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Abstract

After the introduction of the Multiple Input Multiple Output and mmWave
technologies to the communication world, great research interest has been
recently attracted to find new ways of meeting the need for higher data
rates that are both energy efficient and have low hardware cost. Reconfig-
urable Intelligent Surface (RIS) is a hardware technology composed of pas-
sive, software controlled metamaterials with reconfigurable scattering prop-
erties, meaning that the right adjustments can lead to constructive addition
of EM waves at the receiver’s end. Due to the passive nature of the elements
there can be no signal processing of the incoming signals between the trans-
mitter and the receiver, leading to challenging channel estimation. This work
first studies prior art in the literature regarding channel estimation for MIMO
systems using the zero-mean error Linear Minimum Mean Square Estimator
(LMMSE), where the estimator is an affine transformation of the received
signal. It offers in-depth derivation of both the estimator and the MSE for-
mulas, which can be applied to any MIMO system including the RIS case
for Rician fading, proven first theoretically and then followed by simulation
results. We then use the estimation of all the channel coefficients as input-
data to a novel algorithm which computes the optimal element-configuration
in O(M log(M)) time, where M is the number of RIS elements. Simulations
indicate that after the algorithm’s application, the average power improve-
ment reaches 12 dB gain for M = 6162, while the impact of error for the
same value of M may lead to a gain loss in the order of 3 dB.



Chapter 1

Introduction

Wireless communications have become essential to our everyday lives. The
overgrowing need for bigger data transfer and the ubiquitous accessibility to
the Internet, call for higher and robust data transmission rates. Despite the
remarkable efforts in upgrading both the hardware and the software domain
of wireless networks by introducing various cutting-edge technologies such as
Mulitple Input Mulitple Output (MIMO) and mmWave communications in
the current 5-th Generation (5G), the problems of hardware cost and energy
consumption still remain unresolved.

An overlooked resource throughout the literature that can be exploited to
overcome these issues is the environment between the transceiver link, which
plays a passive role to data transmission. Reconfigurable Intelligent Surface
(RIS) is a novel hardware technology that comes to fill this gap by real-time,
software-defined control of the wireless environment to improve communica-
tion performance. RIS is generally composed of engineered materials which
have scattering properties and can be reconfigured. In this work we simulate
a RIS assisted wireless network by using a total of M passive, ultra low-cost,
wireless and batteryless Radio Frequency Identification (RFID) tags as ele-
ments with K possible states, with each state corresponding to a different
phase-shift and if properly adjusted, they can lead to a constructive signal
at the receiver.

The lack of active components on a RIS makes it less energy consuming
than a traditional Amplify-and-Forward (AF) relay transceiver while keeping
the hardware cost to a minimum. However, the question that naturally arises
is, will this translate to a lower gain at the receiver’s end? If the gains turn
out to be comparable, what are the prerequisites for a sufficient Channel
State Information (CSI) considering a large number of elements? Is there an
algorithm we can use to find the optimal element-state configuration which
maximizes the received signal’s strength before the environment changes and
how will a non-ideal CSI impact the performance of the algorithm?

Previous research on RIS assumes mainly perfect CSI. To tackle the prob-
lem of fast channel estimation we propose the Linear Minimum Mean Square
Error (LMMSE) estimator with zero-mean channel estimation error, which
is an affine function of the received signal’s measurements. We show by
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simulations that for static environments the estimator responds well assum-
ing Rice fading with a strong Line of Sights (LoS) deterministic component.
We then use the estimated channel coefficients as the input of a novel algo-
rithm, which can compute the optimal RIS configuration with O(M log(M))
complexity instead of an exponential O(KM) that the exhaustive approach
requires. Finally, simulations indicate that an insufficient channel estimation
may lead to non-negligible gain loss reaching up to 3dB.

Notation: 0N denotes the all-zeros vector. The phase of complex number
z is denoted as z, while ℜ{z} denotes the real part of z. The distribution
of a proper complex Gaussian N × 1 vector x with mean µ and covariance
matrix Σ is denoted by CN (µ,Σ) ≜ 1

πN det(Σ)
e−(x−µ)HΣ−1(x−µ); the special

case of a circularly symmetric complex Gaussian N × 1 vector corresponds
by definition to CN (0N ,Σ); expectation of function g(·) of random variable
x is denoted by E[g(x)]. Finally, the traces of a matrix is denoted by tr(·)
while the Kronecker Product between two matrices is denoted by the symbol
⊗.



Chapter 2

Prior Art

2.1 Work in [1]
2.1.1 LMMSE estimator
We begin by defining the system model as:

X =

√
ρ

M
S H + V (2.1)

where X ∈ CT×N is the received symbols matrix, S ∈ CT×M is the transmit-
ted symbols matrix, H ∈ CM×N is the channel matrix and V ∈ CT×N is the
thermal noise matrix. Dimensions M and N refer to the number of trans-
mit and receive antennas respectively, while T is the channel coherence time
interval, counted in symbol periods, within which the channel coefficients
remain invariant.

Given that we can only transmit T symbols in total before the channel
coefficients’ values change, we choose a fraction of them, say Tτ , to be pilot
symbols in order to find the estimation of matrix H, while the rest of them
are devoted to data transmission.
We henceforth define the pilot system model as:

Xτ = c Sτ H + Vτ (2.2)

where c =
√

ρτ
M

is a known constant, Xτ ∈ CTτ×N is the received pilot symbol-
signal, Sτ ∈ CTτ×M is the transmitted pilot symbol-signal and Vτ ∈ CTτ×N .
The dimension Tτ now stands for the pilot-symbols time interval.

We can simplify the process of estimating H, without loss of generality, by
assuming that Hij, Vkl i.i.d. ∼ CN (0, 1) for any i ∈ {1, ...,M}, j ∈ {1, ..., N},
k ∈ {1, ..., Tτ}, l ∈ {1, ..., N}, while also assuming that tr

(
SτS

H
τ

)
= MTτ for

normalization purposes.
A few fundamental questions naturally arise. How many of the available

symbols should be devoted to training and how many to data? On the one
hand, increasing the pilot symbols leads to a more accurate estimation of the
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coefficients, while on the other hand it leaves less room for communication.
In which way does the choice of Sτ affect the derivation of the MMSE? The
rest of the section is devoted to answering the latter in a supplementary way
to [1].

We wish to find Ĥ such that E[∥H − Ĥ∥2F ] is minimized, when Ĥ is a
linear (affine) function of the measurements, i.e. Ĥ = AXτ + B, where A ∈
CM×Tτ , B ∈ CM×N . Subsequently, finding the right A and B is equivalent
to estimating Ĥ, since Xτ is known to the receiver.

For the purpose of simplifying the calculations that follow, we start by
estimating an arbitrary column of H, say H:,i = h, i ∈ {1, ..., N}. By
modifying accordingly the rest of the quantities in (2), we get the following
system model:

x = c Sτ h+ v (2.3)

where x ∈ CTτ×1, h ∈ CM×1, v ∈ CTτ×1.

Hence, we now try to find ĥLMMSE = argmin
ĥ=Ax+b

{E[∥h− ĥ∥2]}. A and b can be

computed in closed form as (detailed proof can be found in the Appendix):

A = Chx C
−1
x (2.4)

b = µh − Aµx (2.5)

where Chx = E[(h− µh)(x− µx)
H] is the cross-covariance matrix between h

and x and Cx = E[(x− µx)(x− µx)
H] is the covariance matrix of x.

Due to the fact that the entries of H and V are independent (and as a
consequence uncorrelated), we obtain:

Chv = CT
vh = 0M×Tτ (2.6)

while for the mean of x, we derive:

µx = E[x] = c SτE[h] + E[v] = c Sτ µh + µv = 0Tτ×1 (2.7)

Having the relations (2.6) and (2.7) in mind, Cx and Chx can be expressed
as follows:
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Cx = E[(x− µx) (x− µx)
H]

= E[xxH]

= E[(c Sτ h+ v)
(
chH SH

τ + vH)]
= E[c2 Sτ hhHSH

τ + c Sτ hvH + cvhHSH
τ + v vH ]

= c2 Sτ E[hhH]SH
τ + c Sτ E[hvH] + cE[vhH]Sτ + Cv

= c2 Sτ Ch S
H
τ + c Sτ Chv + cCvh Sτ + Cv

= c2 Sτ IM SH
τ + 0Tτ×Tτ + 0Tτ×Tτ + ITτ

=
ρτ
M

Sτ S
H
τ + ITτ (2.8)

Chx = E[(h− µh) (x− µx)
H]

= E[hxH]

= E[h
(
chHSH

τ + vH)]
= E[chhHSH

τ + hvH]

= cCh S
H
τ + Chv

= c IM SH
τ + 0M×Tτ

=

√
ρτ
M

SH
τ (2.9)

Substituting (2.8) and (2.9) to A and b yields:

A = Chx C
−1
x =

√
ρτ
M

SH
τ

( ρτ
M

Sτ S
H
τ + ITτ

)−1

(2.10)

Matrix ρτ MSτ S
H
τ is Positive Semi Definite (PSD) since xHSτS

H
τ x =∥SH

τ x∥2≥
0 for any x ∈ CTτ . Adding ITτ to the PSD matrix, the sum is Positive Definite
(PD), which means that the final matrix is also non singular, i.e. invertible.

Due to (2.7) we obtain:

b = µh − Aµx = 0Tτ×1 (2.11)
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Hence the LMMSE estimate of h can now be computed:

ĥ = Ax+ b

=

√
ρτ
M

SH
τ

( ρτ
M

Sτ S
H
τ + ITτ

)−1

x

=

√
ρτ
M

(
ρτ
M

(
Sτ S

H
τ +

M

ρτ
ITτ

))−1

x

=

√
ρτ
M

M

ρτ

(
Sτ S

H
τ +

M

ρτ
ITτ

)−1

x

=

√
M

ρτ
SH
τ

(
Sτ S

H
τ +

M

ρτ
ITτ

)−1

X:,i (2.12)

Following the same series of steps, one can compute the LMMSE estimate
for every column of H. Thus, the LMMSE estimate of H can be expressed
by simply replacing X:,i with the whole matrix Xτ :

Ĥ =

√
M

ρτ
SH
τ

(
Sτ S

H
τ +

M

ρτ
Iτ

)−1

Xτ (2.13)

In order to conclude to the same relation as the one in [1], we make use of
the Push Through Identity:

U(I+ V U)−1 = (UV + I)−1U (2.14)

After applying it to (2.13), we obtain:

Ĥ =

√
M

ρτ

(
SH
τ Sτ +

M

ρτ
IM

)−1

SH
τ Xτ (2.15)

Matrix SH
τ Sτ +

M
ρτ
IM is also invertible, since xH SH

τ Sτ x =∥Sτ x∥2≥ 0 is PSD
and M

ρτ
IM is PD, which leads to the sum of them being PD.

2.1.2 LMMSE
We will now try to find the value of the LMMSE. Firstly, we define the
covariance matrices in a way that will simplify the computation’s procedure:

RXτ ≜ E[vec(Xτ ) vec(Xτ )
H] (2.16)

RHXτ ≜ E[vec(H) vec(Xτ )
H] (2.17)
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RXτH ≜ E[vec(Xτ ) vec(H)H] (2.18)

RH̃ ≜ E[vec(H̃) vec(H̃)H] = RH −RHXτR
−1
Xτ

RXτH (2.19)

where H̃ = H − Ĥ is the zero-mean channel estimation error. Consequently,
the LMMSE can be written as:

LMMSE = σ2
H̃
=

1

NM
tr (RH̃) (2.20)

Our goal is to minimize the linear MSE with respect to the training symbols
matrix Sτ . To achieve that, we will first write the aforementioned relations
in a more analytical way, while assuming that:

vec(mtx) = mtxv (2.21)

to simplify the notation.

Moreover, due to the ubiquity of the Kronecker Product’s application to
the derivation that follows, we first list some fundamental properties/identi-
ties [3] for the reader’s convenience:

A⊗ 0 = 0⊗ A = 0 (2.22)

vec (AB) =
(
Isize(B,2) ⊗ A

)
vec (B) (2.23)

(A⊗B)−1 = A−1 ⊗B−1 (2.24)

(A⊗B)H = AH ⊗BH (2.25)

The Woodbury Matrix Identity:
I− V (I+ UV )−1 U = (I+ V U)−1 (2.26)
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The vectorized covariance matrices can be written as:

RHXτ = E
[
vec(H)vec(Xτ )

H]
= E

[
Hv (c Sτ H + Vτ )

H
v

]
= E

[
Hv ((IN ⊗ c Sτ )Hv)

H +HvV
H
τv

]
= E

[
HvH

H
v (IN ⊗ c Sτ )

H
]
+ E

[
HvV

H
τv

]
= E

[
HvH

H
v

] (
IN ⊗ c SH

τ

)
+ 0(MN)×(TτN)

= IMN

(
IN ⊗ c SH

τ

)
= c

(
IN ⊗ SH

τ

)
=

√
ρτ
M

(
IN ⊗ SH

τ

)
(2.27)

RXτ = E
[
vec(Xτ )vec(Xτ )

H]
= E

[
(c SτH + Vτ )v (c SτH + Vτ )

H
v

]
= E

[
((IN ⊗ c Sτ )Hv + Vτv) ((IN ⊗ c Sτ )Hv + Vτv)

H
]

= E
[
((IN ⊗ c Sτ )Hv + Vτv)

(
HH

v

(
IN ⊗ c SH

τ

)
+ V H

τv

)]
= E

[
(IN ⊗ c Sτ )HvH

H
v

(
IN ⊗ c SH

τ

)
+ (IN ⊗ c Sτ )HvV

H
τv + VτvH

H
v

(
IN ⊗ c SH

τ

)
+ VτvV

H
τv

]
= (IN ⊗ c Sτ )E

[
HvH

H
v

] (
IN ⊗ c SH

τ

)
+ (IN ⊗ c Sτ )E

[
HvV

H
τv

]
+

+ E
[
VτvH

H
v

] (
IN ⊗ c SH

τ

)
+ E

[
VτvV

H
τv

]
= (IN ⊗ c Sτ ) IMN

(
IN ⊗ c SH

τ

)
+ 0(TτN)×(TτN) + 0(TτN)×(TτN) + IτN

= c2 (IN ⊗ Sτ )
(
IN ⊗ SH

τ

)
+ IτN

=
ρτ
M

(IN ⊗ Sτ )
(
IN ⊗ SH

τ

)
+ Iτ ⊗ IN (2.28)

RXτH = E
[
vec(Xτ )vec(H)H]

= E
[
(c SτH + Vτ )v H

H
v

]
= E

[(
(IN ⊗ c Sτ )HvH

H
v

)
+ VτvH

H
v

]
= (IN ⊗ c Sτ )E

[
HvH

H
v

]
+ E

[
VτvH

H
v

]
= c (IN ⊗ Sτ ) IMN + 0(TτN)×(MN)

=

√
ρτ
M

(IN ⊗ Sτ ) (2.29)
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RH̃ = RH −RHXτR
−1
Xτ

RXτH

= IM ⊗ IN −
√

ρτ
M

(
IN ⊗ SH

τ

) ( ρτ
M

(IN ⊗ Sτ )
(
IN ⊗ SH

τ

)
+ Iτ ⊗ IN

)−1
√

ρτ
M

(IN ⊗ Sτ )

=
( ρτ
M

(
IN ⊗ SH

τ

)
(IN ⊗ Sτ ) + (IM ⊗ IN)

)−1

=
( ρτ
M

(
IN ⊗ SH

τ

)
(IN ⊗ Sτ ) + (IN ⊗ IM)

)−1

=
( ρτ
M

(ININ)⊗
(
SH
τ Sτ

)
+ (IN ⊗ IM)

)−1

=
(
IN ⊗

( ρτ
M

SH
τ Sτ + IM

))−1

= IN ⊗
( ρτ
M

SH
τ Sτ + IM

)−1

(2.30)

Let us define a new matrix as W =
(
ρτ
M

SH
τ Sτ + IM

)
. As we have already

discussed, this matrix is PD and hence its eigenvalues are positive. Having
also in mind that every matrix can be uniquely described by its Eigenvalue
Decomposition: W = QΛWi

Q−1 and that tr(W ) = tr(ΛWi
) =

∑M
i=1 λWi

,
where ΛWi

is a diagonal matrix with the eigenvalues of W (λWi
) as its non-

zero elements, we can derive the following for W−1:

tr(W−1) = tr((QΛWi
Q−1)−1)

= tr(Q−1(QΛWi
)−1)

= tr(QΛ−1
Wi
Q−1)

=
M∑
i=1

1

λWi

(2.31)

After making use of the property: ΛA+I = ΛA+ΛI, equation (2.31) becomes:

tr(W−1) =
M∑
i=1

1

1 + ρτ
M
λ(SHS)i

(2.32)

where λ(SHS)i is the i-th eigenvalue of the product SH
τ Sτ under the constraint:∑M

i=1 λi ≤ MTτ .
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As it was previously mentioned, our goal is to minimize the MSE with
respect to Sτ . Looking at equation (2.20), this translates to minimizing
the equation (2.32) with respect to the eigenvalues of SH

τ Sτ . This opti-
mization problem (considering also the constraints) is solved by choosing
λ1 = λ2 = ... = λM = Tτ [1], which leads to:

SH
τ Sτ = TτIM (2.33)

Substituting equation (2.33) to (2.30) we obtain:

RH̃ = IN ⊗
( ρτ
M

SH
τ Sτ + IM

)−1

= IN ⊗
( ρτ
M

TτIM + IM

)−1

= IN ⊗
(
IM

( ρτ
M

Tτ + 1
))−1

= IN ⊗ IM

(
1

ρτ
M
Tτ + 1

)
(2.34)

while the MMSE from (2.20) becomes:

MSE =
1

NM
tr (RH̃)

=
1

NM
tr

IN ⊗ IM

 1
ρτ
M

Tτ + 1


=

(
1

NM

)  NM
ρτ
M

Tτ + 1


=

1

1 +
ρτ
M

Tτ

(2.35)
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2.2 Work in [2]
Lozano’s system differs from Hassibi’s, in that we now have to model a cluster
within the system. Since the out-of-cluster signals do not have a fixed power
value, they cannot be simply merged with the noise term.

We begin by defining the system model in a way that will include the
out-of-cluster interference, to better describe a wireless network:

yn =
√

SINRn

K∑
k=1

√
gnk hnk xk + z′n (2.36)

where n ∈ {1, ..., N}, k ∈ {1, ..., K}, xk ∈ C is the transmitted symbol’s
signal from k-th antenna with unit variance, gnk is the normalized channel
power gain, SINRn

1 is the Signal-to-Interference-plus-Noise ratio of n-th re-
ceiver and hnk, z

′
n ∼ CN (0, 1) are the normalized channel coefficient from

transmitter k to receiver n and the thermal noise at the receiver’s end re-
spectively. It follows that yn ∈ C is the received symbol’s signal at n-th
receiver’s antenna.

While at first glance this model may seem more complicated than the one
from the previous section, in actuality not only is it far simpler to analyze
(since we now deal with scalar values instead of vectors and matrices), but we
can also modify it to resemble the form of the latter. Thus, the proofs that
follow will not deviate conceptually far from what has already been derived.

We assume to have L symbols available before the channel coefficients’
values change and we select αL of them to be pilot symbols in order to
estimate the channel, where α ∈ (0, 1). Since there are K transmitters, only
T = αL

K
pilot symbols are needed for each channel coefficient hnk. Naturally,

the inequality αL ≥ K is satisfied to ensure that at least one pilot symbol
will be used for the estimation of each hnk.

If we shift our focus to an arbitrary tranceiver pair, say n-th receiver and
k-th transmitter, and incorporate the pilot symbols to the system model, we
obtain the following modification of (2.36):

y = c hx+ z (2.37)

where y,x, z ∈ CT , h = hnk and c =
√

SINRn gnk.
One can notice that the pilot-symbol model is closely related to the one

we used to describe Hassibi’s system, but will the LMMSE estimator and the
LMMSE relations reflect this similarity? The answer lies in the derivation
below.

1 1
SINRn

= 1
SIRn

+ 1
SNRn

where SIRn is the Signal-to-Interference ratio.
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2.2.1 LMMSE estimator
Following the steps of the previous section, we wish to find an estimation of
h (ĥ) such that E[|h− ĥ|2] is minimized, when ĥ is a linear (affine) function
of the measurements, i.e. ĥ = aH y + b, where a ∈ CT , b ∈ C. Subsequently,
finding the right a and b is equivalent to finding ĥ, since y is known to the
receiver.
According to [4], [5], a and b can be computed in closed form as follows:

a = C−1
y Cyh (2.38)

and
b = µh − aHµy (2.39)

where Cyh = E[(y − µy)(h− µh)
∗] is the cross covariance matrix between y

and h, while Cy = E[(y − µy)(y − µy)
H] is the covariance matrix of y.

As for the covariance matrix of the channel coefficient and the noise vec-
tor, since h and the entries of z are independent, they are also uncorrelated,
which leads to:

Chz = CT
zh = 0T×1 (2.40)

while for the mean of y, we derive:

µy = E[y] = cxE[h] + E[z] = cxµh + µz = 0W×1 (2.41)

Having the equations (2.40) and (2.41) in mind, Cy and Cyh can be calculated
as follows:
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Cy = E[(y − µy) (y − µy)
H]

= E[y yH]

= E[(c hx+ z)
(
cxHh∗ + zH)]

= E[c2hh∗xxH + cxh zH + zh∗cxH + z zH]

= c2 E[hh∗]xxH + cxE[h zH] + cE[zh∗]xH + E[z zH]

= c2 E[|h|2]xxH + cxChz + cCzh x
H + Cz

= c2 xxH + 0T×T + 0T×T + IT

= SINRn gnk xxH + IT (2.42)

Cyh = E[(y − µy) (h− µh)
H]

= E[y h∗]

= E[(c hx+ z)h∗]

= E[c h h∗x+ zh∗]

= cE[hh∗]x+ E[zh∗]

= cE[|h|2]x+ Czh

= cx+ 0T×1

=
√

SINRn gnk x (2.43)

Substituting (2.42) and (2.43) to a leads to:

a = C−1
y Cyh =

(
SINRn gnk xxH + IT

)−1√SINRn gnk x (2.44)

and as for b:
b = µh − aH µy = 0− aH 0T×1 = 0 (2.45)
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Hence the LMMSE estimate of h can now be calculated as follows:
ĥ = aH y + b

=
((

SINRn gnk xxH + IT
)−1√SINRn gnk x

)H
y

=
√

SINRn gnk x
H
((

SINRn gnk xxH + IT
)−1
)H

y

=
√

SINRn gnk x
H
((

SINRn gnk xxH + IT
)H
)−1

y

=
√

SINRn gnk x
H (SINRn gnk xxH + IT

)−1
y

(∗)
=
√

SINRn gnk
(
SINRn gnk x

H x+ 1
)−1

xH y

(∗∗)
=

√
SINRn gnk x

H y

1 + T SINRn gnk
(2.46)

where at (∗) we used the Woodbury Matrix Identity Eq. (2.26) and at (∗∗)
we used the optimal training symbols based on Hassibi’s derivation.

2.2.2 LMMSE
We define the zero-mean channel estimation error as h̃ = h−ĥ. Subsequently,
the LMMSE is defined as:

LMMSE = σ2
h̃
= σ2

h − ChyC
−1
y Cyh (2.47)

As also stated in the previous section, our goal is to minimize the linear
MSE. To do that, we first need to compute the cross-covariance matrix Chy.
Since the training symbols is also a variable x to the problem, we can further
reduce the MSE.

Chy = E[(h− µh) (y − µy)
H]

= E[hyH]

= E[h
(
cxHh∗ + zH)]

= E[c h h∗xH + hzH]

= cE[hh∗]xH + E[hzH]

= cE[|h|2]xH + Czh

= cxH + 01×T

=
√

SINRn gnk x
H (2.48)
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We can now calculate the LMMSE:

σ2
h̃
= σ2

h − ChyC
−1
y Cyh

= 1− cxH (c2 xxH + IT
)−1

cx

(∗)
=
(
cxHcx+ 1

)−1

=
1

1 + c2 xH x
(∗∗)
=

1

1 + SINRn gnk T

=
1

1 + SINRn gnk
αL
K

(2.49)

where at (∗) we used the Woodbury Matrix Identity Eq. (2.26) and at (∗∗)
we used the optimal training symbols based on Hassibi’s derivation.
One can notice that the LMMSE estimate of h as well as the LMMSE Eq.
(2.49) are highly correlated to the ones from the previous section, i.e. Eq.
(2.35).



Chapter 3

RIS Channel Estimator

3.1 System Model
3.1.1 Channel Model
A source-destination link is assisted by an array of M tags/RIS elements.
The following large-scale channel path-loss model is adopted [6]:

LX ∝
(

λ

4πdX0

)2(
dX0
dX

)vX

, (3.1)

where X ∈ {SD, STm,TmD} denotes the source-to-destination, source-to-tag
m and tag m-to-destination, respectively; λ is the carrier wavelength, dX0 is
a reference distance, vX is the path-loss exponent and dX is the distance for
link X.

Flat fading is assumed; complex channel coefficient hSD, hSTm and hTmD

denotes the baseband channel coefficients for the source-destination, source-
tag and tag-reader link, respectively. Due to strong line-of-sight (LoS) sig-
nals present in the problem, small-scale Rice flat fading channel model [6] is
mainly adopted:1

hTmD ∼ CN
(√

κTmD

κTmD + 1
σTmD,

σ2
TmD

κTmD + 1

)
, (3.2)

where hTmD
△
= |hTmD| e−jϕTmD , κTmD is the power ratio between the determin-

istic LoS component and the scattering components and E[|hTmD|2] = σ2
hTmD

is the average power of the scattering components. For link budget nor-
malization purposes, σ2

hTmD
= 1 will be also assumed (other values could

be easily accommodated into the large-scale, average coefficients). Similar
notation and assumptions hold for hSTm , m ∈ {1, 2, . . . ,M} and hSD. It is
noted that for κ = 0, Rice is simplified to Rayleigh fading.

Quasi-static block fading is assumed, i.e., the channel remains constant
for Lc (source-destination link) symbols and changes independently between

1The complex channel is the superposition of
√

κTmD

κTmD+1 σTmD ejθ + CN
(
0,

σ2
TmD

κTmD+1

)
with θ ∼ U [0, 2π).
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channel coherence time periods. Channel coefficients hSD, {hSTm}, {hTmD},
m ∈ {1, 2, . . . ,M} are assumed independent in the numerical results. Fur-
thermore, the following notation is also adopted:

hm = hSTm hTmD = |hSTm hTmD| e−jϕm ,m ∈ {1, 2, . . . ,M},
h0 = hSD,m = 0, (3.3)

3.1.2 Signal Model
The baseband equivalent of the source message m(t) is given by:

c(t) =
√
2P m(t) (3.4)

where E[|m(t)|2] = 1. Different normalization could be incorporated into the
large-scale coefficients. The baseband complex equivalent of the scattered
waveform from tag m is given by [7]:

um(t) =
√

η LSTm [As − Γm(t)] hSTm c(t), (3.5)
Γm(t) ∈ {Γ1,Γ2, . . . ,ΓK}, (3.6)

where Γm(t) stands for the modified (complex) reflection coefficient for tag
m, assuming that the tag can terminate its antenna between K loads and
η models the (limited) tag power scattering efficiency. It is noted that for
passive (amplification-free) tags, |Γk| ≤ 1, while for commercial RFID tags,
K = 2. Parameter As stands for the load-independent structural mode that
solely depends on tag’s antenna [8], commonly overlooked in the literature;
As = 0 only for minimum scattering antennas, i.e., antennas that do not
reflect anything when terminated at open (i.e., infinite) load.

The received demodulated complex baseband signal at the destination is
given by the superposition of the source and all tags’ backscattered signals
propagated through wireless channels hSD and {hTmD}, respectively:

y(t) =
√

LSD hSD c(t) +
M∑

m=1

√
LTmD hTmD um(t) + n(t)

=
√

LSD hSD c(t) + n(t)

+
M∑

m=1

√
η LSTmLTmD hSTm hTmD [As − Γm(t)] c(t)

=
√
2P

[
√
g0 h0 +

M∑
m=1

√
gm hm Ym(t)

]
m(t) + n(t), (3.7)
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where n(t) is the thermal noise at the receiver and

g0 = LSD, (3.8)
gm = η LSTmLTmD E

[
|As − Γm(t)|2

]
, (3.9)

Ym(t) =
As − Γm(t)√

E
[
|As − Γm(t)|2

] , (3.10)

ym [Γm(t)]
△
=

√
gm hm Ym(t). (3.11)

Notice that E[|h0|2] = E[|hm|2] = E[|Ym|2] = 1 since E[|hm|2] =
E[|hSTm|2]E[|hTmD|2], due to the followed assumptions. It is also noted that
E
[
|As − Γm(t)|2

]
= (1/K)

∑K
k=1 |As − Γk|2 .

The above model is valid when coupling among the tags is negligible, i.e.,
the tags are separated by distance at least equal to λ/2. Additive thermal
noise n(t) is modelled by a complex, circularly symmetric, additive Gaussian
noise process with E[|n(t)|2] = N0B, where B stands for receiver’s band-
width.2

3.2 LMMSE estimate
3.2.1 Rayleigh Fading
Let us first try to find the possible values of the term Ym(t). Assume that
κSD = κSTm = κTmD = 0, which leads to hSD, hSTm , hTmD being modeled by
Rayleigh distribution. If we also consider that σ = 1 for every possible link,
then (3.2) yields: hSD, hSTm , hTmD ∼ CN (0, 1).

Suppose now that K = 2 and Γ1 = 0, Γ2 = As are the possible load states.
2N0 = kbTθ, where kb and Tθ are the Boltzmann constant and receiver temperature,

respectively.
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Thus, term Ym(t) becomes:

Ym(t) =
As − Γm(t)√

E
[
|As − Γm(t)|2

]

=


As − 0√

|As−0|2 + |As−As|2
1+1

, Γm = 0

As − As√
|As−0|2 + |As−As|2

1+1

, Γm = As

=


√
2

As

|As|
, Γm = 0

0 , Γm = As

Regarding the pilot symbols for the estimation of the various hm, m ∈
{0, 1, ...,M}, we assume to have L symbol periods within which the coeffi-
cients’ values remain invariant. Following the steps of the previous sections,
we choose a portion of them, in order to estimate the channel coefficients,
while the rest of them will be devoted to data transmission. Specifically, we
presume that the total number of pilot symbols available is Ntot = αL where
α ∈ (0, 1), which will be used to estimate all M + 1 coefficients. This leads
to Ntr =

Ttot
M+1

= αL
M+1

3 of them to be used for the estimation of each hm.
Our goal is to find the right ĥm which will minimize E[|hm − ĥm|2], when

ĥm is a linear (affine) function of the received signal’s measurements, i.e.
ĥm = aH

m y+ bm, where am ∈ CNtr×1, bm ∈ C, ∀m ∈ {0, 1, 2, . . . ,M}. Subse-
quently, finding the right am and bm is equivalent to finding ĥm, since y is
known to the receiver. As it is shown in previous sections, am and bm can be
computed in closed form as follows:

am = C−1
y Cyhm (3.12)

and
bm = µhm − aHµy (3.13)

where µy
△
= E[y], Cy

△
= E[(y − µy)(y − µy)

H] is the covariance matrix of
y, µhm

△
= E[hm] and Cyhm

△
= E[(y − µy)(hm − µhm)

∗] is the cross-covariance
vector between y and hm.

3α is selected in such way so that Ntris a positive integer.
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Direct Link Estimation

In order to estimate all RIS coefficients, estimation of h0 is a preceding
necessity. We presume all tags are terminated to a load such that Γm(t) = As

for all RIS elements (m ∈ {1, 2, . . . ,M}). Hence, (3.7) becomes:

y(t) =
√

2Pg0 h0m(t) + n(t) (3.14)

We define the SNR at the receiver as:

SNR0
△
=

2Pg0
N0B

(3.15)

Thus, (3.14) can be modified to be:

ȳ0(t) =
√

SNR0 h0m(t) + n̄(t) (3.16)

where n̄(t) ∼ CN (0, 1) is the normalized thermal noise.

We can further simplify equation (3.16), while also incorporating the pilot
symbols to it:

ȳ0 = c0 h0m+ n̄ (3.17)
where c0 =

√
SNR0 and ȳ0,m ∈ CNtr and n̄ ∼ CN (0, INtr).

One can easily notice the similarities between the RIS and the Lozano
model. We therefore expect that the derivation of both the LMMSE esti-
mator and the LMMSE will be a straightforward procedure. However, this
might not be the case regarding the Ricean fading which will be analyzed
right after this section.

Now that we have disentangled the system model, we proceed to first find
the estimator for the direct link channel, i.e. ĥ0 where ĥ0 = aH

0 ȳ0 + b0. To
achieve that we introduce some fundamental properties that derive from the
dependency relations of the system’s parameters.

Since h0 and the entries of n̄ are independent, they are also uncorrelated,
which leads to:

Cn̄h0 = CT
h0n̄

= 0Ntr×1 (3.18)

while for the mean of ȳ0, we derive:

µȳ0 = E[ȳ0] = c0mE[h0] + E[n̄] = c0mµh0 + µn̄ = 0Ntr×1 (3.19)
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Having the equations (3.18) and (3.19) in mind, Cȳ0 and Cȳ0h0 can be calcu-
lated as follows:

Cȳ0 = E[(ȳ0 − µȳ0) (ȳ0 − µȳ0)
H]

= E[ȳ0ȳ
H
0 ]

= E[(c0h0m+ n̄)
(
c0m

Hh∗
0 + n̄H)]

= E[c20h0h
∗
0mmH + c0mh0n̄

H + n̄h∗
0c0m

H + n̄n̄H]

= c20E[h0h
∗
0]mmH + c0mE[h0n̄

H] + c0E[n̄h∗
0]m

H + E[n̄n̄H]

= c20E[|h0|2]mmH + c0mCh0n̄ + c0Cn̄h0m
H + Cn̄

= c20mmH + 0Ntr×Ntr + 0Ntr×Ntr + INtr

= SNR0mmH + INtr (3.20)

Cȳ0h0 = E[(ȳ0 − µȳ0) (h0 − µh0)
∗]

= E[ȳ0h
∗
0]

= E[(c0h0m+ n̄)h∗
0]

= E[c0h0h
∗
0m+ n̄h∗

0]

= c0E[h0h
∗
0]m+ E[n̄h∗

0]

= c0E[|h0|2]m+ Cn̄h0

= c0m+ 0Ntr×1

=
√

SNR0m (3.21)

Substituting the last relations to a0, we derive:

a0 = C−1
ȳ0

Cȳ0h0 =
(
SNR0mmH + INtr

)−1√SNR0m (3.22)

and as for b:
b0 = µh0 − aH

0 µȳ0 = 0− aH
0 0Ntr×1 = 0 (3.23)
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Thus, the LMMSE estimate of h0 can now be calculated:

ĥ0 = aH
0 ȳ0 + b0

=
((

SNR0mmH + INtr

)−1√SNR0m
)H

ȳ0

=
√

SNR0m
H
((

SNR0mmH + INtr

)−1
)H

ȳ0

=
√

SNR0m
H

(
SNR0

(
mmH +

1

SNR0

INtr

)H
)−1

ȳ0

=
1√

SNR0

mH
(
mmH +

1

SNR0

INtr

)−1

ȳ0

(∗)
=

1√
SNR0

(
mHm+

1

SNR0

)−1

mHȳ0

(∗∗)
=

1√
SNR0

(
Ntr +

1

SNR0

)−1

mHȳ0

=
1

√
SNR0

(
Ntr +

1
SNR0

)mHȳ0

=

√
SNR0m

Hȳ0

1 + SNR0Ntr
(3.24)

where at (∗) we used the Push Through Identity and at (∗∗) the optimal
training symbols’ property from the Hassibi derivation (2.33) when there is
only 1 transmitter antenna.

We define the zero-mean channel estimation error as h̃0 = h0 − ĥ0. Sub-
sequently, the LMMSE is defined as:

LMMSE = σ2
h̃0

= σ2
h0

− Ch0yC
−1
y Cyh0 (3.25)

As previously stated, our goal is to minimize the linear MSE. To do that,
we first need to compute the cross-covariance matrix Ch0y, while also taking
into account the optimal training symbols vector’s property which will further
reduce the MSE.
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Ch0y = E[(h0 − µh0) (y − µy)
H]

= E[h0y
H]

= E[h0

(
c0m

Hh∗
0 + n̄H)]

= E[c0h0h
∗
0m

H + h0n̄
H]

= c0E[h0h
∗
0]m

H + E[h0n̄
H]

= c0E[|h0|2]mH + Cn̄h0

= c0m
H + 01×Ntr

=
√

SNR0m
H (3.26)

We are now in the position to calculate the LMMSE as:

σ2
h̃0

= σ2
h0

− Ch0yC
−1
y Cyh0

= 1− c0m
H (c20mmH + INtr

)−1
c0m

(∗)
=
(
c0m

Hc0m+ 1
)−1

=
1

1 + c20m
Hm

=
1

1 +Ntr SNR0

(3.27)

where at (∗) we used the Woodbury Matrix Identity (2.26). We notice that
both the LMMSE estimate and the LMMSE are closely related to the ones
we derived in the Lozano case (2.49).

Compound Link Estimation

As for the estimation of the RIS channel coefficients the procedure is almost
identical. We assume that every RIS element is terminated at open load Γ2,
except the one we are interested in estimating, say hm. Considering also
the fact that the estimation of g0 and h0 has preceded, the signal model is
modified as follows:

yinit(t) =

[√
2Pg0 h0 +

√
2

As

|As|
√
2Pgm hm

]
m(t) + n(t) (3.28)

where the factor of
√
2 As

|As| is included due to the term’s Ym(t) value for
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Γm = 0.

After incorporating the pilot symbols to the model, while also applying the
normalization with respect to noise power, we obtain:

ȳinit =

[√
SNR0 h0 +

√
2

As

|As|
√

SNRm hm

]
m+ n̄ (3.29)

which can be further simplified to be the same equation as in the case of the
direct-link channel:

ȳ = ȳinit −
√

SNR0 ĥ0m = cm hm m+ n̄ (3.30)

where cm = As

|As|
√
2SNRm with SNRm

△
= 2Pgm

N0B
, (we presume perfect h0 esti-

mation, with ĥ0 = h0), m ∈ CN
tr and n̄ ∼ CN (0, INtr). We notice that y has,

again, zero-mean which leads to the same estimator and error relations as in
the prior model, with the only difference being the constant term cm.

Hence, following the same steps as in the case of h0, we can easily derive
that:

ĥm =

√
2 SNRm

As

|As| m
Hy

1 + 2Ntr SNRm

(3.31)

and
σ2
h̃m

=
1

1 + 2Ntr SNRm

(3.32)

3.2.2 Rice Fading
As previously mentioned, we expect that the derivation of the Rice Fading
case will deviate to an extent from the one of the Rayleigh case, especially
regarding the estimation of the compound coefficients. To be exact, we pre-
sume that κSD = κSTm = κTmD = κ ̸= 0, which leads to hSD, hSTm , hTmD

being modeled by Rice distribution. Recall that σ = 1, which translates to:

|µhi
| =

√
κ

κ+ 1
(3.33)

with i ∈ {SD, STm,TmD}. One can easily deduct that µhSD
̸= µhm (

hm = hSTm hTmD), which will be shown shortly.
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Following the same signal model as in the Rayleigh Fading case (3.17), we
firstly need to find the optimal estimation of the direct link channel, ĥ0 = ĥSD,
such that E[|h0 − ĥ0|2] is minimized, when ĥ0 is a linear (affine) function of
the measurements, i.e. ĥ0 = aHy + b, where a ∈ CT×1, b ∈ C. Finding the
right a and b is equivalent to finding ĥ0, since y is known at the receiver’s
end. We will then assume that h0 is known and proceed to estimate each of
the RIS elements’ compound channel coefficients.
As it is to be expected by now, the closed form equations for a and b are:

aj = C−1
y Cyhj

(3.34)

and
bj = µhj

− aH
j µy (3.35)

where j ∈ [0, 1, ...,M ].
where Cyhj

= E[(y−µy)(hj −µh)
H] is the cross-covariance vector between y

and hj, while Cy = E[(y − µy)(y − µy)
H] is the covariance matrix of y.

Since hj and the entries of n̄ are independent, they are also uncorrelated,
which leads to:

Cn̄hj
= CT

hj n̄
= 0T×1 (3.36)

while for the mean of y, we derive:

µy = E[y] = cmE[hj] + E[n̄] = cmµhj
+ µn̄ = cµhj

m (3.37)

Lastly, the variance of hj is:

σ2
hj

= E
[
|hj|2

]
− |E [hj]|2 = 1− |µhj

|2 (3.38)
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Direct Link Estimation

Having the equations (3.36) and (3.37) (3.38) in mind, Cy and Cyh0 can be
calculated as follows:

Cy = E
[
(y − µy) (y − µy)

H
]

= E
[
(c0h0m+ n̄− µy)

(
c0m

Hh∗
0 + n̄H − µH

y

)]
= E[c20h0h

∗
0mmH + c0h0mn̄H − c0h0mµH

y + c0n̄h
∗
0m

H+

+ n̄n̄H − n̄µH
y − c0µyh

∗
0m

H − µyn̄
H + µyµ

H
y ]

= c20E[h0h
∗
0]mmH + c0mE[h0n̄

H]− c0E[h0]mµH
y + c0E[n̄h∗

0]m
H+

+ E[n̄n̄H]− E[n̄]µH
y − c0µyE[h∗

0]m
H − µyE[n̄H] + µyµ

H
y

= c20E[|h0|2]mmH + c0mCh0n̄ − c0µh0mµH
y + c00T×1m

H + Cn̄−
− 0T×1µ

H
y − c0µ

∗
h0
µym

H − c0µy01×T + µyµ
H
y

= c20mmH + 0T×T − c0µh0mµH
y + 0T×T + IT−

− 0T×T − c0µ
∗
h0
µym

H − 0T×T + µyµ
H
y

= c20mmH − c0µh0mµH
y + IT − c0µ

∗
h0
µym

H + c0µh0mµH
y

= c20mmH + IT − c20µh0µ
∗
h0
mmH

= c20mmH (1− |µh0|2
)
+ IT

= c20mmHσ2
h0

+ IT

= SNR0σ
2
h0
mmH + IT

(3.39)

Cyh0 = E
[
(y − µy) (h0 − µh0)

H
]

= E
[
(c0h0m+ n̄− µy)

(
h∗
0 − µ∗

h0

)]
= E

[
ch0h

∗
0m− ch0mµ∗

h0
+ n̄h∗

0 − n̄µ∗
h0

− µyh
∗
0 + µyµ

∗
h0

]
= c0E[h0h

∗
0]m− c0E[h0]µ

∗
h0
m+ E[n̄h∗

0]− E[n̄]µ∗
h0

− µyE[h∗
0] + µyµ

∗
h0

= c0E[|h0|2]m− c0|µh0|2m+ Cn̄h0 − 0T×1 − µyµ
∗
h0

+ c0µh0mµ∗
h0

= c0m− c0|µh0|2m− c0µh0mµ∗
h0

+ c0|µh0|2m
= c0m

(
1− |µh0|2

)
= c0mσ2

h0

=
√

SNR0 σ
2
h0
m (3.40)
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Substituting these two quantities to a and b, we obtain:

a0 = C−1
y Cyh0

=
(
c20mmHσ2

h0
+ IT

)−1
c0mσ2

h0

(∗)
= c0m

(
c20m

Hmσ2
h0

+ 1
)−1

σ2
h0

=
c0σ

2
h0

c20σ
2
h0
mHm+ 1

m

(∗∗)
=

c0σ
2
h0

c20σ
2
h0
T + 1

m

=

√
SNR0 σ

2
h0

T SNR0 σ2
h0

+ 1
m (3.41)

and

b0 = µh0 − aH
0 µy

= µh0 −
(

c0σ
2
h0

c20σ
2
h0
T + 1

m

)H

c0mµh0

= µh0 −
c20σ

2
h0
µh0

c20σ
2
h0
T + 1

mHm

(∗∗)
=

µh0(c
2
0σ

2
h0
T + 1)− c20σ

2
h0
µh0T

c20σ
2
h0
T + 1

=
µh0

c20σ
2
h0
T + 1

=
µh0

T SNR0 σ2
h0

+ 1

(3.42)

where at (∗) we used the Push Through Identity and at (∗∗) the optimal
training symbols’ property from Hassibi’s derivation (2.33), when there is
only 1 transmitter antenna.
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Thus, the LMMSE estimate of h0 can now be calculated:

ĥ0 = aH
0 y + b0

=

√
SNR0 σ

2
h0

T SNR0 σ2
h0

+ 1
mHy +

µh0

T SNR0 σ2
h0

+ 1

=

√
SNR0 σ

2
h0
mHy + µh0

T SNR0 σ2
h0

+ 1
(3.43)

We define the zero-mean channel estimation error as h̃0 = h0 − ĥ0. Sub-
sequently, the LMMSE is defined as:

LMMSE = σ2
h̃0

= σ2
h0

− Ch0yC
−1
y Cyh0 (3.44)

As we have already stated, our goal is to minimize the linear MSE. To achieve
this, we first need to compute the cross-covariance vector Ch0y, while also
taking into account the optimal training symbols vector, which will further
reduce the MSE.

Ch0y = E
[
(h0 − µh0) (y − µy)

H
]

= E
[
(h0 − µh0)

(
c0h

∗
0m

H + n̄H − µH
y

)]
= E

[
c0h0h

∗
0m

H + h0n̄
H − h0µ

H
y − c0h

∗
0µh0m

H − µh0n̄
H + µh0µ

H
y

]
= c0E[|h0|2]mH + E[h0n̄

H]− E[h0]µ
H
y − c0E[h∗

0]µh0m
H − µh0E[n̄H] + µh0µ

H
y

= c0m
H + 01×T − µh0µ

H
y − c0µh0µ

∗
h0
mH − 01×T + µh0µ

H
y

= c0m
H − c0|µh0|2mH

= c0m
H (1− |µh0 |2

)
= c0m

Hσ2
h0

=
√

SNR0m
H σ2

h0
(3.45)
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We can now calculate the MMSE:

σ2
h̃0

= σ2
h0

− Ch0yC
−1
y Cyh0

= σ2
h0

−
(
c0m

Hσ2
h0

)( c0σ
2
h0

c20σ
2
h0
T + 1

m

)
= σ2

h0
−

c20σ
2
h0
σ2
h0

c20σ
2
h0
T + 1

mHm

=
σ2
h0
(c20σ

2
h0
T + 1)− c20σ

2
h0
σ2
h0
T

c20σ
2
h0
T + 1

=
σ2
h0

c20σ
2
h0
T + 1

=
σ2
h0

T SNR0 σ2
h0

+ 1
(3.46)

Compound Link Estimation

The procedure regarding the estimation of the RIS compound channel esti-
mation is differentiated to an extent. We begin by assuming that every RIS
element is terminated at open load Γ2, except the one we are interested in,
say hm = hSTmhTmD. Considering also the fact that the estimation of g0 and
h0 has preceded, the signal model is modified to be:

yinit(t) =
[√

2Pg0 h0 +
√
2
√

2Pgm hm

]
m(t) + n(t) (3.47)

where the factor of
√
2 is included due to the way Ym(t) is defined.

The same pilot-symbols model as in the Rayleigh case is adopted:

yinit =
[√

SNR0 h0 +
√

2SNRm hm

]
m+ n̄ (3.48)

which can be further simplified to be the same equation as the one we used
for the direct-link channel:

y = cm hm m+ n̄ (3.49)

where cm =
√
2SNRm with SNRm = 2Pgm

N0B
, y = yinit −

√
SNR0 ĥ0m ∈ CT
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(perfect h0 estimation is assumed, with ĥ0 = h0) and m, n̄ ∈ CT . In contrast
to the Rayleigh case, we now notice that y not only has a non-zero mean,
but it also differs from the one of h0, equation (3.33), since we now focus on
the compound channel coefficient hm.

More specifically, |µhm| and µy can be calculated as follows:

|µhm| = |E [hSTmhTmD] | = |µhSTm
||µhTmD

| = κ

κ+ 1
(3.50)

and

µy = E[y] = cm mE[hm] + E[n̄] = cm mµhm + µn̄ = cm µhmm (3.51)

with the variance of the compound channel being:

σ2
hm

= E
[
|hm|2

]
−|E [hm]|2 = 1−|µhm |2 = 1−

(
κ

κ+ 1

)2

=
2κ+ 1

(κ+ 1)2
(3.52)

Having the equations (3.36) and (3.51) (3.52) in mind, Cy and Cyhm can be
calculated as follows:

Cy = E
[
(y − µy) (y − µy)

H
]

= E
[
(cmhmm+ n̄− µy)

(
cmm

Hh∗
m + n̄H − µH

y

)]
= E[c2mhmh

∗
mmmH + cmhmmn̄H − cmhmmµH

y + cmn̄h
∗
mm

H+

+ n̄n̄H − n̄µH
y − cmµyh

∗
mm

H − µyn̄
H + µyµ

H
y ]

= c2mE[hmh
∗
m]mmH + cmmE[hmn̄

H]− cmE[hm]mµH
y + cmE[n̄h∗

m]m
H+

+ E[n̄n̄H]− E[n̄]µH
y − cmµyE[h∗

m]m
H − µyE[n̄H] + µyµ

H
y

= c2mE[|hm|2]mmH + cmmChmn̄ − cmµhmmµH
y + cm0T×1m

H + Cn̄−
− 0T×1µ

H
y − cmµ

∗
hm

µym
H − cmµy01×T + µyµ

H
y

= c2mmmH + 0T×T − cmµhmmµH
y + 0T×T + IT−

− 0T×T − cmµ
∗
hm

µym
H − 0T×T + µyµ

H
y

= c2mmmH − cmµhmmµH
y + IT − cmµ

∗
hm

µym
H + cmµhmmµH

y

= c2mmmH + IT − c2mµhmµ
∗
hm

mmH

= c2mmmH (1− |µhm|2
)
+ IT

= 2 SNRmσ
2
hm

mmH + IT
(3.53)
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Cyhm = E
[
(y − µy) (hm − µhm)

H
]

= E
[
(cmhmm+ n̄− µy)

(
h∗
m − µ∗

hm

)]
= E

[
cmhmh

∗
mm− cmhmµ∗

hm
+ n̄h∗

m − n̄µ∗
hm

− µyh
∗
m + µyµ

∗
hm

]
= cmE[hmh

∗
m]m− cmE[hm]µ

∗
hm

m+ E[n̄h∗
m]− E[n̄]µ∗

hm
− µyE[h∗

m] + µyµ
∗
hm

= cmE[|hm|2]m− cm|µhm|2m+ Cn̄hm − 0T×1 − µyµ
∗
hm

+ cmµhmmµ∗
hm

= cmm− cm|µhm|2m− cmµhmmµ∗
hm

+ cm|µhm|2m
= cmm

(
1− |µhm |2

)
=
√
2 SNRm σ2

hm
m (3.54)

Substituting these two quantities to a, we derive:

am = C−1
y Cyhm

=
(
c2mmmHσ2

hm
+ IT

)−1
cmmσ2

hm

(∗)
= cmm

(
c2mm

Hmσ2
hm

+ 1
)−1

σ2
hm

=
cmσ

2
hm

m

c2mσ
2
hm

mHm+ 1

(∗∗)
=

cmσ
2
hm

c2mσ
2
hm

T + 1
m

=

√
2 SNRm σ2

hm

2T SNRmσ2
hm

+ 1
m (3.55)

and as for b:

bm = µhm − aH
mµy

= µhm −
(

cmσ
2
hm

c2mσ
2
hm

T + 1
m

)H

cmµhmm

= µhm −
c2mσ

2
hm

µhm

c2mσ
2
hm

T + 1
mHm

(∗∗)
=

µhm(c
2
mσ

2
hm

T + 1)− c2mσ
2
hm

Tµhm

c2mσ
2
hm

T + 1

=
µhm

c2mσ
2
hm

T + 1

=
µhm

2T SNRmσ2
hm

+ 1

(3.56)
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where at (∗) we used the Push Through Identity and at (∗∗) the optimal
training symbols’ property from the Hassibi derivation (2.33), for 1 trans-
mitter antenna in our case.

Hence, the LMMSE estimate of h can now be calculated:

ĥm = aH
my + bm

=
cmσ

2
hm

2T SNRmσ2
hm

+ 1
mHy +

µhm

2T SNRmσ2
hm

+ 1

=

√
2SNRm σ2

hm
mHy + µhm

2T SNRmσ2
hm

+ 1
(3.57)

As also stated in the previous section, our goal is to minimize the MMSE
with respect to the training symbols’ vector m. As a last measure, in order
to find the MMSE, we need to calculate the cross-covariance matrix Chy. It
is by now evident that Chy is just the hermitian of, the already calculated
matrix, Cyh. Invoking the equation (3.54), we get:

Chmy =
√

2SNRm σ2
hm

mH (3.58)

We can now calculate the MMSE for the channel coefficient of the m-th
RIS element:

σ2
h̃m

= σ2
hm

− ChmyC
−1
y Cyhm

= σ2
hm

−
(
cmσ

2
hm

mH)( cmσ
2
hm

c2mσ
2
hm

T + 1
m

)
= σ2

hm
−
(

c2mσ
2
hm

σ2
hm

c2mσ
2
hm

T + 1

)
mHm

=
σ2
hm

(c2mσ
2
hm

T + 1)− c2mσ
2
hm

σ2
hm

T

c2mσ
2
hm

T + 1

=
σ2
hm

c2mσ
2
hm

T + 1

=
σ2
hm

2T SNRmσ2
hm

+ 1
(3.59)

A proof of concept which corroborates the preceding results by applying the
formulas in practice can be found in [9].



Chapter 4

RIS Application

4.1 Optimal Gain Algorithm
Since the introduction of RIS to the communication world, there has been
an overgrowing concern on whether there exists an algorithm which will op-
timally select the configuration that maximizes the signal’s power at the
receiver’s end. If it does exist, can this algorithm respond before the envi-
ronment changes and the problem’s parameters are altered?

According to Eq. (3.7), the following instantaneous power maximization
problem is formulated:

max
{Ym(t)}

∣∣∣∣∣√g0 h0 +
M∑

m=1

√
gm hm Ym(t)

∣∣∣∣∣
2

2P (4.1)

max
{Ym(t)}

∣∣∣∣∣∣∣
√
g0 h0︸ ︷︷ ︸
y0

+
M∑

m=1

√
gm hm Ym(t)

∣∣∣∣∣∣∣ (4.2)

= max
{Γm(t)}

∣∣∣∣∣y0 +
M∑

m=1

ym
[
Γm(t)

]∣∣∣∣∣ , (4.3)

If we were to find the solution via brute force search, we would need to
examine KM load configurations since there are M elements with K possible
load states, i.e. Γm(t) ∈ {Γ1,Γ2, . . . ,ΓK}.

The problem is similar to noncoherent sequence detection of orthogonally-
modulated sequences, solved with log-linear complexity in [10]. The trick is
to introduce an auxiliary scalar variable ϕ into the problem of Eq. (4.3):

max
{Γm(t)}

max
ϕ∈[0,2π)

ℜ

{
e−jϕ

(
y0 +

M∑
m=1

ym
[
Γm(t)

])}
=

max
ϕ∈[0,2π)

max
{Γm(t)}

(
ℜ
{
e−jϕy0

}
+

M∑
m=1

ℜ
{
e−jϕym

[
Γm(t)

]}) (4.4)



4.1. Optimal Gain Algorithm 39

4.1.1 K = 2 Loads
For a given point ϕ ∈ [0, 2π), the innermost maximization in Eq. (4.4) is
separable for each Γm(t) and hence, splits into independent maximizations
for any m = 1, 2, . . . ,M :

Γ̂m(t) = argmax
Γm(t)∈{Γ1,Γ2}

ℜ
{
e−jϕym [Γm(t)]

}
⇔ ℜ

{
e−jϕym [Γ1]

} Γ̂m(t)=Γ1

≷
Γ̂m(t)=Γ2

ℜ
{
e−jϕym [Γ2]

}
⇔ ℜ

{
e−jϕ (ym [Γ1]− ym [Γ2])

} Γ̂m(t)=Γ1

≷
Γ̂m(t)=Γ2

0

⇔ cos (ϕ− ym [Γ1]− ym [Γ2])
Γ̂m(t)=Γ1

≷
Γ̂m(t)=Γ2

0 (4.5)

Given the relation in Eq. (4.4), the optimal load sequence Γ̂opt can be
found by varying ϕ from 0 to 2π. It is further noticed that, as ϕ scans
[0, 2π), the decision Γ̂m(t) changes, according to Eq. (4.5), only when:

cos (ϕ− ym [Γ1]− ym [Γ2]) = 0

⇔ ϕ = ±π

2
+ ym [Γ1]− ym [Γ2] (mod 2π)︸ ︷︷ ︸

ϕ
(1)
m ,ϕ

(2)
m

. (4.6)

Therefore, the sequence Γ̂ =
[
Γ̂1(t), Γ̂2(t), . . . , Γ̂M(t)

]T
changes only at(

ϕ
(1)
1 , ϕ

(2)
1 , ϕ

(1)
2 , ϕ

(2)
2 , · · · , ϕ(1)

M , ϕ
(2)
M

)
. For the remaining part of this section, we

assume that the above 2M points are distinct and nonzero, i.e., ϕ(j)
m ̸= ϕ

(k)
l

and ϕ
(j)
m ̸= 0, for any j, k,∈ {1, 2} and m, l ∈ {1, 2, . . . ,M} with m ̸= l.

There is a case where the above assumption does not hold, examined in [10].
If the above points are sorted in ascending order, i.e.,

(θ1, θ2, · · · , θ2M) =

= sort
(
ϕ
(1)
1 , ϕ

(2)
1 , ϕ

(1)
2 , ϕ

(2)
2 , · · · , ϕ(1)

M , ϕ
(2)
M

)
, (4.7)

then the decision Γ̂ will remain constant in each one of the 2M +1 intervals
(θi, θi+1), i ∈ {0, 1, . . . , 2M}, with θ0 = 0 and θ2M+1 = 2π. The goal is the
identification of the 2M + 1 sequences that correspond to these intervals,1

1It can be shown that the sequence at [0, θ1) is the same with the sequence at [θ2M , 2π)
and thus, 2M intervals/sequences should be identified.
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one of which gives the optimal Γ̂opt, i.e., the one that offers the maximum
power; thus, the quality of each sequence is calculated with the norm metric of
Eq. (4.3), which explicitly includes the direct channel h0. Based on the above,
the sorting operation in Eq. (4.7) is dominant in terms of computational cost,
which is O(M logM) and not 2M .

4.1.2 K > 2 Loads
The method described above can be generalized to K > 2 loads, i.e., Γm(t)
belongs in {Γ1,Γ2, . . . ,ΓK}. The solution is given by selecting the largest
value of ℜ

{
e−jϕym[Γk]

}
among all k ∈ {1, 2, . . . K}, which results in testing

2M × (K − 1) changes of ϕ and as a result, same number of sequence changes
and not 2M ×

(
K
2

)
, as one would expect; the rest of the steps are exactly the

same as in K = 2. Formal proof and details can be found in [10], omitted
due to space constraints. Notice that the norm metric for the quality of
each sequence must include h0. The complexity of the algorithm is again
O(M logM) for M > K and not KM .

Notice that the change in loads’ number also impacts the possible values
of the term Ym(t) which can be calculated as:

Ym(t) =
As − Γm(t)√

E
[
|As − Γm(t)|2

]

=


As − Γk√

(1/K)
∑K

k=1 |As − Γk|2
, Γm = Γk

As − As√
(1/K)

∑K
k=1 |As − Γk|2

, Γm = As

=


√
K (As − Γk)√∑K
k=1 |As − Γk|2

, Γm = Γk

0 , Γm = As

This change, however, does not alter the behaviour or the efficiency of the
LMMSE estimator, since the results are modified solely by this constant
term.
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Numerical Results

In this section, we study the behavior of MMSE as a function of the number
of RIS elements (M), while the percentage the of pilot symbols (α) used
remains fixed to 1% (Figs 5.1, 5.2). Notice that αLc > M throughout
the course of the experiment. We then plot the MMSE as a function of α
assuming M = 4096 in order to investigate the effect of the large scale case on
the system (Figs 5.3, 5.4). Both Rayleigh and Rician fading were examined.

Regarding all the figures that follow bellow, we consider κSD = κSTm =
κTmD = 0 for the Rayleigh case, κSD = κSTm = κTmD = 15 for Rician fading,
η = 10%, dX0 = 3m, dRIS−SD = 8 m, f2 = 870 MHz, B = 48 MHz, and 10
dB relative end-2-end antenna gain for the backscattered links compared to
direct link, assuming that the source and destination antennas point towards
the RIS (in order to assist its operation). Channel coherence time in number
of symbols is set to Lc = 24 × 105, corresponding to 100 ms and SD link
is set at 48 Mbps using QPSK modulation. The Normalized MSE (NMSE)
is defined as: NMSE = E

[
|ĥ−h|2
|h|2

]
. It is lastly worth mentioning that all

presented illustrations are a product of averaged results after 105 realizations
of the channels’ coefficients hi, i ∈ {STm,TmD, SD}, while assuming that the
angles of both the LoS and the compound links’ channel coefficients remain
invariant throughout the course of the simulation.

We specifically set dSD = 30 m, vX = 4 and P = 0 dBm for Figures 5.1
and 5.3, which lead to SNR0 = 21 dB for the LoS link. Figs. 5.2, 5.4 and
Figs. 5.5, 5.6 are offered with dSD = 15 m, vX = 3 where P = 20 dBm, which
yields SNRm = −20 dB concerning the m-th element’s received signal for the
first two Figs, while P is varied between 0 and 20 dBm for the latter Figs.
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Figure 5.1: MMSE of LoS Link vs the Number of RIS Elements for fixed
Training Symbols Value
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Figure 5.2: MMSE of m-th Tag’s Path vs the Number of RIS Elements for a
Fixed Training Symbols Value
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The achievable MMSE performance in terms of the number of RIS ele-
ments is depicted in Figures 5.1 and 5.2. Focusing first on the LoS path, we
notice that the simulation completely matches the equations derived in previ-
ous sections. As it was expected, an increase of M leads to an increase of the
MMSE, due to the shortening of the training symbols’ number corresponding
to the estimation of each hi and hence to hSD. The Rice case outperforms
the Rayleigh one as a result of the addition of a much more powerful and
deterministic LoS component, which leads to a significantly smaller variance
with respect to the values of each hi. Lastly, the Normalized value of the
MMSE is close to the real value due to the norm of each hi being close to 1
in the average case scenario.

The same hold regarding the estimation of a random tag’s channel coeffi-
cient in Fig. 5.2, only now the value of the MMSE is considerably greater due
to the decrease in signal strength. Recall that although hm is of normalized
power, it is also the compound coefficient meaning that each gm incorporates
both the Source to Tag and Tag to Destination large-scale losses, a metric
analogous to SNRm. Additionally, the decrease in power leads to a much
larger gap between the Rayleigh and the Rice case.
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Figure 5.3: MMSE of LoS Link vs the Number of Training Symbols for a
Fixed RIS Elements number
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Figure 5.4: MMSE of m-th Tag’s Path vs the Number of RIS Elements for a
fixed training symbols value

Figures 5.3 and 5.4 illustrate how the MMSE behaves with respect to the
number of pilot symbols α. For both the LoS path estimation as well as the
estimation of the m-th tag’s coefficient it is evident that as α increases, the
MMSE is reduced. Moreover at high training symbols number, the product
SNR0T increases to a value with order of magnitude much greater than κ
(recall that σ2

0 = 1
κ+1

). Hence, by observing the LoS link figure we notice
that at high α values the Rice case overlaps with the Rayleigh one. On the
other hand, considering more realistic values for α leads to a gap between the
Rice and the Rayleigh that is certainly non-negligible, especially regarding
the estimation of a tag’s coefficient as we see in Fig. 5.4.
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Figure 5.5: Impact of Channel Estimation Error to Power Improvement,
α = 1%
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Finally, Figs. 5.5 and 5.6 quantify the impact of channel estimation
error h̃m to the optimal-gain algorithm’s performance assuming Rice fading.
The optimal configuration is found based on the estimated channels {ĥm},
while the power of the received signal is computed using the true channel
coefficients. Channel coherence time in number of symbols is set to Lc =
24× 105, corresponding to channel coherence time of 100 ms and SD link at
48 Mbps with QPSK modulation. In these plots α is fixed at 1% (0.25% for
Fig. 5.6) while the transmitted signal’s power and parameter κ are varied.
It is found that the estimation error for large number of elements (M) has
an important impact to the algorithm’s performance, as the gap between the
ideal case and the estimation reaches 2 dB. The effect is even more evident
for smaller values of P, which in combination with a weaker LoS component
(κ = 1), yields a 3 dB difference.



Chapter 6

Conclusion/Future Work

In this work we discussed the channel estimation of RIS assisted wireless
network system and RIS’ contribution to the received signal’s average power
gain after the application of the Optimal Gain Algorithm using the estimated
channels as input.

In the first chapter we focused on the prior work in channel estimation
considering MIMO systems using both the matrix, vector and scalar versions
of the LMMSE estimator formulas, with an analytical derivation included,
corroborating the results. The second chapter offers an analytical system
(channel and signal) model which includes both the small and the large-scale
fading as well as specific parameters relevant to reflection (or backscatter)
radio, such as antenna structural mode and reflection efficiency. We then
applied the LMMSE estimator comparing the MSE of Rice fading to the
one of Rayleigh fading. Finally, we examined the contribution of the RIS
to the system after the application of the Optimal Gain Algorithm taking
into account the impact of the channel estimation error the the algorithm’s
performance.

We conclude that the Rice fading is more suited to describe the channel
model than Rayleigh fading in the RIS assisted scenario, since it takes into
account the Line of Sight link which (in the general case) has a power of orders
of magnitude greater than multipath’s power. This results in a smaller MSE
and, consequently, to a superior channel estimation, minimizing the gain-
loss of the algorithm. However, in both fading cases the gain-loss is non
negligible, especially considering how sensitive the system is to the number
of training symbols used for estimation .

Although the gains obtained from the algorithm are impressive, we have
assumed a static environment, which leaves room for a sufficient estima-
tion of the constant terms used in the LMMSE formulas and, therefore, a
sufficient channel estimation. However, this is not a feasible approach in
mobile scenarios where fast varying channel terms make an appearance and
the channel coherence time shortens. This case requires the solution of the,
far more taxing, joint estimation problem, which includes the estimation of
both the slow and the fast varying terms.



Chapter 7

Appendix

7.1 Orthogonality of the LMMSE estimator
From MIT notes

7.2 Orthogonality of the LMMSE estimator
(vector case)

In this section we will try to prove the two orthogonality principles [11], which
are a prerequisite for the derivation of the Wiener-Hopf equations. Let us
consider the same pilot-symbol model as in Chapter 1, that is:

x = cSτh+ v (7.1)

where x ∈ CTτ×1, h ∈ CM×1, v ∈ CTτ×1.

7.2.1 Orthogonality Principle 1
Suppose that the set of all the affine estimators of x is defined as:

A := {ĥ ∈ CM×1 : ĥ = Ax+ b} (7.2)

The first principle states that ĥL = hLMMSE is the LMMSE estimator of h,
if and only if

E[(h− ĥL)z
H] = 0 (7.3)

where z is any affine transformation of x, i.e. z ∈ A.

Proof (=>).
Let us first assume that ĥL ∈ A satisfies (7.3), but is not the LMMSE esti-
mator, i.e. there exists a ĥ0 ̸= ĥL: ĥ0 ∈ A and

E[∥h− ĥ0∥2] ≤ E[∥h− ĥL∥2] (7.4)
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We can rewrite the first half of the inequality as:

E[∥h− ĥ0∥2] = E[∥h− ĥL + ĥL − ĥ0∥2]
= E[∥h− ĥL∥2] + E[∥ĥL − ĥ0∥2]+
+ 2E[(h− ĥL)

H(ĥL − ĥ0)] (7.5)

Considering that ĥL ∈ A and ĥ0 ∈ A, it follows a fortiori that (ĥL − ĥ0) ∈ A
and combined with (7.3) we obtain:

E[(h− ĥL)(ĥL − ĥ0)
H] = 0 (7.6)

Recalling that trace is a linear operator, it is evident that for any complex
vectors x1, x2:

E[xH
2 x1] = E[trace(xH

2 x1)] = E[trace(x1x
H
2 )] = trace(E[x1x

H
2 ]) (7.7)

This result, along with (7.6), implies that 2E[(h−ĥL)
H(ĥL−ĥ0)] = trace(E[(h−

ĥL)(ĥL − ĥ0)
H]) = 0.

Consequently, (7.5) can be written as:

E[∥h− ĥ0∥2] = E[∥h− ĥL∥2] + E[∥h− ĥ0∥2] (7.8)

Substituting (7.8) to (7.4) we obtain:

E[∥h− ĥ0∥2] ≤ E[∥h− ĥL∥2]
E[∥h− ĥL∥2] + E[∥ĥL − ĥ0∥2] ≤ E[∥h− ĥL∥2]
E[∥ĥL − ĥ0∥2] ≤ 0 (7.9)

which is only true if ĥ0 = ĥL.

Proof (<=).
Let us now assume that ĥL is the LMMSE estimator but does not satisfy
(7.3), i.e. there exists a z0 ∈ A for which E[(h− ĥL)z

H
0 ] ̸= 0.

We introduce another linear estimator of the form: ĥ0 = ĥL + Cz0. Then
the MSE is modified to be E[∥h− ĥ0∥2] = E[∥h− ĥL −Cz0∥2]. After differ-
entiating with respect to C and setting the result to 0, we obtain:

Cmin = E[(h− ĥL)z
H]E[z0zH

0 ]
−1 (7.10)
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Hence, we conclude that the optimal ĥ0 is: ĥ0 = ĥL + Cminz0.

We continue by simplifying the new MSE in order to compare it to the
initial one:

E[∥h− ĥ0∥2] = E[∥h− ĥL − Cminz0∥2]
= E[∥h− ĥL∥2] + E[zH

0 C
H
minCminz0]− (7.11)

− 2E[zH
0 C

H
min(h− ĥL)]

After applying (7.7) to the second term of (7.12) we obtain:

E[zH
0 C

H
minCminz0] = trace(E[Cminz0z

H
0 C

H
min])

= trace(CminE[z0zH
0 ]C

H
min)

= trace(E[(h− ĥL)z
H]E[z0zH

0 ]
−1 (7.12)

E[(h− ĥL)z
H]H)

Following the same procedure regarding the third term of (7.12), we derive:

E[zH
0 C

H
min(h− ĥL)] = trace(E[(h− ĥL)z

HzH
0 C

H
min])

= trace(E[(h− ĥL)z
HzH

0 ]C
H
min)

= trace(E[(h− ĥL)z
H]E[z0zH

0 ]
−1 (7.13)

E[(h− ĥL)z
H]H)

Substituting the last two equations in (7.12) leads to:

E[∥h− ĥ0∥2] = E[∥h− ĥL∥2]− trace(E[(h− ĥL)z
H]E[z0zH

0 ]
−1E[(h− ĥL)z

H]H)
(7.14)

Since the trace of a PSD matrix is a non-negative scalar value, we can di-
rectly compare the two MSEs: E[∥h − ĥ0∥2] ≤ E[∥h − ĥL∥2],a result which
contradicts to the statement of ĥL being the LMMSE estimator.
Thus the proof is concluded.

7.2.2 Orthogonality Principle 2
The second principle states that ĥL ∈ A is the LMMSE estimator if and only
if:

E[h− ĥL] = 0 and E[(h− ĥL)x
H] = 0 (7.15)
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Both the necessity and the sufficiency can be proven straightforwardly from
Orthogonality Principle 1.

Proof (=>).
Suppose that ĥL is the LMMSE estimator. Setting A = 0 and b = 0 to z, it
is derived from (7.3) that: E[(h− ĥL)z

H] = E[(h− ĥL)] = 0.
Setting, therefore, A = I and b = 0 to z leads to: E[(h − ĥL)z

H] =
E[(h− ĥL)x

H] = 0.

Proof (<=).
Now assume that E[h− ĥL] = 0 and E[(h− ĥL)x

H] = 0.
Substituting z = Ax+ b to E[(h− ĥL)z

H] gives us:

E[(h− ĥL)z
H] = E[(h− ĥL)(x

HAH + bH)]

= E[(h− ĥL)x
H]AH + E[(h− ĥL)b

H)]

(7.15)
= E[(h− ĥL)(x

HAH + bH)]

= 0M×M + 0M×M = 0M×M (7.16)

Thus ĥL is the LMMSE estimator and the proof is completed.

7.2.3 Wiener-Hopf equations
As a by-product of the aforementioned derivation, we can now proceed to
the task of finding closed-form expressions for the optimal A and b.
It follows directly from (7.3), that:

b = E[h− Ax] = E[h]− AE[x] (7.17)

As for the case of A, we make use of (7.15):

E[(h− Ax− b)xH]
(7.17)
= E[(h− E[h]− A(x− E[x]))xH] = 0 (7.18)

From which we obtain:

E[(h− E[h])xH] = AE[(x− E[x])xH] (7.19)

Thus, since E[x] = E[h] = 0 (shown in Chapter 1), we get:

A = ChxC
−1
x (7.20)
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