. Lastly,
a visualization tool is used to show what the agent is thinking while playing the level and what path it is
selecting.

While the results shown from the objective metrics might have been thought of as middling, the visu-
alization tool shows that the agent thinks correctly when playing the level and exceeds the expectations
set in this thesis. All three of the emotions that were annotated achieved visible differences in behavior
for the agent, in the ways that are supported by the objective annotation definitions (Table 3.1). Therefore,
the workflow and results showcased in this thesis show promise for use in future works.
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Chapter 8

Conclusions & Future Work

1 Conclusions

The work presented in this thesis culminated into creating a multifaceted agent that, once trained, can
have its behavior modified by a simple change of weights. If used in production, that means that one
set of models (RL and AF) can be shipped with a product and agent behavior can then be modified on
command, without a performance penalty or retraining, while presenting a rich range of actions.

The objective of this thesis was to create a proof of concept and lay the foundation for future works.
Playing the first level of Super Mario Bros successfully has been achieved multiple times and in various
ways, including using DQNs, after all. And for those purposes, it was successful. The final agent presents
a breadth of modalities and the process that was developed can, with little modification, be used to model
agents in thousands of games and levels within those games. Most of the effort required would be put
into creating a new affective dataset for that game.

2 Limitations

The Tool that was created focused on OpenAI’s Retro environment, which features support for most
RetroArch emulators. While this allows for a large breadth of games, it still limits the environments that
can be studied, since parts of the tooling rely on Retro environment’s state loading behavior and would have
to be adapted to be used with other environments. Also, since the annotator uses the OpenAI Retro envi-
ronment internally it needs to run locally on a computer, and can’t be run on a browser. This is somewhat
offset by the ability to create a self-contained executable but it’s nonetheless a platform-centric limitation.

The Dataset that was created was, in purpose, limited and when creating the agent it was limited fur-
thermore. The dataset was first party annotated, with a single annotator, and emotions were explicitly as-
sociated with actions beforehand (ex. collecting coins equals pleasure). In that way, the agent’s behavior
was dictated by those associations and not by affect. These decisions were taken to reduce noise, pro-
duced due to low inter-rater agreement and a ill-posed ground truth, so that the dataset could be smaller,
simpler to create, and have a higher likelihood of success. The dataset was also limited in scope to one
game, Super Mario Bros, and in that game on one world (a collection of 4 levels). In the RL and composite
learning chapters, only the first level of Mario was studied (due to time and compute constraints), leading
to three quarters of the dataset being unused for the agent.

Deep Q Learning is a staple algorithm in Reinforcement Learning but in recent years has been surpassed
by other on-policy algorithms in their ability to learn. It was chosen due to its off-policy nature making it
easier to learn from the dataset directly. Traditionally, it is also slow to converge. Due to optimizations
done in this thesis this was not the case, with each model taking about half an hour to reach a good policy
on a GTX970 and quad core CPU pair (using demonstrations).

58



8.3. FUTURE WORK CHAPTER 8. CONCLUSIONS & FUTURE WORK

3 Future Work

On the creation of a Dataset future work should focus on developing datasets that are sourced from
multiple annotators offering affect labels of subjective nature. While such a dataset would require a lot
more resources to create, it would also produce an agent that would truly mimic human emotions. On a
simpler note, the other three levels of Mario that were included in the dataset can also be studied.

On selecting games different games with a more emotionally charged content can be selected and dif-
ferent types of annotations can be used for each game. One can think of annotating a horror game, where
the annotator notes how scared he is, and the agent that is produced can be timid or bold.

On studying algorithms the next endeavor should be on trying to integrate state-of-the-art On-Policy
algorithms, such as Go Explore [4], so that the affective agent features performance comparable to those.
The difficulty in integrating them is due to the affective demonstrations being essentially a replay buffer
that was collected using a different policy (that of the annotator) and having an inability to collect more.
One part that might help is that, unlike in this thesis, the final agent produced by training can have an
emotional state baked into it (such as being a scared agent) without being customizable after the fact.
Without this limitation, it could be easier to integrate newer algorithms.

On measuring performance the metrics presented in the affective Chapter 6 only measured one part of
affective performance, imitation, and not how the agent will try to move towards states that exhibit arousal
or how much arousal it will achieve. More innovative metrics should be developed, which are better suited
to deal with this fact. The ideal metric to have would be the equivalent of Cumulative Reward in RL.
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