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Abstract: A global maximum power point tracking (GMPPT) process must be applied for detecting
the position of the GMPP operating point in the minimum possible search time in order to maximize
the energy production of a photovoltaic (PV) system when its PV array operates under partial shading
conditions. This paper presents a novel GMPPT method which is based on the application of a
machine-learning algorithm. Compared to the existing GMPPT techniques, the proposed method has
the advantage that it does not require knowledge of the operational characteristics of the PV modules
comprising the PV system, or the PV array structure. Additionally, due to its inherent learning
capability, it is capable of detecting the GMPP in significantly fewer search steps and, therefore,
it is suitable for employment in PV applications, where the shading pattern may change quickly
(e.g., wearable PV systems, building-integrated PV systems etc.). The numerical results presented in
the paper demonstrate that the time required for detecting the global MPP, when unknown partial
shading patterns are applied, is reduced by 80.5%–98.3% by executing the proposed Q-learning-based
GMPPT algorithm, compared to the convergence time required by a GMPPT process based on the
particle swarm optimization (PSO) algorithm.

Keywords: machine learning; maximum power point tracking (MPPT); particle swarm optimization
(PSO); photovoltaic systems; reinforcement learning; Q-learning

1. Introduction

The economic competitiveness of photovoltaic (PV) systems, compared to conventional power
production technologies, has continuously improved during the last years. Therefore, they exhibit
significant potential for deployment in both stand-alone and grid-connected applications, also in
combination with electrical energy storage units [1].

The PV modules comprising the PV array of a PV energy production system may operate under
non-uniform incident solar irradiation conditions due to partial shading caused by dust, nearby
buildings, trees, etc. As shown in Figure 1, under these conditions the power–voltage curve of the
PV array exhibits multiple local maximum power points (MPPs). However, only one of these MPPs
corresponds to the global MPP (GMPP), where the PV array produces the maximum total power [2].
Therefore, the controller of the power converter that is connected at the output of the PV array must
execute an effective global MPP tracking (GMPPT) process in order to continuously operate the PV
array at the GMPP during the continuously changing incident solar irradiation conditions. That
process results in the continuous maximization of the energy production of the installed PV system
and enables the reduction of the corresponding levelized cost of electricity (LCOE) [1].
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technique requires knowledge of both the value of Voc and the number of series-connected PV 
modules (or sub-modules with bypass diodes) within a PV string. A GMPPT controller based on 
machine learning has been proposed in [8], using Bayesian fusion to avoid convergence to local MPPs 
under partial shading conditions. For that purpose, a conditional probability table was trained using 
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Figure 1. An example of the power-voltage characteristic of a photovoltaic (PV) array under partial
shading conditions.

The simplest algorithm for detecting the position of GMPP is to scan the entire power-voltage curve
of the PV source by iteratively modifying the duty cycle of the PV power converter [3], which results
in the continuous modification of the PV source output voltage. Alternatively, the current–voltage
characteristic of the PV array is scanned by iteratively increasing the value of the reference current in
a direct current/direct current (DC/DC) PV power converter with average current-mode control [4].
Compared to the power-voltage scan process, this method has the advantage of faster detection of the
GMPP, since it avoids searching the parts of the current-voltage curve located on the left-hand side
of the local MPPs. In both of these methods, the accuracy and speed of detecting the GMPP under
complex shading patterns depend on the magnitude of the perturbation search-step of the duty cycle or
reference current, respectively. In [5], the current–voltage curve of the PV source is scanned by setting in
the ON and OFF states the power switch of a boost-type DC/DC converter, thus causing the PV source
current to sweep from zero to the short-circuit value. The PV source current and voltage are sampled
at high speed during this process in order to calculate the PV array output voltage where the PV
power production is maximized (i.e., GMPP). The effective implementation of this technique requires
the use of high-bandwidth current and voltage sensors, a high-speed analog-to-digital converter
and a fast digital processing unit [e.g., a field-programmable gate array (FPGA)], thus resulting in
high manufacturing cost of the GMPPT controller. Also, the application of this method requires the
use of an inductor in series with the PV source, thus it cannot be applied in non-boost type power
converter topologies.

The GMPPT algorithms proposed in [6,7] are based on searching for the global MPP close to
integer multiples of 0.8 × Voc, where Voc is the open-circuit voltage of the PV modules. Thus, this
technique requires knowledge of both the value of Voc and the number of series-connected PV modules
(or sub-modules with bypass diodes) within a PV string. A GMPPT controller based on machine
learning has been proposed in [8], using Bayesian fusion to avoid convergence to local MPPs under
partial shading conditions. For that purpose, a conditional probability table was trained using values of
the PV array output voltage at integer multiples of 80% of the PV modules open-circuit voltage under
various shading patterns. In [9], the GMPP search process was based on the value of an intermediate
parameter (termed as “beta”), which is calculated according to the PV modules open-circuit voltage
and the number of PV modules connected in series in the PV string. All of the techniques described
above cannot be applied to PV arrays with unknown operational characteristics. Therefore, they
cannot be incorporated in commercial PV power converter products used in PV applications, where
the operational characteristics of the PV array are determined by the end-user without having been
known during the power converter manufacturing stage.

In [10] a distributed maximum power point tracking (DMPPT) method is proposed, where the
power converters of each PV module communicate with each other in order to detect deviations among
the power levels generated by the individual PV modules of the PV array. That process enables the
identification of the occurrence of partial shading conditions within the submodules that they comprise.
The global MPP is then detected by searching with a conventional maximum power point tracking
(MPPT) method (e.g., incremental-conductance) at particular voltage ranges derived similarly to the
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0.8 × Voc GMPPT technique. Therefore, the implementation of this technique requires knowledge of
the PV source arrangement/configuration and its operational characteristics.

Evolutionary algorithms have also been applied, considering the GMPPT process as an
optimization problem where the global optimum (i.e., GMPP) must be discovered so that the objective
function corresponding to the output power of the PV array is maximized. The advantage of
these types of algorithm is that they are capable of searching for the position of the GMPP on the
power-voltage curve of the PV source with a lower number of search steps compared to the exhaustive
scanning/sweeping process. These algorithms have been inspired by natural and biological processes
and they differ on the operating principle used to produce the alternative operating points of the PV
array, which are investigated during searching for the GMPP position. The particle swarm optimization
(PSO) [11–13], grey wolf optimization (GWO) [14–16], flower pollination algorithm (FPA) [17,18],
Jaya algorithm [19] and differential evolution (DE) algorithm [20] are the most frequently employed
evolutionary algorithms. Genetic algorithms (GAs) inspired by the process of natural evolution are
applied in [21]. However, this type of optimization algorithm exhibits high computational complexity
compared to other evolutionary algorithms, due to the complex operations (i.e., selection, mutation
and crossover) which must be performed during the chromosomes search process.

During operation, the evolutionary algorithms avoid convergence to local MPPs and converge to
an operating point that is located close to the GMPP. Thus, they should be combined with a traditional
MPPT method [e.g., perturbation and observation (P&O), incremental-conductance (INC) etc.], which
is executed after the evolution algorithm execution has been finished, in order to: (i) fine-tune the
PV source operating point to the GMPP and (ii) maintain operation at the GMPP during short-term
changes of solar irradiation or shading-pattern, which do not alter significantly the shape (e.g., relative
position of the local and global MPPs) of the power–voltage curve (e.g., [15]). This enables to avoid
frequent re-executions of the evolutionary algorithm, which would result in power loss due to operation
away from the GMPP during the search process. The execution of the evolutionary algorithm is
either re-initiated periodically (e.g., every few minutes), or after the detection of significant changes
of the PV power production, in order to track any new position of the GMPP. The performance of
many metaheuristic optimization techniques implementing the GMPPT process in partially-shaded PV
systems has been compared in [22].

This paper presents a new GMPPT method, which is based on a machine-learning algorithm.
Compared to the past-proposed GMPPT techniques, the Q-learning-based method proposed in this
paper has the following advantages: (a) it does not require knowledge of the operational characteristics
of the PV modules and the PV array comprised in the PV system; and (b) due to its inherent learning
capability, it is capable of detecting the GMPP in significantly less search steps. Thus, the proposed
GMPPT method is suitable for employment in PV applications, where the shading pattern may change
quickly (e.g., wearable PV systems, building-integrated PV systems, where shading is caused by people
moving in front of the PV array, etc.). The numerical results presented in this paper, validate the
capabilities and advantages of the proposed GMPPT technique.

This paper is organized as follows: the operating principles and structure of the proposed
Q-learning-based GMPPT method are analyzed in Section 2; the numerical results by applying the
proposed method, as well as the PSO evolutionary GMPPT algorithm, for various shading patterns of
a PV array are presented in Section 3; and, finally, the conclusions are discussed in Section 4.

2. The Proposed Q-Learning-Based Method for Photovoltaic (PV) Global Maximum Power Point
Tracking (GMPPT)

A block diagram of the PV system under consideration is illustrated in Figure 2. The PV array
comprises multiple PV modules connected in series and parallel. The GMPPT process is executed
by the GMPPT controller, which produces the duty cycle, D, of the pulse width modulation (PWM)
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control signal of the DC/DC converter using measurements of the PV array output voltage and current.
Each value of D determines the PV array output voltage according to (1):

VPV = (1−D) ·Vo (1)

where Vo (V) is the DC/DC converter output voltage and VPV (V) is the PV array output voltage.
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Figure 2. A block diagram of the PV system under consideration.

The proposed technique considers the PV GMPPT operation as a Markov decision process
(MDP) [23], which constitutes a discrete-time stochastic control process and models the interaction
between an agent implemented in the GMPPT control unit and the PV system (i.e., PV array and
DC/DC power converter). The MDP consists of: (a) the state-space S, (b) the set of all possible actions
A, and (c) the reinforcement reward function, which represents the reward, when applying action a in
state S, which leads to a transition to state S′ [23]. The Markovian property dictates that each state
transition is independent of the history of previous states and actions and depends only on the current
state and action; likewise, each reward is independent of the past states, actions, and rewards and
depends only on the most recent transition. A temporal-difference Q-learning algorithm is applied
for solving the PV GMPPT optimization problem. The Q-learning algorithm’s goal is to derive an
action selection policy, which will maximize the total expected discounted rewards that the system will
receive in the future. A simplified representation of process implemented by the Q-learning algorithm
in order to control a PV system for the implementation of the GMPPT process is presented in Figure 3.
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Figure 3. A simplified representation of the process implemented by the Q-learning algorithm in
order to control a PV system for the implementation of the global maximum power point tracking
(GMPPT) process.

In Q-learning, an agent interacts with the unknown environment (i.e., the PV system) and
gains experience through a specific set of states, actions and rewards encountered during this
interaction [24–27]. Q-learning strives to learn the Q-values of state-actions pairs, which represent the
expected total discounted reward in the long term. Typically, experience for learning is recorded in
terms of samples (St, at, Rt, St+1), meaning that at some time step t, action at was executed in state St
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and a transition to the next state St+1 was observed, while reward Rt was received. The Q-learning
update rule, given a sample (St, at, Rt, St+1) at time step t, is defined as follows:

Q(St, at) = Q(Stat) + alpha ·
[
Rt + γ ·max

at+1

{
Q(St+1, at+1)

}
−Q(St, at)

]
(2)

where Q(St, at) is the Q-value of the current state-action pair that will be updated, Q(St+1, at+1) is the
Q-value of the next state-action pair, alpha is the learning rate, Rt is the immediate reward and γ is the
discount factor.

In each time-step, the agent observes its current state and chooses its action according to its
action-selection policy π∗. After the action selection, it observes its future state St+1. Then, it receives
an immediate reward Rt and selects the future Q-value that offers the maximum value over all possible
actions, i.e., max

at+1
Q(St+1, at+1). The learning rate determines how much the new knowledge acquired

by the agent will affect the existing estimate in the update of Q(St, at).

2.1. Action Selection Policy

Each possible pair of state-action must be evaluated for each state that the agent has visited in
order to ensure that the estimated/learned Q-value function is the optimal one (i.e., corresponds to the
most suitable action policy). In this work, the Boltzmann exploration policy has been used [28]. Each
possible action has a probability of selection by the agent, which is calculated as follows:

p(St, ai) =
e

Q(St ,ai)
τ

|A|∑
1

e
Q(St ,ai)

τ

(3)

where τ is the Boltzmann exploration “temperature”, αi is the i-th possible action, |A| (size of the
action-space) is the total number of alternative actions in each state and Q(St, ai) is the Q-value for the
i-th action in state St.

The temperature function is given by:

τ =

{
τmin + (1− N

Nmax
) · (τmax − τmin) if N ≤ Nmax

τmin if N > Nmax
(4)

where τmin, τmax are the minimum and maximum, respectively, “temperature” values, N is the current
number of visits of the agent in the specific state and Nmax is the maximum number of visits of the agent.

The value of τ is positive and controls the randomness of the action selection. If the value of τ is
high, then all values of the probabilities of each action, which are calculated using (3), are similar. This
results in a random action selection depending on the parameter Nr, which is a random number in the
range (0, 1). Section 2.6 presents the way that Nr affects the action-selection policy. As the number of
visits, N, to a specific state increases, the value of τ reduces. After a certain number of visits, Nmax, the
value of τ becomes equal to its minimum value. This means that the exploration process has been
accomplished in that state and the agent chooses the action with the highest Q-value in that state.

2.2. State-Space

During the execution of the PV GMPPT process, each state depends on the current value of the
duty cycle of the DC/DC power converter (Figure 2), the power generated by the PV array and the
duty cycle during the previous time-step [28]:

St =
{
S
∣∣∣Si, j,k = (Di, PPV j, DOk), i ∈ [1, 2, 3, ...., n], j ∈ [1, 2, 3, ...., m], k ∈ [1, 2, 3, ...., p]

}
(5)
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where n is the number of equally quantized steps of the duty cycle (D) range, m is the number of
equally quantized steps of the PV array output power (PPV) range and k is the number of equally
quantized steps of the duty cycle range for the previous time-step (DO). Selecting high values for
n, m and k will result in a higher accuracy of detecting the MPP, but the learning time and storage
requirements are increased. For each value of D, the state is determined jointly by the current and the
previous quantization steps that the duty cycle value belongs to, as well as by the quantization step
that the PV array output power value belongs to. For example, assume that n = 10, m = 10, k = 5,
pmax = 100W, the duty cycle value at the current time-step is equal to 0.64, the PV array output power
is equal to 53 W and the duty cycle value at the previous time-step equals 0.5. In this case, the agent’s
state is equal to (7, 6, 3), because 53 W belongs to the 6th quantization step of the PV power range,
0.64 belongs to the 7th quantization step of the current duty cycle range and 0.5 belongs to the 3rd
quantization step of the previous-duty-cycle range.

2.3. Action-Space

The action-space of the PV system GMPPT controller is expressed by the following equation:

Dt+1 = Dt + ∆D (6)

where Dt+1 is the duty cycle for the next time-step, Dt is the current duty cycle value and ∆D indicates
the “increment”, “decrement” or “no-change” of the current duty cycle value.

If the agent selects action “no change”, then it will remain in the same state during the next
time-step. The actions “increment” and “decrement” of the current duty cycle value are further
classified as “low”, “medium” and “high”, as analyzed in Section 3, in order to ensure that most of
the duty cycle values are selected. Thus, there is a total of seven actions in the action-space with the
“no change” action being the last one. This is necessary in order to minimize the probability that the
agent will converge to a local MPP. Each action is selected according to the Boltzmann exploration
policy, which was analyzed in Section 2.1. When the exploration process has been finished, the action
with the highest Q-value is selected for that particular state. It is considered that the GMPP of the PV
array is detected when the action “no change” has the highest Q-value. In this case, the Q-values of
all other actions are lower due to the reduction of the PV array output power by the selection of the
corresponding actions compared to the Q-value for action “no change”.

2.4. Reward

The criterion for the selection of the most suitable action is the immediate reward, Rt, which
evaluates the action selection according to:

Rt =


Positive Reward if PPV(t + 1) − PPV(t) > +d

0 if − d ≤ PPV(t + 1) − PPV(t) ≤ +d
Negative Reward if PPV(t + 1) − PPV(t) < −d

(7)

where PPV(t)(W) is the PV array output power at time step t and d is the desired power difference
considered necessary in order for the agent to realize that a significant power change has occurred. In
case the difference PPV(t + 1) − PPV(t) is higher than +d, then a small positive reward will be given
for that specific pair of state-action, in order to “encourage” the agent to continue this map-selection
strategy during the next time-step that it will visit the current state. If PPV(t + 1) − PPV(t) is within
[−d,+d] it is considered that there is no change in the generated power, and the reward will be equal
to zero. Lastly, if PPV(t + 1) − PPV(t) is lower than −d, then a small negative reward will be given to
the agent such that in the next time-step that the agent will visit the current state again, the action
that caused the power reduction will have a small probability of re-selection according to (3). This
will result in the selection of actions which promote the increment of the PV array power production
during the GMPP exploration process.
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2.5. Discount Factor and Learning Rate

The discount factor is a value which is used to balance immediate and future rewards. The agent
is trying to maximize the total future rewards, instead of the immediate reward. It is used to adjust the
weight of the reward of the current optimal value and indicate the significance of future rewards [24].
The discount factor is necessary in order to help the agent find optimal sequences of future actions that
lead to high rewards soon and not only the current optimal action.

A visit frequency criterion is applied for ensuring that the proposed Q-learning-based GMPPT
process will converge to the GMPP. The agent is encouraged to consider that knowledge acquired from
states with a small number of visits is more important than knowledge acquired from states with a
higher number of visits. Thus, states that have been visited fewer times will have a higher learning
rate than states that have been explored more times. This is accomplished by calculating the value of
the learning rate alpha in (2) as follows:

alpha =
k1

k2 + k3 ·N
(8)

where k1, k2 and k3 are factors which determine the initial learning rate value for a state with no visits
and N is the number of times that the agent visited the specific state. The rationale behind the variable
value of alpha is that its value decreases as the number of visits increases to enable convergence in the
limit of many visits.

2.6. The Overall Q-Learning-Based GMPPT Algorithm

A flowchart of the overall Q-learning-based PV GMPPT algorithm, which is proposed in this
paper, is presented in Figure 4. The PV GMPPT process is performed as follows:

Step 1: Q-table initialization. As analyzed in Section 2.2, a Q-table is created using four dimensions
according to (5); three dimensions for the state and one for the action. This table is initially filled with
zeros, because there is no prior knowledge. Also, a table that contains the number of visits of each
state is defined. The size of this table is equal to the number of states. Lastly, an initial value is given to
the duty cycle.
Step 2: After the PV array output voltage and current signals reach the steady-state, the PV
array-generated power is calculated. According to the value of the duty cycle in the current time-step,
its value during the previous time-step and the PV array-generated power, the state is determined
using (5).
Step 3: The learning rate is calculated by (8).
Step 4: The temperature τ is calculated by (4) and the probability of every possible action for the
current state is also calculated by (3).
Step 5: If the number of visits to the current state is higher than or equal to the predefined value
of Nmax and the Q-value for the action corresponding to “no-change” of the duty cycle value is the
maximum compared to the other actions, then it is concluded that convergence to an operating point
close to the GMPP has been achieved and operation at the local MPPs has been avoided. Then, the
proposed GMPPT process executes the P&O MPPT algorithm in order to help the agent fine-tune its
operation at the GMPP.
Step 6: If the number of visits of the current state is lower than Nmax or if the Q-value for the action
corresponding to “no-change” of the duty cycle value is not the maximum, a number in the range (0, 1)
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is randomly selected and compared to the probabilities of every possible action for the specific state
(step 4). Each probability encodes a specific duty cycle change, as follows:

If 0 < Nr ≤ p1: Action 1
Else if p1 < Nr ≤ p1 + p2: Action 2

Else if p1 + p2 < Nr ≤
3∑

k=1
pk: Action 3

Else if
3∑

k=1
pk < Nr ≤

4∑
k=1

pk: Action 4

Else if
4∑

k=1
pk < Nr ≤

5∑
k=1

pk: Action 5

Else if
5∑

k=1
pk < Nr ≤

6∑
k=1

pk: Action 6

Else : Action 7

(9)

where pk (k = 1, 2, . . . 6) is the probability of each possible action for the current state that is calculated
by using (3), while r is a random number in the range (0, 1).
Step 7: After the change of the action, a new duty cycle value is applied to the control signal of the
DC/DC power converter and the algorithm waits until the PV array output voltage and the current
signals reach the steady state. Then, the proposed GMPPT algorithm calculates the difference between
the power produced by the PV array at the previous and the current time-steps, respectively, and
assigns the reward according to (7).
Step 8: The future state is determined and the Q-function is updated according to (2).
Step 9: Return to step 2.
Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 19 

 
Figure 4. A flowchart of the proposed Q-learning-based PV GMPPT algorithm. 

Step 6: If the number of visits of the current state is lower than 
maxN , or if the Q-value for the action 

corresponding to “no-change” of the duty cycle value is not the maximum, a number in the range (0, 
1) is randomly selected and compared to the probabilities of every possible action for the specific 
state (step 4). Each probability encodes a specific duty cycle change, as follows: 

1

1 1 2
3

1 2
1

3 4

1 1
4 5

1 1
5 6

1 1

If 0 : Action 1
Else if : Action 2

Else if : Action 3

Else if : Action 4

Else if : Action 5

Else if : Action 6

Else: Act

r

r

r k
k

k r k
k k

k r k
k k

k r k
k k

N p
p N p p

p p N p

p N p

p N p

p N p

=

= =

= =

= =

< ≤
< ≤ +

+ < ≤

< ≤

< ≤

< ≤



 

 

 
ion 7   

 
(9) 

where 
kp  (k = 1, 2, …6) is the probability of each possible action for the current state that is calculated 

by using (3), while 
rΝ  is a random number in the range (0,  1) . 

Step 7: After the change of the action, a new duty cycle value is applied to the control signal of the 
DC/DC power converter and the algorithm waits until the PV array output voltage and the current 
signals reach the steady state. Then, the proposed GMPPT algorithm calculates the difference 
between the power produced by the PV array at the previous and the current time-steps, respectively, 
and assigns the reward according to (7). 
Step 8: The future state is determined and the Q-function is updated according to (2). 
Step 9: Return to step 2. 
  

START

Measure IPV, VPV

Q-learning initialization

Learning rate update 
according to (8) and 

number of visits (N) of 
specific state update

State determination 
using (5)

 N < Nmax

Set τ to tmin 
according to (4)

No Yes

Calculate τ  
according to (4)

Calculate 
probabilities 

according to (3)

N ≥ Nmax

and
max(Q(state,:))=Q(state,7)

Action selection 
according to (9)

Wait until IPV, 
VPV reach 

steady-state

Calculate reward 
according to (7)

Future state 
determination 

using (5)

Q-function 
update

Execute the P&O 
MPPT algorithm

END

YesNo

Figure 4. A flowchart of the proposed Q-learning-based PV GMPPT algorithm.
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3. Numerical Results

In order to evaluate the performance of the proposed Q-learning-based PV GMPPT method, a
model of the PV system has been developed in the MATLABTM/Simulink software platform (Figure 5).
The PV system under study consists of the following components: (a) a PV array connected according
to the series-parallel topology, (b) a DC/DC boost-type power converter [29], (c) a GMPPT control unit
which produces the duty cycle of the power converter PWM control signal, and (d) a battery that is
connected to the power converter output terminals.
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Figure 5. The model of the PV system under study in MATLABTM/Simulink.

Table 1 presents the operational characteristics of the PV modules comprising the PV array. Table 2
displays the values of the operational parameters of the proposed Q-learning-based GMPPT method,
while Table 3 presents the action-space that was used for the Q-learning-based method. For each
state, the action of ∆D “increment” or “decrement” with the highest Q-value is performed, in order to
ensure the detection of the GMPP with the minimum number of time-steps. There are three categories
of duty cycle change (i.e., “low”, “medium” and “high”), which may be selected depending on how
close the agent is to the GMPP. The action of “no change” of ∆D is used such that the agent is able
to realize that the position of GMPP has now been detected. The operation of the PV system with
the proposed Q-learning-based GMPPT method was simulated for 9 different shading patterns of the
PV array. Regarding the state-space, the duty cycle was quantized in 18 equal steps, the PV array
output power was quantized in 30 equal steps and the duty cycle value of the previous time-step
was quantized in 9 equal steps. For comparison with the proposed method, the PSO-based GMPPT
method [30] was also implemented and simulated as analyzed next. Table 4 displays the values of the
operational parameters of the PSO-based GMPPT method. The values of the operational parameters
of the proposed and PSO-based GMPPT algorithms (i.e., Tables 2–4) were selected, such that they
converge as close as possible to the global MPP and with the minimum number of search steps for the
partial shading patterns under consideration, which are presented in the following section.

Table 1. Operational characteristics of each PV module.

Maximum Power (W) 11.6
Open-circuit voltage, Voc (V) 7.25

Voltage at maximum power point VMP (V) 5.75
Temperature coefficient of Voc (%/deg · ◦C) −0.322

Cells per module (Ncell) 24
Short-circuit current Isc (A) 2.204

Current at maximum power point Imp (A) 2.016
Temperature coefficient of Isc (%/deg · ◦C) 0.071996
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Table 2. Operational parameters of the proposed Q-learning-based GMPPT method.

Initial duty cycle 0.71 Minimum duty cycle 0.19
τmin, τmax 0.08, 0.8 Maximum duty cycle 0.83

d 1 k1, k2, k3 10, 25, 0.6
Discount factor 0.9 Nmax 20

Table 3. Action-space of the proposed Q-learning-based GMPPT method.

Low Change of Duty
Cycle

Medium Change of
Duty Cycle

High Change of Duty
Cycle

Increment of ∆D +0.04 +0.12 +0.28
Decrement of ∆D -0.04 -0.12 -0.28
No change of ∆D 0 0 0

Table 4. Operational parameters of the particle swarm optimization (PSO)-based GMPPT method.

Number of particles 8 Inertia weight w 0.6
Maximum duty cycle 0.83 Cognitive coefficient c1 1.6
Minimum duty cycle 0.19 Social coefficient c2 1.5

3.1. Shading Patterns Analysis

In order to evaluate the performance of the proposed Q-learning-based GMPPT method,
the shading patterns 1–3 were used during the learning process and then the acquired knowledge
was exploited during the execution of the GMPPT process for the rest of the shading patterns. The
distribution of incident solar irradiation (in W/m2) over each PV module of the PV array for each
shading pattern is presented in Figure 6, while the resulting output power-voltage curves of the PV
array are presented in Figure 7. Each number (i.e., SP1, SP2 etc.) in Figure 7 indicates the order
of application of each shading pattern during the test process. These shading patterns, as well as
their sequence of application, were formed such that the power-voltage characteristic of the PV array
exhibits multiple local MPPs at varying power levels (depending on the shading pattern). This
approach enabled the learning capability of the agent employed in the proposed Q-learning-based
GMPPT technique and its effectiveness in reducing the time required for convergence to the GMPP to
be investigated.
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3.2. Tracking Performance of the Proposed Q-Learning-Based GMPPT Method

Figure 8 presents the variations of the duty cycle and PV array output power during the execution
of the proposed Q-learning-based GMPPT process for shading pattern 1. It is observed that, in this
case, the Q-learning-based GMPPT algorithm needed a relatively long period of time in order to
converge close to the GMPP. This is due to the fact that initially the agent has no prior knowledge of
where the GMPP may be located at. Thus, it has to visit many states, until it converges to the duty
cycle value, which corresponds to an operating point close to the GMPP. When the oscillations start
(i.e., time = 29 s), the exploration by the agent of the Q-learning-based GMPPT algorithm stops and
the P&O MPPT algorithm starts its execution.
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Figures 9 and 10, respectively, illustrate the duty cycle and PV array output power versus time
during the execution of the proposed Q-learning-based GMPPT process for shading patterns 2 and 3.
The knowledge gained by the agent during the execution of the GMPPT process for shading pattern 1
did not affect the speed of the GMPP location-detection process for shading pattern 2, since the agent
needs to be trained in more shading patterns. Similarly, the knowledge gained during the GMPPT
process for shading patterns 1 and 2 did not affect the GMPPT process for locating the GMPP for
shading pattern 3. The variations of duty cycle and PV array output power versus time for shading
pattern 4, which corresponds to an intermediate power-voltage curve with respect to those of shading
patterns 1–3 (Figure 7), are displayed in Figure 11. Since the GMPPT process for shading patterns 1–3
had been executed previously, the agent was now able to detect the GMPP in a shorter period of time
by exploiting the knowledge acquired before. As shown in Figure 12, when shading pattern 5 was
applied, which was unknown till that time, the time required for detecting the position of the GMPP
was further reduced.
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Figures 13 and 14 present the results of the simulations for shading patterns 6 and 7. After this
point, the agent of the Q-learning-based GMPPT process is able to detect the GMPP in unknown
intermediate power–voltage curve conditions with respect to those of shading patterns 1 and 2
(Figures 8 and 9) in much less time compared to the previous shading patterns. This happens because
the agent had previously acquired enough knowledge from the learning process performed during the
GMPPT execution for shading patterns 1–5.
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Finally, the simulation results for the unknown shading patterns 8 and 9 in Figures 15 and 16,
respectively, demonstrate that the agent is capable to detect the GMPP in significantly less time. It is
therefore concluded that the inherent learning process integrated in the proposed Q-learning algorithm
enhances significantly the convergence speed of the proposed GMPPT method.
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3.3. Tracking Performance of the Particle Swarm Optimization (PSO)-Based GMPPT Method

The PSO GMPPT process was also applied for shading patterns 1–9. As an indicative example,
Figures 17 and 18 illustrate the duty cycle and PV array output power variations during the execution
of the PSO-based GMPPT algorithm for shading patterns 1 and 9, respectively. It can be observed that
the variability of the duty cycle and the PV array output power are not affected significantly by the
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shape of the shading pattern applied. In contrast, as illustrated in Figures 8–16, the learning capability
of the agent incorporated in the proposed Q-learning-based GMPPT approach enabled the progressive
reduction of the duty cycle and the PV array output power variability, when shading patterns 1–9 were
applied. The PSO-based GMPPT method required a constant period of time (approximately 11.5 s)
in order to detect the location of the GMPP. A similar behavior of the PSO-based algorithm was also
observed for shading patterns 2–8.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 19 
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3.4. Comparison of the Q-Learning-Based and PSO-Based GMPPT Methods

The time required for convergence, the number of search steps performed during the GMPPT
process until the P&O process starts its execution and the MPPT efficiency were calculated for each
shading pattern for both the Q-learning-based and PSO-based GMPPT algorithms. The execution of
the P&O MPPT process was not included in this analysis. The corresponding results are presented in
Tables 5 and 6, respectively. The MPPT efficiency is defined as follows:

n =
PPV

PGMPP
(10)

where PPV(W) is the PV array output power after convergence of the Q-learning-based, or the
PSO-based GMPPT method, respectively and PGMPP(W) is the GMPP power of the PV array for the
solar irradiance conditions (i.e., shading pattern) under study.
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Table 5. The simulation results of the proposed Q-learning-based GMPPT method for various
shading patterns.

Convergence
Time (s)

Number of
Search Steps PGMPP (W) PPV (W) MPPT

Efficiency (%)

Shading pattern 1 29 464 83.2 82.0 98.6
Shading pattern 2 32 512 67.0 66.2 98.8
Shading pattern 3 28 448 75.2 73.0 97.1
Shading pattern 4 17 272 71.1 70.9 99.7
Shading pattern 5 2 32 79.1 78.7 99.5
Shading pattern 6 1.5 24 80.7 80.3 99.5
Shading pattern 7 2.2 35 69.5 68.5 98.6
Shading pattern 8 0.73 12 75.9 75.4 99.3
Shading pattern 9 0.25 4 76.9 76.6 99.6

Table 6. The simulation results of the PSO-based GMPPT method for various shading patterns.

Convergence
Time (s)

Number of
Search Steps PGMPP (W) PPV (W) MPPT

Efficiency (%)

Shading pattern 1 11.6 185 83.2 83.1 99.9
Shading pattern 2 11.5 184 67.0 66.9 99.9
Shading pattern 3 11.6 185 75.2 75.1 99.9
Shading pattern 4 11.5 185 71.1 71.0 99.9
Shading pattern 5 11.5 186 79.1 79.0 99.9
Shading pattern 6 11.5 185 80.7 80.4 99.6
Shading pattern 7 11.3 184 69.5 69.2 99.6
Shading pattern 8 11.4 185 75.9 75.8 99.9
Shading pattern 9 11.6 187 76.9 76.8 99.9

The results presented in Table 5 indicate that the knowledge acquired initially by the Q-learning
agent during the learning process performed when executing the proposed GMPPT algorithm for
shading pattern 1 does not affect the number of search steps required when applying shading patterns
2 and 3, respectively. After the learning process of shading patterns 1–3 has been accomplished, the
agent needs less time in order to detect the GMPP location for shading pattern 4, which was unknown
till that time, with an MPPT efficiency of 99.7%. At that stage, the agent knows how to react when the
unknown shading patterns 5–7 are applied, which further reduces significantly the number of search
steps required to converge close to the GMPP. Finally, after the execution of the proposed GMPPT
algorithm for shading patterns 1–7, the agent needed only 12 and 4 search steps, respectively, when
shading patterns 8 and 9 were applied, which were also unknown till that time, and simultaneously
achieved an MPPT efficiency of 99.3%–99.6%. Therefore, it is clear that the training of the agent was
successful and the subsequent application of the P&O MPPT process is necessary only for compensation
of the short-term changes of the GMPP position without re-execution of the entire Q-learning-based
GMPPT process.

As demonstrated in Table 6, the PSO-based GMPPT algorithm needs 11.3–11.6 sec in order to
detect the position of the GMPP for each shading pattern, with an MPPT efficiency of 99.6%–99.9%.
This is due to the fact that each time that the shading pattern changes, the positions of the particles
comprising the swarm are re-initialized and any prior knowledge that was acquired about the location
of the GMPP is lost. In contrast, due to its learning capability, the proposed Q-learning-based GMPPT
algorithm reduced the convergence time when shading patterns 5–9 were applied by 80.5%–98.3%,
compared to the convergence time required by the PSO-based GMPPT process to detect the GMPP
with a similar MPPT efficiency.

The MPPT efficiency achieved by the proposed Q-learning-based GMPPT algorithm was lower than
that of the PSO-based algorithm by 1.3% when shading pattern 1 was applied, since the learning process
was still in evolution. However, the application of a few additional shading patterns (i.e., shading
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patterns 2–7) offered additional knowledge to the Q-learning agent. Therefore, the resulting MPPT
efficiency had already been improved during application of shading patterns 8 and 9 and reached a
value similar to that obtained by the PSO-based algorithm, but with significantly less search steps, as
analyzed above.

Figure 19a presents an example of the trajectory followed during the PV array output power
maximization process, when the proposed Q-learning-based GMPPT method is applied for shading
pattern 9. Figure 19b illustrates the initial positions of the particles comprising the PSO swarm
(red dots), the positions of the particles during all intermediate swarm generations (black dots), as well
as their final positions (blue dots) for the same shading pattern. It is observed that the PSO algorithm
must visit a large number of alternative operating points of the PV array in order to be able to detect
the position of the GMPP with an MPPT efficiency similar to that of the proposed Q-learning-based
GMPPT algorithm (Tables 5 and 6). In contrast, the proposed Q-learning-based GMPPT technique
significantly reduces the number of search steps (i.e., only four steps are required), even if an unknown
partial shading pattern is applied, since prior knowledge acquired during its previous executions is
retained and exploited in the future executions of the proposed GMPPT algorithm.
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4. Conclusions

The PV modules synthesizing the PV array of a PV energy production system may operate under
fast-changing partial shading conditions (e.g., in wearable PV systems, building-integrated PV systems,
etc.). In order to maximize the energy production of the PV system under such operating conditions, a
global maximum power point tracking (GMPPT) process must be applied to detect the position of the
global maximum power point (MPP) in the minimum possible search time.

This paper presented a novel GMPPT method which is based on the application of a
machine-learning algorithm. Compared to the existing GMPPT techniques, the proposed method has
the advantage that it does not require knowledge of either the operational characteristics of the PV
modules comprising the PV system or the PV array structure. Also, due to its learning capability, it is
capable of detecting the GMPP in significantly fewer search steps, even when unknown partial shading
patterns are applied to the PV array. This feature is due to the inherent capability of the proposed
GMPPT algorithm to retain the prior knowledge acquired about the behavior and attributes of its
environment (i.e., the partially-shaded PV array of the PV system) during its previous executions and
exploit this knowledge during its future executions in order to detect the position of the GMPP in
less time.

The numerical results presented in the paper demonstrated that by applying the proposed
Q-learning-based GMPPT algorithm, the time required for detecting the global MPP when unknown
partial shading patterns are applied is reduced by 80.5%–98.3% compared to the convergence time
required by a GMPPT process based on the PSO algorithm, while, simultaneously achieving a similar
GMPP detection accuracy (i.e., MPPT efficiency).
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Future work includes the experimental evaluation of the proposed GMPPT method in order to
assess its effect on the long-term energy production performance of PV systems, subject to rapidly
changing incident solar irradiation conditions.
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