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Abstract— Lane-free traffic has been recently proposed for 

connected automated vehicles (CAV). As incremental changes 

of the road width in lane-free traffic lead to corresponding 

incremental changes of the traffic flow capacity, the concept of 

internal boundary control can be used to optimize 

infrastructure utilization. Internal boundary control leads to 

flexible sharing of the total road width and capacity among the 

two traffic directions (of a highway or an arterial) in real-time, 

in response to the prevailing traffic conditions. A feedback-

based Linear-Quadratic regulator with Integral action (LQI 

regulator) is appropriately developed in this paper to efficiently 

address this problem. Simulation investigations, involving a 

realistic highway stretch, demonstrate that the proposed simple 

LQI regulator is robust and very efficient. 

I. INTRODUCTION 

Recurrent traffic congestion is an increasingly serious 
problem for most big cities worldwide, causing substantial 
delays, increased fuel consumption, excessive environmental 
pollution and reduced traffic safety. Conventional traffic 
management measures are valuable [1], [2] and, in some 
cases, able to delay or even avoid the onset of congestion. 
However, they are not always sufficient to tackle heavily 
congested traffic conditions. Gradually emerging and future 
ground-breaking vehicle automation and communication 
systems should be exploited to develop innovative solutions 
that can be applied within a smart road infrastructure. During 
the last decade, there has been an enormous effort by the 
industry and by many research institutions to develop and 
deploy a variety of vehicle automation and communication 
systems that are revolutionizing the vehicle capabilities [3]. 

Recently, the TrafficFluid concept was launched [4]. This 
is a novel paradigm for vehicular traffic that is appropriate 
for high penetration rates of vehicles equipped with high 
levels of vehicle automation and communication systems. 
The TrafficFluid concept suggests: (1) lane-free traffic, 
whereby vehicles are not bound to fixed traffic lanes, as in 
conventional traffic; (2) vehicle nudging, whereby vehicles 
may exert a "nudging" effect on, i.e. influence the movement 
of vehicles in front of them. In this context, the internal 
boundary control concept, introduced in [5], exploits the 
lane-free principle of TrafficFluid. In lane-free traffic, the 
road capacity may exhibit incremental (increasing or 
decreasing) changes in response to corresponding 
incremental (widening or narrowing) changes of the road 
width. This is in contrast to lane-based traffic, where capacity 
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changes may only occur if the road width is changed by one 
or more lanes. 

Consider a road with two opposite traffic directions 
serving connected automated vehicles (CAVs). The total 
available cross-road capacity (for both directions) may be 
shared among the two directions in a flexible way, according 
to the prevailing demand per direction. Flexible capacity 
sharing may be achieved by virtually moving the internal 
boundary that separates the two traffic directions and 
communicating this decision to CAVs, so that they respect 
the road boundary. This way, the total capacity share 
assigned per direction can be changed in space and time 
according to an appropriate real-time control strategy, as 
illustrated in Fig. 1, in order to maximize the traffic 
efficiency of the overall system. 

The idea of sharing the total cross-road capacity among 
the two traffic directions is not new as it has been 
occasionally employed for conventional lane-based traffic, 
typically with manual interventions [6]. The measure is 
known as tidal flow (or reversible lanes) control and its main 
principle is to adapt the total available supply to the demand 
per direction. Its most basic form is the steady allocation of 
one or more lanes of one direction to the other direction for a 
period of time so as to address abnormal traffic supply or 
demand. More advanced reversible lane control systems may 
operate in real time, e.g. to balance delays on both sides of a 
known bottleneck (e.g. bridge, tunnel) by assigning a lane to 
one of the two directions in alternation in response to the 
prevailing traffic conditions. In order to deal with this 
problem, optimal control or feedback control algorithms of 
various types were proposed [7], [8]. 

Reversible lanes have also been considered in connection 
with lane-based CAV driving. The system optimal dynamic 
traffic assignment models formulated in [9], [10], using the 
Cell Transmission Model (CTM) [11] are utilized in [12]. 
Lanes are introduced as integer variables, and the problem is 
formulated as a mixed integer linear programming (MILP) 
problem that has, however, high (exponential) complexity 
due to the many integers variables involved. The same model 
is used in [13] for a single link and stochastic demand is 
utilized as a Markov decision process while the MILP 
problem is solved using a heuristic. 

The use of tidal flow control systems in lane-based traffic 
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Fig. 1.  Space-time flexible internal road boundary. 
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is not widespread for a number of reasons, including the 
harsh resolution of infrastructure sharing (only by lane 
quanta) among the two traffic directions; the serious counter-
problems due to frequent merging or diverging traffic at lane-
drop or lane-gain areas; and the safety-induced time-delays 
after each lane switch. These serious difficulties entail very 
limited capacity sharing flexibility in space and time and 
hinder reversible lane control from being a major traffic 
management measure. Even in the future CAV traffic, some 
of the mentioned difficulties would persist in lane-based 
conditions, notably the low capacity sharing resolution and 
the merging nuisance. In contrast, in a lane-free CAV traffic 
environment, the mentioned difficulties are largely mitigated. 
More specifically, the resolution of road-width sharing 
among the two directions can be high; the smooth CAV 
driving on a lane-free road surface allows for the internal 
boundary to be a smooth space-function, as illustrated in Fig. 
1; while assuming moderate changes of the internal boundary 
over time and space, the aforementioned safety-induced time-
delay may be very small. 

Thanks to these characteristics, real-time internal 
boundary control for lane-free CAV traffic may be broadly 
applicable to the high number of arterial or highway 
infrastructures that feature unbalanced demands during the 
day in the two traffic directions, so as to strongly mitigate or 
even utterly avoid congestion. Even for infrastructures 
experiencing strong demand in both directions quasi-
simultaneously, real-time internal boundary control may 
intensify the road utilization and lead to sensible 
improvements. 

The internal boundary control problem is analyzed in [5], 
where its high improvement potential is demonstrated by 
formulating and solving an open-loop optimal control 
problem, in the form of a convex Quadratic Programming 
(QP) problem. That approach may be used within an MPC 
(Model Predictive Control) frame for real-time application, 
but simpler real-time approaches with similar efficiency are 
preferable. This paper develops and investigates the 
application of a Linear-Quadratic regulator with Integral 
action (LQI regulator) for the internal boundary control 
problem. The LQI regulator leads to a simpler real-time 
algorithm and does not require prediction of external 
demands as the QP-based approach. The well-known CTM is 
used, after linearization, for controller design; and, in its full 
nonlinear form, for simulation testing. The performance of 
the LQI regulator is compared to the no-control case. Section 
II presents some background issues and the appropriately 
adjusted CTM equations, while Section III presents the 
design of the LQI regulator. Simulation investigations are 
discussed in Section IV, while conclusions are given in 
Section V. 

II. BACKGROUND 

Lane-free traffic is not expected to give rise to structural 
changes of existing macroscopic traffic flow models. As also 
supported by results in [4], [14]-[16], notions and concepts 
like the conservation equation, the Fundamental Diagram 
(FD), as well as moving traffic waves will continue to 
characterize macroscopic traffic flow modelling in the case of 
lane-free CAV traffic. Additionally, specific physical traffic 
parameters, such as free speed, critical density, flow capacity, 

jam density, are also relevant for lane-free traffic, but may of 
course take different values than in lane-based traffic. 

Let us call the two opposite traffic directions, presented in 
Fig. 1, directions a  and ,b  respectively. We will assume 
that, at specific road sections, each direction is assigned a 
respective road width aw w   and (1 ) ,bw w    where 
0 1   is the sharing factor, to be specified in real time as 
a control input by the internal boundary controller, and w  is 
the total road width (both directions). 

Let ( ),Q   where   is the traffic density in veh/km, be 
the FD of a road section, which would apply if the whole 
road width would be assigned to only one of the two opposite 
traffic directions (i.e. for   equal 0 or 1), with total critical 
density ,cr  total capacity 

capq  (in veh/h) and total jam 
density 

max .  Let us now consider the case of partial road 
sharing, i.e. 

min max ,     where 
min max, (0,1)    are 

appropriate bounds aiming to suppress utter closure of either 
direction. The FDs for the two directions are functions of   
given by 
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where a  and b  (in veh/km) are the respective densities of 
the two directions [5].  

For controller design, a dynamic traffic flow model must 
be used. A simple but realistic option is CTM, a first-order 
dynamic traffic flow model with a triangular FD, which 
attains a space-time discretized form by application of the 
Godunov numerical scheme. CTM is presented in this 
section, along with appropriate adjustments introduced to 
incorporate the effect of the sharing factor .   

Consider a highway stretch with two reverse traffic 
directions a  (from left to right) and b  (from right to left). 
The stretch is subdivided into n  sections, with lengths ,iL  

1,2, , .i n  As explained above, the total road width, which 
is assumed constant over all sections for simplicity, can be 
flexibly shared among the two directions in real time. As the 
sharing may be different for every section, we have 
corresponding sharing factors ,i 1,2, , ;i n  and (1) 
applies to each section. As a consequence, the total section 
capacity, as well as the critical density and jam density, are 
shared among traffic directions a  and b  according to 

 

, ,

, ,

,max max ,max max

( ) , ( ) (1 )

( ) , ( ) (1 )

( ) , ( ) (1 )

a b

i cap i i cap i cap i i cap

a b

i cr i i cr i cr i i cr

a b

i i i i i i

q q q q   

       

       

    

    

    

 (2) 

The above derivations rely on the assumption, partially 
verified in [4], that any incremental widening (narrowing) of 
the road width entails a corresponding incremental increase 
(decrease) of capacity. Indeed, the highway may hold 
vehicles of different dimensions and speeds. These vehicles 
spread, in a lane-free road structure, on the road surface 
according to their two-dimensional movement strategies, 
which lead to a variety of lateral vehicle positions, including 
vehicles driving on the road boundary (without ever 
exceeding it). Thus, every incremental widening of the road 
increases the average two-dimensional inter-vehicle spacing 
and offers possibilities for higher speed, and hence higher 
flow and capacity.  



  

The corresponding changes of the triangular FD that may 
occur at each section and traffic direction are illustrated in 
Fig. 2. More specifically, when the value of the sharing factor 
is 0.5, i.e., the flow capacities of the two directions are equal, 
their FDs are "nominal" (blue line with (.)

N 
parameters); 

when the sharing factor is different than 0.5, we have two 
FDs: the extended one (green line with (.)

E
 parameters) 

applies to the direction that is assigned more width and hence 
more flow capacity, and the reduced, complementary FD 
(orange line with (.)

R 
parameters) applies to the other 

direction that is assigned less width and flow capacity. Based 
on (2), all FD parameters of a section change, whenever it is 
decided to change the corresponding sharing factor in real 
time. 

For the internal boundary control problem, we would like 
to disallow the utter closure of either direction; hence, the 
assigned road width in either direction should never be 
smaller than the widest vehicles driving on the road. This 
requirement gives rise to stricter constraints for the sharing 
factors as follows 

 ,min ,max0 1i i i       (3) 

where ,mini w   and ,max(1 )i w   are the minimum 
admissible widths to be assigned to directions a  and ,b  
respectively.  

Another restriction to be applied to the sharing factors 
concerns the time-delay needed to evacuate traffic on the 
direction that receives a restricted width, compared with the 
previous control time-step. This time-delay is small in lane-
free CAV traffic with moderate changes of the sharing 
factors applied to short sections. This time-delay is omitted 
here for simplicity and will be considered in a more 
comprehensive work. 

Traffic flows from section 1 to section n  in direction ;a  
and from section n  to section 1 in direction b  (see Fig. 3 as 
an example). We denote ,a

i  1,2, , ,i n  the traffic density 
of section ,i  direction ;a  and ,b

i  1,2, , ,i n  the traffic 
density of section ,i  direction .b  Similarly, we denote 

,a

iq 1,2, , ,i n  and ,b

iq  1,2, , ,i n  the mainstream exit 
flows of section i  for directions a  and ,b  respectively. 
Thus, 

0

aq  is the feeding upstream mainstream inflow for 
direction ;a  and 1

b

nq   is the feeding upstream mainstream 
inflow for direction .b  Every section may have an on-ramp 
or an off-ramp at its upstream boundary. The on-ramp flows 
(if any) at section i  are denoted a

ir  for direction ,a  and b

ir  
for direction .b  The off-ramp flow (if any) of section ,i  
direction ,a  is calculated based on known exit rates a

i  

multiplied with the upstream-section flow, i.e. 
1;

a a

i iq 
 and 

the off-ramp flow (if any) of section ,i  direction ,b  is 
calculated based on known exit rates b

i  multiplied with the 
upstream-section flow, i.e. 

1.
b b

i iq 
 

The conservation equation for the section i  of direction 

a  is: 

 1( 1) ( ) ((1 ) ( ) ( ) ( ))a a a a a a

i i i i i i

i

T
k k q k q k r k

L
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where T  is the model time-step, typically set equal to 5 – 10 
s for section lengths of some 500 m in length, and 0,1,k   
is the corresponding discrete time index of the model. 

According to CTM, traffic flow is obtained as the 
minimum of demand and supply functions, except for the last 
section, where only the demand function is considered, 
assuming that the downstream traffic conditions are 
uncongested. Clearly, when writing the demand and supply 
functions 

DQ  and ,SQ  respectively, for the case of the 
internal boundary control problem, we need to consider the 
impact of the respective sharing factors ( )i k  on the FDs. 
Thus we have 
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The demand and supply functions are given by the 
following respective equations 
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where fv  is the free speed (which is assumed equal for all 
sections for simplicity) and 

sw  is the back-wave speed.  
The equations for section i  of direction b  are analogous 

to those of direction ,a  with few necessary index 
modifications. Section numbers in direction b  are 
descending, hence we have 
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and the flows are given by 
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III. LQI REGULATOR DESIGN 

A. Relative Densities 

In conventional traffic management, traffic densities have 
a central role, as they reflect explicitly the state of traffic. 
However, in the novel internal boundary control setting the 
variables a

i  and b

i  of the traffic densities (in veh/km) in 
the two opposite directions of each section i  are not directly 
indicating the traffic conditions (e.g. under-critical or 
congested) encountered. This is because the critical density 
for each direction is a function of the sharing factor and is 

 
Fig. 2.  The triangular fundamental diagram with flexible internal boundary. 

 



  

changing according to the applied control action. Therefore, 
we proceed with the definition of the relative densities 
(dimensionless) that are defined per section and per direction 
as the ordinary densities. The relative density of section i  
and direction a  or b  is obtained by dividing the 
corresponding traffic density with the corresponding critical 
density, which, on its turn, depends on the sharing factor 
prevailing during the last time-step. Considering (2), we get 
the following relations for section i  
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B. Linearized Model 

In order to derive the LQI regulator, we need to include in 
our problem a discrete-time linearized system. To this end, 
we use as a basis the CTM equations delivered in the 
previous section. Replacing (9) in (4), i.e. in the conservation 
equation for direction ,a  and by dividing with ( 1)i crk   
we get 
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It is now assumed that the values of the control inputs do 
not change significantly in consecutive sample times, i.e. that 

( ) / ( 1) 1.i ik k    Defining also the one-step retarded 
control input as a new state variable according to 

 ( 1) ( ), 1,2, ,i ik k i n     (11) 

we finally get the state equations that replace the 
conservation equations for section i  of direction a  
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Similarly, replacing (9) in (7), i.e. in the conservation 
equation for direction ,b  and making the same assumption 
for the value of the control input in consecutive sample times, 
we get the state equations that replace the conservation 
equations for section i  of direction b  
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According to CTM, traffic flow is obtained as the 
minimum of the demand and supply functions. Starting from 
CTM, we need to come up with an approximate linearized 
system to allow for the derivation of a feedback controller by 
use of the LQ regulator methodology. This is a procedure 
with a long history in traffic management and control, see 
e.g. [17]-[19]. In such works, the nominal linearization state 
(density) is taken to be uncongested and close to the critical 
density. Following this procedure in our case, we assume that 
traffic flow is nominally operating around capacity and is 
determined only by the demand function; which however is 
also obtained as the minimum of two terms according to (6), 
namely as the minimum of the flow capacity and the FD 

flow-density relation. In conventional traffic control, the flow 
capacity is constant; hence a linear or linearized flow-density 
relation is taken from the FD to characterize the linear flow 
dynamics. In contrast, in the internal boundary control case, 
the capacity is directly proportional to the control input 
(sharing factor), as evidenced from (6), hence this term is 
deemed more significant in the linearized approximation of 
the system dynamics.  

In conclusion, to proceed with the linearized 
approximation of system dynamics, flow is given as a 
convex combination of the two terms included in the min-
operator of the demand function, i.e. ( )a

iq k  is set equal to 
( ) (1 ) ( );a

i cap f ik q v k     and ( )b

iq k  is set equal to 
(1 ( )) (1 ) ( ),b

i cap f ik q v k       where 0 1   is the 
convex combination parameter used. Taking into account (9) 
and (11), ( )a

iq k  and ( )b

iq k are finally given by 

 ( ) ( ) (1 ) ( )a a

i i cap f iq k k q v k      (14) 

 ( ) (1 ( )) (1 ) ( )b b

i i cap f iq k k q v k        (15)  

Considering this, the linearization of the system of 
dynamic equations (11)-(13) around a nominal point yields 
the linear state-space model                                

 ( 1) ( ) ( )k k k  Δx AΔx BΔu  (16) 

where ( ) [ ( ) , ( ) , ( ) ]a T b T T Tk k k kΔx Δρ Δρ Δγ  is the state 
vector and ( ) ( )k kΔu Δε  is the control vector, whereby 

1( ) [ ( ), , ( )] ,a a a T

nk k k   Δρ 1( ) [ ( ), , ( )]b b b T

nk k k  Δρ  

1( ) [ ( ), , ( )]T

nk k k   Δγ and
1( ) [ ( ), , ( )] .T

nk k k   Δε
Also, (.)( ) (.)( ) (.) ,Nk k   the superscript N  denotes the 
nominal point and it has been assumed that (.)( ) 0k   for 
all disturbances (upstream mainstream inflow, as well as the 
on-ramp flows of each direction). 3 3n nA  and 

3n nB are the state and input matrices, respectively. 
If the control time-step is defined as a multiple of the 

model time-step, i.e. ,cT MT  where M  is an integer, then 
the discrete control time index is .c c

k kT T     Then, the 
linear state-space equation may be changed as follows, in 
order to be based on the control time-step ,cT  

 ˆ( 1) ( ) ( )M

c c ck k k  Δx A Δx BΔu  (17) 

where 1 2ˆ ( .... ) .M M    B A A I B  

C. Integration States and Quadratic Cost Function 

To enable the inclusion of integral terms in the regulator, 
we consider the state equation (17) augmented by use of the 
integrators 

  ( 1) ( ) , , ( )c c n n n n ck k k   

H

y y I I 0 Δx  (18) 

With this choice of integration state variables, we aim to 
integrate and achieve a steady-state error equal to zero for the 
differences between the relative densities per direction for 
each section. 

The control goal is to minimize the quadratic criterion 
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where 3 3 ,n nQ  ,n nS  
n nR  are symmetric 

positive definite matrices, which will be chosen in Section 4 
to be diagonal for simplicity of tuning. The first term 
penalizes any deviation of the elements of the state variable 



  

Δx  from zero, i.e. any deviation of ( ),a

i k  ( ),b

i k  ( ),i k  
1,2, ,i n  from their desired steady state values. The 

second term penalizes any deviation of the elements of the 
state variable y  from zero, i.e. any deviation of the integral 
of the differences between the relative densities per direction 
for each section from zero. Finally, the third term penalizes 
any deviation of the control input from the nominal values. 

Considering the discrete-time linear system (17), (18) and 
the quadratic criterion (19), the following augmented 
problem matrices are defined 

 
ˆ

, , ,
M     

       
    

Q 0A 0 B
A B Q R R

0 SH I 0
 (20) 

D. Calculation of the LQI Regulator 

Given the above specifications, the optimal controller 
minimizing the criterion is given by 

 
( )

( )
( )

c

c

c

k
k

k

 
   

 

Δx
Δu K

y
 (21) 

where 
3n nK  is the constant gain matrix that can be 

calculated by iterating backwards in time (starting from any 
terminal positive semidefinite condition) the dynamic Riccati 
equation of the finite-horizon case until K  converges to a 
stationary value. 

Decomposing the gain matrix 
1 2[ , ]K K K  and setting 

the nominal value of relative densities equal to 1, then, after 
some algebra, the final form of the Linear-Quadratic 
regulator with Integral action (LQI regulator) for the internal 
boundary control problem is given by 

 
( ) ( 1)

[ ( ) ( 1)] ( ) ( )

c c

a b

P c c I c c

k k

k k k k

  

     

ε ε

K x x K ρ ρ
 (22) 

where 
1 2P  K K K H  and 

2I K K  are the proportional 
and integral gain matrices, respectively, while 

1( ) [ ( ), , ( )] ,T

c c n ck k k ε  ( ) [ ( ) , ( ) , ( ) ] ,a T b T T T

c c c ck k k kx ρ ρ γ  

1( ) [ ( ), , ( )]a a a T

c c n ck k k ρ  
1( ) [ ( ), , ( )]b b b T

c c n ck k k ρ  
and 

1( ) [ ( ), , ( )] .T

c c n ck k k γ   
The values obtained for each one of the control variables 

must be truncated before application in order to satisfy (3). 
These truncated values are used as ( 1)ck ε  in (22) in the 
next time-step to avoid the well-known wind-up effect of 
regulators with integral terms. 

IV. SIMULATION INVESTIGATIONS 

A.  Simulation Set-up 

The performance of the proposed feedback-based 
controller is investigated using the bi-directional highway 
stretch depicted in Fig. 3. The considered highway stretch has 

a length of 3 km and is subdivided in 6 sections of 0.5 km 
each. The modelling time-step, ,T  is set to 10 s and the 
considered time horizon is 1 h. While a linearization of CTM 
was used for controller design, the full nonlinear CTM is 
used to represent the emulated ground truth in this section. 
The model parameters used are 100km/hfv   and 

12km/hsw  ; while the total cross-road capacity to be 
shared among the two directions is 12,000veh/h.capq   The 
exit rates for the two off-ramps are both set equal to 0.1.  

The mainstream and on-ramp demand flows per direction 
are presented in Fig. 4. It may be seen that the two directions 
feature respective peaks in their mainstream demands that are 
slightly overlapping. In addition, the on-ramp demands are 
constant, with the on-ramp demand in direction a  being 
higher than in direction .b  The simulation results of the no-
control case are presented first followed by the results 
obtained when using the LQI regulator. 

B. Regulator Design 

In order to apply the feedback-based LQI regulator (22) 
developed in Section 3, we need to calculate off-line the 
static gain matrix 

1 2[ , ].K K K  The convex combination 
parameter is selected to be 0.95.   A nominal point of 
operation is selected for the calculation of the matrices A  
and B  used in the linear model (16). The nominal values are 

0 7 5000 veh/h,a b

N N
q q   5 3 1000 veh/h,a b

N N
r r   

1a b

i iN N
    and 0.5,i N

   1,2, ,6.i   From (11), we 
can conclude that 0.5,i N

  1,2, ,6.i   The control time-
step, ,cT  is set to 60 s, hence 6.M   Based on (20) and the 
A  and B  matrices, we can calculate the A  and B  matrices 
for the augmented linear system. The weighing matrices used 
in the objective function (19) are selected to be 

2 2 3[ , ; ],n n n n n n  Q I 0 0
2.510 n n



S I  and 310 n n



R I ; but 
good results are obtained for a range (around 1 decade) of 
values around these settings. This allows for the calculation 
of Q  and ,R  and consequently of the gain matrix .K  The 
LQI regulator, employing the obtained gain matrix, is quite 
robust with respect to variations in the values of the selected 
weighing matrices. The corresponding analysis is not 
included here due to space limitations. 

The LQI regulator (22) starts with initial control input 
values set equal to the nominal values, i.e. equal to 0.5 for all 
sections. The upper and lower bounds for the sharing factors, 
used to avoid utter blocking of any of the two directions, are 
equal for all sections 1,2, ,6i   and are given the values 

,min 0.16i   and ,max 0.84.i   
With these settings, the regulator is operated in a closed 

loop mode, receiving in emulated real time all section density 
values per direction from the CTM model equations; and 
responding with the sharing factors calculated according to 
(22). This is repeated every 60s.cT   

C. No-control Case 

Using the demand flows presented in Fig. 4 in the 
nonlinear CTM equations with constant sharing factor at 

0.5i   for all sections due to no internal boundary control, 
we obtain the simulation results of the no-control case with a 
TTS value equal to 209.8 veh∙h. Fig. 5 displays the 
corresponding spatio-temporal evolution of the relative 
density defined in (9). According to the definition, relative 
density values lower than 1 refer to uncongested traffic; 
while values higher than 1 refer to congested traffic; when 

 
Fig. 3.  The considered highway stretch. 

 



  

the relative density equals 1, and the downstream section is 
uncongested, we have capacity flow at the corresponding 
section. 

Fig. 5 shows that heavy congestion is created in section 5 
for direction a  due to the strong ramp inflow, in combination 
with the increased mainstream demand, at around 60.k   
The congestion propagates upstream, reaching up to section 
2, and dissolves at around 200,k   due to the rapid decrease 
of the mainstream demand for this direction. In direction ,b  
we have also a congestion being triggered in section 4 by the 
increasing mainstream demand, in combination with the on-
ramp flow, at around 260.k   Due to lower on-ramp flow, 
the congestion extent is smaller than in direction a  and 
dissolves at around 330.k   

D. Control Case 

Using the LQI regulator for the sharing factors, the 
resulting traffic conditions are under-critical everywhere as 
shown in the spatio-temporal evolution of the relative 
densities depicted in Fig. 6. More detailed information for 
this case is presented in Figs. 7-9. Each figure has two 
columns with the results of two respective sections; for each 
section (column), we provide three diagrams (rows): 
 The first diagram shows the two traffic densities (in 

veh/km), for directions a  and ,b  and the corresponding 
critical densities, which are changing according to the 
sharing factor in the section. 

 The second diagram shows the two traffic flows, for 
directions a  and ,b  and the corresponding capacities, 
which are changing according to the sharing factor in the 
section. In addition, the sum of both flows is also 
displayed (cyan curve). 

 The third diagram shows the value of the control input, 
i.e. the sharing factor applied, as well as the constant 
bounds (black curves), which may lead to possible 
truncation of the control input. 

The displayed results confirm that densities (flows) are 
always lower than the respective critical densities (capacities) 
in all sections and in both directions; hence traffic conditions 
are always and everywhere under-critical. In fact, the total-
flow curve (for both directions) does not reach the total road 
capacity (of 12,000 veh/h) at any time anywhere. In short, 
congestion is utterly avoided and any occurring delays in the 
no-control case do not exist anymore. 

The sharing factor trajectories of the sections reveal that 
this excellent outcome is enabled via a smooth swapping of 
assigned capacity to the two directions, whereby more 

capacity is assigned to direction a  during the first half of the 
time horizon and vice-versa for the second half, in response 
to the traffic (density) changes caused by the changing 
respective demands and their peaks. It is interesting to notice 
that the value of the control input (sharing factor) is never 
saturated. 

The related TTS value is 164.9 veh∙h, indicating an 
improvement of 21.4% over the no-control case. The TTS 
value obtained using the LQI regulator is, in fact, equal to the 
value that is achieved when applying the optimal control 
resulting from the QP problem formulation presented in [5]. 
Thus, despite its simple feedback character, where no 
demand predictions are used, the LQI regulator achieves 
highest efficiency for this scenario. 

V. CONCLUSIONS 

The concept of internal boundary control, introduced in 
[5], has been revisited in this study by use of a different 
control algorithm. The well-known CTM, appropriately 
adjusted to introduce the effect of the sharing factors, has 
been utilized for the development of an LQI regulator for the 
internal boundary control problem.  The total road width and 
capacity are shared in each section in real-time among the 
two directions of the road in response to the prevailing traffic 
conditions. The LQI regulator is easy to design and 
implement (feedback-based) and robust to disturbances (no 
need to predict the arriving demands). Simulation 
investigations demonstrate that the LQI regulator is equally 
efficient as an open-loop optimal control solution (with 
perfect model knowledge and demand prediction) developed 
for the same problem in [5] using a convex QP problem 
formulation. 

Ongoing work considers microscopic simulation studies 
with vehicles moving in a lane-free mode, based on 

 
Fig. 5.  Relative density for the two directions in the no-control case. 

 

 
Fig. 6.  Relative density for the two directions in the control case. 

 
Fig. 4.  Demand flows per direction and on-ramp. 



  

appropriate CAV movement strategies. We also consider 
more realistic large-scale highway infrastructure scenarios. 
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Fig. 7.  Density, flow and control trajectories in the control case (sections 1 

and 2). 

 

 
Fig. 8.  Density, flow and control trajectories in the control case (sections 3 

and 4). 
 

 
Fig. 9.  Density, flow and control trajectories in the control case (sections 5 

and 6). 


