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Abstract

In this thesis, we consider the problem of tensor completion. We investigate two cases:
In the first part, we consider Nonnegative Tensor Completion. We propose an improvement
over an existing distributed algorithm for the solution of this problem, test it on synthetic
and real datasets, and measure the execution time and speedups.

In the second part, we consider unconstrained tensor completion with smoothing con-
straints. We present the problem statement and we propose a distributed algorithm for
its solution. We develop an algorithm which takes into account the distribution of the
nonzero elements during the assignment of subtensors (and, as a result, of the correspond-
ing subfactors) to each processor. We test our adaptive partitioning algorithm on real
world datasets and measure the attained speedup.
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Chapter 1

Introduction

Tensors are mathematical objects that have recently gained great popularity due to
their ability to model multiway data dependencies [2], [3], [1], [4]. Tensor factorization (or
decomposition) into latent factors is very important for numerous tasks, such as feature
selection, dimensionality reduction, compression, data visualization and interpretation.
Tensor factorizations are usually computed as solutions of optimization problems [2], [3].
Alternating Optimization (AO), All–at–Once Optimization (AOO), and Multiplicative Up-
dates (MUs) are among the most frequently used techniques to solve those optimization
problems. Some of the most widely used tensor factorization models include the Canoni-
cal Polyadic Decomposition (CPD or CANDECOMP), the Tucker Decomposition and the
Tensor Train Decomposition [5]. CPD may also be referred to as Parallel Factor Anal-
ysis (PARAFAC). The problem of calculating a tensor factorization with nonnegativity
constraints is known as Nonnegative Tensor Factorization (NTF). In this work, we focus
on nonnegative tensor completion, using the PARAFAC model, and unconstrained tensor
completion, where we also use the PARAFAC model with smoothing constraints.

Recent Work for constrained tensor factorization/completion includes, among others,
[6], [7], [8], [9] and [10]. Stochastic methods have also been used for the computation of
Tensor Factorizations. Recent work on Stochastic Factorization/Completion includes [11],
[12], [13], [14] and [15].

In [6], several NTF algorithms and a detailed convergence analysis have been developed.
A general framework for joint matrix/tensor factorization/completion has been developed
in [7]. In [8], an Alternating Direction Method of Multipliers (ADMM) algorithm for NTF
has been derived, and an architecture for its parallel implementation has been outlined.
In [9], the authors consider constrained matrix/tensor factorization/completion problems.
They adopt the AO framework as outer loop and use the ADMM for solving the inner
constrained optimization problem for one matrix factor conditioned on the rest.

In [16], two parallel algorithms for unconstrained tensor factorization/completion have
been developed and results concerning the speedup attained by their Message Passing
Interface (MPI) implementations on a multi–core system have been reported. Related
work on parallel algorithms for sparse tensor decomposition includes [17] and [18].
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Prior works to the smooth tensor factorization problem, include [19], [20] and [21], while
works that use smooth tensor decompositions for tensor completion include [22] and [23].
The authors in [24] utilize tensor completion with smoothing constraints to approximate a
function from data points. To the best of our knowledge, there is no distributed algorithm
for the solution of smooth CPD.

1.1 Our contribution
In this work, we focus on tensor completion problems. We study Nonnegative ten-

sor completion and unconstrained tensor completion problems with smoothing constraints.
Our aim is to derive efficient algorithms, suitable for parallel implementation. We adopt
the AO framework and solve each Matrix Least Squares (MLS) problem; depending on the
constraints, we either solve an unconstrained Matrix Least Squares problem, or a Nonneg-
ative Matrix Least Squares problem via a first order optimal (Nesterov–type) algorithm for
L–smooth µ–strongly convex problems.1 Then, we describe in detail MPI implementations
of the AO algorithms and measure the speedup attained in a multi–core environment.

1.2 Notation
Vectors, matrices, and tensors are denoted by small, capital, and calligraphic capital

bold letters, respectively; for example, x, X, and X . Their elements are denoted by small
nonbold letters and a set of indices, for example, xi,j. For a matrix or a tensor, we may
also denote an element by [X]i,j and [X ]i,j,k, respectively, for convenience. We denote the
i–th column of a matrix X as xi.

Sets are denoted by blackboard bold capital letters; for example, U. R denotes the set
of real numbers. RI×J×K

+ denotes the set of (I × J × K) real nonnegative tensors, while
RI×J

+ denotes the set of (I×J) real nonnegative matrices. ∥·∥F denotes the Frobenius norm
of the tensor or matrix argument, I denotes the identity matrix of appropriate dimensions,
and (A)+ denotes the projection of matrix A onto the set of element–wise nonnegative
matrices.

The outer product of vectors a ∈ RI×1, b ∈ RJ×1, and c ∈ RK×1 is the rank-one tensor
a ◦ b ◦ c ∈ RI×J×K with elements [a ◦ b ◦ c]i,j,k = aibjck. The Khatri-Rao (columnwise
Kronecker) product of compatible matrices A and B is denoted as A⊙B, the Kronecker

1We note that a closely related algorithm for the solution of MNLS problems has been used in [25] and
[26]; we explain in detail later the performance improvement offered by our approach.
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product is denoted as A⊗B and the Hadamard (elementwise) product is denoted as A⊛B.
Finally, inequality A ⪰ B means that matrix A − B is positive semidefinite, and by

X ≥ 0, we denote a matrix X which has nonnegative elements.

1.3 Thesis Outline
The thesis is organized as follows:

• In Chapter 2, we introduce some background on Matrix Least Squares problems. We
discuss the unconstrained problem, and devote most of the section to the Nonnegative
Matrix Least Squares problem, where we analyze a first order accelerated gradient
method to get an approximate solution.

• In Chapter 3, we discuss the CP Decomposition. We start by giving some mathemati-
cal background on tensors, and proceed to present the unconstrained and nonnegative
PARAFAC models. We make a brief mention to the algorithms that compute the
models.

• Chapter 4 is devoted to Nonnegative Tensor Completion (NTC). We present the
problem statement, and explain Nonnegative Matrix Least Squares with Missing
Elements, which is the building block for the solution of the NTC problem. We
present a new parallel scheme for the solution of NTC and show experiments that
measure the speedup of our algorithm.

• Chapter 5 is dedicated to unconstrained tensor completion with smoothing con-
straints. We discuss the problem and its solution, and we present a parallel scheme
to solve this problem. We develop an adaptive partitioning algorithm that can lead
to improvement of speedup in datasets which do not have their nonzeros distributed
uniformly.

• Finally, in Chapter 6, we conclude the thesis and suggest future work.
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Chapter 2

Matrix Least Squares Problems

In this chapter, we describe the matrix least squares problem, which will be the
workhorse towards the development of efficient algorithms for tensor factorizations. We
first give some definitions related to linear algebra operations.

2.1 Mathematical Background
Definition 2.1 Let A ∈ RN×M and B ∈ RP×K. The Kronecker product (or tensor

product) of A and B is defined as the matrix

A⊗B =

a1,1B · · · a1,MB
... . . . ...

aN,1B · · · aN,MB

 ∈ RNP×MK . (2.1)

Definition 2.2 Let A ∈ RN×M and B ∈ RP×M . The Khatri–Rao product of A and B

is defined as the matrix

A⊙B =
[
a1 ⊗ b1 · · · aM ⊗ bM

]
∈ RNP×M . (2.2)

Definition 2.3 Let A ∈ RN×M and B ∈ RN×M . The Hadamard Product or elementwise
matrix product of A and B is a matrix of size N ×M , and is defined as

[A⊛B]n,m = an,mbn,m, (2.3)

for all n ∈ {1, . . . , N}, m ∈ {1, . . . ,M}.
Regarding the Kronecker and Khatri–Rao products, we note that they are both as-

sociative [4]. For example, a Khatri–Rao product of three matrices can be equivalently
calculated as

A⊙B⊙C = (A⊙B)⊙C = A⊙ (B⊙C) . (2.4)
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2.2 Matrix Least Squares
Let X ∈ RM×N and B ∈ RN×R and consider the problem

min
A

f(A) =
1

2
∥X−ABT∥2F . (2.5)

This problem is known as the matrix least squares problem. The cost function is convex,
therefore, the existence of a global minimizer of f , A∗, is guaranteed. The solution A∗

must satisfy the following system of linear equations

XB = A∗BTB, (2.6)

which are known as normal equations. Thus, A∗ is given by

A∗ = XB† = XB
(
BTB

)−1
. (2.7)

For an extensive discussion on the computational aspects of the solution of the normal
equations the reader is referred to [27].

2.3 Matrix Nonnegative LS
Let X ∈ Rm×n, A ∈ Rm×r

+ , B ∈ Rn×r, and consider the Matrix Nonnegative LS (MNLS)
problem

min
A≥0

f(A) :=
1

2
∥X−ABT∥2F . (2.8)

The problem given in (2.8), is convex, however, it does not have a closed form solution.
Hence, we resort to iterative methods that solve efficiently problems of this form in the
following sections. The next section focuses on L–smooth µ–strongly convex optimization
problems.

2.3.1 Optimal first–order methods for L–smooth µ–strongly
convex optimization problems

We consider optimization problems of smooth and strongly convex functions and briefly
present results concerning their information complexity and the associated first–order op-
timal algorithms (for a detailed exposition see [28, Chapter 2]).

We assume that f : Rn → R is a smooth (that is, differentiable up to a sufficiently high
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Algorithm 1: Accelerated gradient algorithm for L-smooth µ-strongly convex
problems.

Input: x0 ∈ RN , µ, L. Set y0 = x0, K = L
µ
, β =

√
K−1√
K+1

.
1 k-th iteration
2 xk+1 =

(
yk − 1

L
∇f(yk)

)
X

3 yk+1 = xk+1 + β(xk+1 − xk)

order) convex function, with gradient ∇f(x) and Hessian ∇2f(x). Our aim is to solve the
problem

min
x

f(x), (2.9)

within accuracy ϵ > 0. The solution accuracy is defined as follows. If f ∗ := min
x

f(x), then
point x̄ ∈ Rn solves problem (2.9) within accuracy ϵ if f(x̄)− f ∗ ≤ ϵ.

Let 0 < µ ≤ L < ∞. A smooth convex function f is called L–smooth or, using the
notation of [28, p. 66], f ∈ S∞,1

0,L , if

0 ⪯ ∇2f(x) ⪯ LI, ∀x ∈ Rn, (2.10)

and L–smooth µ–strongly convex, or f ∈ S∞,1
µ,L , if

µI ⪯ ∇2f(x) ⪯ LI, ∀x ∈ Rn. (2.11)

The number of iterations that first-order methods need for the solution of problem (2.9),
within accuracy ϵ, is O

(
1√
ϵ

)
if f ∈ S∞,1

0,L , and O
(√

L
µ
log 1

ϵ

)
if f ∈ S∞,1

µ,L [28, Theorem 2.2.2].
The convergence rate in the first case is sublinear while, in the second case, it is linear and
determined by the condition number of the problem, K := L

µ
. Thus, strong convexity is a

very important property that should be exploited whenever possible.
An algorithm that achieves this complexity, and, thus, is first–order optimal, appears

in Algorithm 1 (see, also [28, p. 80]).
If the problem of interest is the constrained problem

min
x∈X

f(x), (2.12)

where X is a closed convex set, then the corresponding optimal algorithm is very much
alike Algorithm 1, with the only difference being in the computation of xk+1. We now have
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that [28, p. 90]

xk+1 = ΠX

(
yk −

1

L
∇f(yk)

)
, (2.13)

where ΠX(·) denotes the Euclidean projection onto set X. The convergence properties of
this algorithm are the same as those of Algorithm 1. If the projection onto set X is easy
to compute, then the algorithm is both theoretically optimal and very efficient in practice.

2.3.2 Optimal first–order methods for L–smooth µ–strongly
convex MNLS problems

Algorithm 2: Accelerated gradient algorithm for NMLS problems with proximal
term.

Input: X ∈ RP×Q, B ∈ RQ×R, A∗ ∈ RP×R

1 L = max(eig(BTB)), µ = min(eig(BTB))

2 λ = g(L, µ), K = L+λ
µ+λ

, β =
√
K−1√
K+1

3 W = −XB− λA∗, Z = BTB+ λI
4 A0 = Y0 = A∗
5 k = 0
6 while (terminating condition is FALSE) do
7 ∇fP(Yk) = W +YkZ

8 Ak+1 =
(
Yk − 1

L+λ
∇f(Yk)

)
+

9 Yk+1 = Ak+1 + β (Ak+1 −Ak)
10 k = k + 1

11 return Ak.

In this section, we present an optimal first–order algorithm for the solution of L–smooth
µ–strongly convex MNLS problems. Optimal first–order methods have recently attracted
great research interest because they are strong candidates and, in many cases, the only
viable way for the solution of very large optimization problems.

Nesterov–type algorithm for MNLS with proximal term

In the sequel, we present a Nesterov–type algorithm for the MNLS problem with prox-
imal term. Let X ∈ Rm×n, A ∈ Rm×r, B ∈ Rn×r, λ > 0 and consider the problem

min
A≥0

f(A) :=
1

2
∥X−ABT∥2F +

λ

2
∥A−A∗∥2F . (2.14)
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The gradient and Hessian of f , at point A, are, respectively,

∇f(A) = −
(
X−ABT

)
B+ λ(A−A∗) (2.15)

and
∇2f(A) :=

∂2f(A)

∂vec(A)∂vec(A)T
= BTB⊗ I+ λI ⪰ 0. (2.16)

Let L := max(eig(BTB+λI)) and µ := min(eig(BTB+λI)). Since µ > 0, the problem
(2.14) is L–smooth µ-strongly convex. A first–order optimal algorithm for the solution of
(2.14) can be derived using the approach of Section 2.3.1. We note that [25] and [26] solved
problem (2.14) using a variation of Algorithm 1, which is equivalent to Algorithm 1 with
µ = 0. However, if µ > 0, then this algorithm is not first–order optimal and, as we shall
see later, it performs much worse than the optimal.

We note that the values of L and µ are necessary for the development of the Nesterov-
type algorithm, thus, their computation is imperative.1

We choose λ based on L and µ, and denote this functional dependence as λ = g(L, µ).
If µ

L
≪ 1, then we may set λ ≈ 10µ, significantly improving the conditioning of the problem

by putting large weight on the proximal term; however, in this case, we expect that the
optimal point will be biased towards A∗. Otherwise, we may set λ ⪅ µ, putting small
weight on the proximal term and permitting significant progress towards the computation
of A that satisfies approximate equality X ≈ ABT as accurately as possible.

The Karush–Kuhn–Tucker (KKT) conditions for problem (2.14) are [25]

∇f(A) ≥ 0, A ≥ 0, ∇f(A)⊛A = 0. (2.17)

These expressions can be used in a terminating condition. For example, we may ter-
minate the algorithm if

min
i,j

(
[∇f(A)]i,j

)
> −δ1,max

i,j

(∣∣∣[∇f(A)⊛A]i,j

∣∣∣) < δ2, (2.18)

for small positive real numbers δ1 and δ2. Of course, other criteria, based, for example, on
the (relative) change of the cost function can be used in terminating conditions.

A Nesterov–type algorithm for the solution of the MNLS problem with proximal term
1An alternative to their direct computation is to estimate L using line-search techniques and overcome

the computation of µ using heuristic adaptive restart techniques [29]. However, in our case, this alternative
is computationally demanding, especially for large–scale problems, and shall not be considered.
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(2.14) is given in Algorithm 2. For notational convenience, we denote Algorithm 2 as

Aopt = Nesterov_MNLS(X,B,A∗).

Computational complexity of Algorithm 2

Quantities W and Z are computed once per algorithm call and cost, respectively,
O(mnr) and O(rn2) arithmetic operations. Quantities L and µ are also computed once
and cost at most O(r3) operations. ∇f(Yk), Ak, and Yk are updated in every iteration
with cost O(mr2), O(mr), and O(mr) arithmetic operations, respectively.
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Chapter 3

Tensor Factorizations

In this chapter, we will discuss the CP Decomposition. First, we will give some prelim-
inary definitions about tensors.

3.1 Definitions
Definition 3.1 A tensor is a multidimensional array. The order of a tensor defines

the number of dimensions a tensor has.
Based on the definition above, a third order tensor is a tensor with three indices. An

illustration is shown in Figure 3.1.
A matrix is a second–order tensor and a vector is a first–order tensor. We collectively

refer to tensors of order three or higher as higher–order tensors.
Definition 3.2 The Frobenius norm of a tensor X ∈ RI1×I2×···×IN is defined as

∥X∥F =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

x2
i1,i2,...,iN

. (3.1)

Definition 3.3 A fiber of a tensor is a vector defined by fixing all indices of a tensor but
one. As an example, let us assume a tensor X ∈ RI×J×K . x:,j,k defines a mode–1 fiber,

j = 1, . . . , J

i = 1, . . . , I

k = 1, . . . , K

Figure 3.1: A third order tensor X ∈ RI×J×K .
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Figure 3.2: Mode–1, mode–2 and mode–3 fibers for a third order tensor, respectively. This
image is derived from [1].

xi,:,k defines a mode–2 fiber and xi,j,: defines a mode–3 fiber, as shown in the figure below.
Definition 3.4 Let a ∈ RN , b ∈ RP , and c ∈ RJ . The outer product of a and b is
defined as the rank–one matrix with elements

[a ◦ b]n,p = anbp, (3.2)

for all n ∈ {1, . . . , N}, p ∈ {1, . . . , P}. In the same manner, the outer product of a, b and
c is defined as the rank–one tensor with elements

[a ◦ b ◦ c]n,p,j = anbpcj, (3.3)

for all n ∈ {1, . . . , N}, p ∈ {1, . . . , P} , and j ∈ {1, . . . , J} . Rank–1 tensors for N–th
order tensors, with N > 3, are defined similarly.
Definition 3.5 Let X ∈ RI1×I2×···×IN . The matricization of the tensor with respect
to the j–th mode (mode–j matricization) is defined as the matrix X(j) ∈ RIj×

∏N
k=1,k ̸=j Ik ,

where the element [X ]i1,i2,...,ij ,...,iN is mapped to [X(j)]ij ,k according to [1]:

k = 1 +
N∑
p=1
p ̸=j

(ip − 1)Jp, where Jp =

p−1∏
m=1
m̸=j

Im.

This can be better understood through an example. Let a tensor X ∈ RI×J×K . We are
interested in examining the mode–1 matricization of X , X(1) ∈ RI×JK . Then, element
[X ]i1,i2,i3 will be mapped to element [X(1)]i1,k, where

k = 1 + (i2 − 1) + (i3 − 1)I2, (3.4)

since
1∏

m=2

Im =
∏
m∈∅

Im = 1 (by convention) and J3 =
2∏

m=2

Im = I2. For the mode–2
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matricization, X(2) ∈ RJ×IK , element [X ]i1,i2,i3 will be mapped to element [X(2)]i2,k′ , where

k′ = 1 + (i1 − 1) + (i3 − 1)I1,

since J1 =
0∏

m=1

Im = 1, J3 =
2∏

m=2

Im = I1, and so on.

Definition 3.6 The Canonical Polyadic (CP) or PARAFAC decomposition of a tensor
is given by

X = ⟦U(1), . . . ,U(N)⟧ :=
R∑

r=1

u(1)
r ◦ · · · ◦ u(N)

r . (3.5)

It has been shown that under mild conditions, a tensor rank decomposition is unique, up
to a scaling and permutation ambiguity.

3.2 PARAFAC model
Let tensor X o ∈ RI1×I2×···×IN admit a factorization of the form

X o = ⟦Uo(1), . . . ,Uo(N)⟧ =
R∑

r=1

uo(1)
r ◦ · · · ◦ uo(N)

r , (3.6)

where Uo(i) = [u
o(i)
1 · · · u

o(i)
R ] ∈ RIi×R, with i ∈ {1, . . . , N}. We observe the noisy tensor

X = X o + E , where E is the additive noise. Estimates of Uo(i) can be obtained by
computing matrices U(i) ∈ RIi×R, for i ∈ {1, . . . , N}, that solve the optimization problem

min
U(1),...,U(N)

fX
(
U(1), . . . ,U(N)

)
, (3.7)

where fX is a function measuring the quality of the factorization. A common choice for
fX is

fX
(
U(1), . . . ,U(N)

)
=

1

2

∥∥X − ⟦U(1), . . . ,U(N)⟧
∥∥2
F
. (3.8)

If Y = ⟦U(1), . . . ,U(N)⟧, then, for an arbitrary mode i, the corresponding matrix unfolding
is given by [1]

Y(i) = U(i)
(
U(N) ⊙ · · · ⊙U(i+1) ⊙U(i−1) ⊙ · · · ⊙U(1)

)T
,

Y(i) = U(i)K(i)T ,
(3.9)
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where we define K(i) as

K(i) =

(
N

⊙
j=i+1

U(j) ⊙
i−1

⊙
j=1

U(j)

)
. (3.10)

Thus, fX can be expressed as

fX (U(1), . . . ,U(N)) =
1

2

∥∥X(i) −Y(i)

∥∥2
F

(3.11)

These expressions form the basis of the alternating least squares algorithm (ALS) for tensor
factorization, in the sense that, for fixed matrix factors U(j), with j ̸= i, we can update
U(i) by solving a matrix least–squares problem.

3.3 Constrained Tensor Decomposition
In many applications, we are interested in tensor decompositions whose factors should

comply with constraints emerging from underlying models or for interpretability reasons.
Specifically, let tensor X o ∈ RI1×···×IN admit a factorization of the form

X o = ⟦U(1)o, . . . ,U(N)o⟧ =
R∑

r=1

u(1)o
r ◦ · · · ◦ u(N)o

r , (3.12)

where U(n)o =
[
u
(n)o
1 · · · u

(n)o
R

]
∈ Bn ⊆ RIn×R, with n ∈ {1, . . . , N}. We observe the noisy

tensor X = X o + E , where E ∈ RI1×···×IN is the additive noise. Then, the problem of
finding estimates of the factors U(n)o can be formulated as

min
U(1),...,U(n)

fX
(
U(1), . . . ,U(N)

)
s.t. U(n) ∈ Bn, n ∈ {1, . . . , N},

(3.13)

where fX is a function measuring the quality of the factorization. As in the unconstrained
case, we focus on the sum of squared errors cost function

fX
(
U(1), . . . ,U(N)

)
=

1

2

∥∥X − ⟦U(1), . . . ,U(N)⟧
∥∥2
F
. (3.14)
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Under the ALS framework, each factor can be updated via solving an unconstrained/constrained
matrix least–squares problem. It can be formulated as:

min
U(i)

1

2
∥X(i) −U(i)K(i)∥2F

s.t. U(i) ∈ Bi, i ∈ {1, . . . , N}.
(3.15)

Set Bi, for i ∈ {1, . . . , N}, can be

• RIi×R: unconstrained case,

• RIi×R
+ : case of nonnegativity constraints.

Tensor Decomposition with nonnegativity constraints

Recall expressions (3.7), (3.8) and (3.11):

min
U(1),...,U(N)

fX
(
U(1), . . . ,U(N)

)
,

fX
(
U(1), . . . ,U(N)

)
=

1

2

∥∥X − ⟦U(1), . . . ,U(N)⟧
∥∥2
F
,

fX (U(1), . . . ,U(N)) =
1

2

∥∥X(i) −Y(i)

∥∥2
F
.

If we introduce the constraint {U(i)}Ni=1 ≥ 0, then these expressions form the basis for the
AO NTF in the sense that, if we fix all but one of the matrix factors, we can update the
remaining factor by solving an MNLS problem.

It has been shown in [30] that the AO NTF algorithm with proximal term falls under the
block successive upper bound minimization (BSUM) framework, which ensures convergence
to a stationary point of problem (3.7).
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Chapter 4

Tensor Completion

4.1 Introduction
In many cases of practical interest, we observe a small subset of the elements of tensor

X , indexed by Ω ⊆ NI1 × · · · × NIN . Let M be a binary tensor with the same size as X
whose elements are defined as

M(i1, i2, . . . , iN) =

{
1, if (i1, i2, . . . , iN) ∈ Ω,

0, otherwise.
(4.1)

The number of nonzero elements of X is equal to nnz := |Ω|. The TC problem can be
expressed as

min fΩ
(
U(1),U(2), . . . ,U(N)

)
+

λ

2

N∑
i=1

∥U(i)∥2F , (4.2)

where

fΩ
(
U(1),U(2), . . . ,U(N)

)
=

1

2

∥∥M⊛
(
X − ⟦U(1),U(2), . . . ,U(N)⟧

)∥∥2
F
. (4.3)

If Y = ⟦U(1),U(2), . . . ,U(N)⟧, then

fΩ
(
U(1),U(2), . . . ,U(N)

)
=

1

2

∥∥M(i) ⊛
(
X(i) −Y(i)

)∥∥2
F
, i ∈ NN , (4.4)

where M(i), X(i), and Y(i) are, respectively, the matrix unfoldings of M, X , and Y with
respect to the i-th mode. Similarly to the dense case, these expressions form the basis of
the AO method for TC. More specifically, if we consider factor U(i) as a variable, with all
the other factors being fixed, then we can update U(i) by solving the problem

min
U(i)∈U(i)

∥∥M(i) ⊛
(
X(i) −U(i)K(i)T

)∥∥2
F
+

λ

2
∥U(i)∥2F . (4.5)
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4.2 Nonnegative Matrix Least Squares with Missing
Elements

The solution of the Matrix Least Squares with Missing Elements (MLSME) problem
will be the building block for the solution of the TC problem. Let X ∈ RP×Q, A ∈ RP×R,
and B ∈ RQ×R. Let Ω ⊆ NP ×NQ be the set of indices of the known elements of X and let
M be a matrix with the same size as X, with elements M(i, j) equal to one or zero, based
on the availability of the corresponding element of X. We consider the problem

min
A∈A

fΩ(A) :=
1

2

∥∥M⊛
(
X−ABT

)∥∥2
F
+

λ

2
∥A∥2F . (4.6)

The gradient and the Hessian of fΩ, at point A, are given by

∇fΩ(A) = −
(
M⊛X−M⊛

(
ABT

))
B+ λA (4.7)

and
∇2fΩ(A) =

(
BT ⊗ IP

)
diag (vec (M)) (B⊗ IP ) + λIPR. (4.8)

We focus on the nonnegative case, where we solve the MLSME problem using the Nesterov-
type algorithm of Algorithm 3. We observe that this algorithm is much more complicated
than Algorithm 2, mainly because of the computations in line 6, which must be repeated
in every iteration.

A crucial point of the algorithm is the assignment of values to parameters µ and L. If
we denote the optimal values as µ∗ and L∗, then it turns out that µ∗ + λ and L∗ + λ are,
respectively, equal to the smallest and the largest eigenvalue of ∇2fΩ. As the size of the
problem grows, the computation of µ∗ and L∗ becomes very demanding. We set µ = 0 and
L = max(eig(BTB)), which can be easily computed, especially in the cases of small R. We
have observed that, in practice, our choice for µ is very accurate for very sparse problems,
while our choice for L is an easily computed upper bound for L∗.

We denote the output of Algorithm 3 as

A+ = NMLSME(X,M,B,A∗, λ).

The computational complexity of Algorithm 3 is as follows:

1. the computation of W requires O(|Ω|R) arithmetic operations;

2. the computation of Zl requires O (|Ω|R) arithmetic operations;
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Algorithm 3: Nesterov-type algorithm for the nonnegative MLSME problem.
Input: X,M ∈ RP×Q, B ∈ RQ×R, A∗ ∈ RP×R, λ, µ, L

1 W = −(M⊛X)B

2 K = L+λ
µ+λ

, β =
√
K−1√
K+1

3 A0 = Y0 = A∗
4 l = 0
5 while (terminating condition is FALSE) do
6 Zl =

(
M⊛

(
YlB

T
))

B
7 ∇fΩ(Yl) = W + Zl + λYl

8 Al+1 =
(
Yl − 1

L+λ
∇fΩ(Yl)

)
+

9 Yl+1 = Al+1 + β (Al+1 −Al)
10 l = l + 1

11 return Al.

3. the computation of L and µ requires at most O(R3) arithmetic operations;

4. the computation of ∇fΩ(Yl) and the updates of Al and Yl require O(PR) arithmetic
operations.

4.3 Nonnegative Tensor Completion
At a high level, the update in the nonnegative case is given by

U
(i)
k+1 = NMLSME(X(i),M(i),K

(i)
k ,U

(i)
k , λ). (4.9)

In line 1 of Algorithm 3, matrix W
(i)
k is computed in a row-wise manner, with its j-th row,

W
(i)
k (j, :), computed as follows

W
(i)
k (j, :) :=

(
M(i)(j, :)⊛X(i)(j, :)

)
K

(i)
k . (4.10)

Note that for every inner iteration (indexed by l) in line 6 of Algorithm 3, we compute

Z
(i)
k,l =

(
M(i) ⊛

(
Y

(i)
k,lK

(i)T
k

))
K

(i)
k . (4.11)
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Figure 4.1: Tensor X , factors U(1), U(2), and U(3), and their partitioning for p1 = p2 = 3
and p3 = 2.

4.4 Alternating optimization for Tensor Completion
In Algorithm 4, we present the AO TC algorithm. We start from initial points U

(i)
0 ,

for i = 1, . . . , N , and solve, in a circular manner, MLSME problems, based on the previ-
ous estimates. Similar to TD, we may perform an acceleration step after each AO outer
iteration.

Algorithm 4: AO algorithm for NTC.
Input: X , Ω, U(i)

0 ∈ Ui, i = 1, . . . , N, λ.
1 k = 0
2 while (1) do
3 for i = 1, 2, . . . N do
4 U

(i)
k+1 = NMLSME

(
X(i),M(i),K

(i)
k ,U

(i)
k , λ

)
5 if (terminating condition is TRUE) then break; endif
6 k = k + 1

7 return U
(i)
k , i = 1, . . . , N .

4.5 Parallel Scheme

4.5.1 Topology preliminaries
We consider that we have available p =

∏N
i=1 pi processing elements. pi corresponds to

the number of processing units, for mode i. We describe in detail the implementation of the
algorithms for the computation of the mode-N tensor X ∈ RI1×···×IN onto an N -dimensional
Cartesian processor space, whose processors are denoted as pi1,...,iN , with ij ∈ {1, . . . , pj}
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and j ∈ {1, . . . , N}. We introduce certain partitionings of the factor matrices. We partition
each factor matrix U(i) into pi block rows as

U(i) =
[ (

U(i)1
)T

· · ·
(
U(i)pi

)T ]T
, (4.12)

with Uij ∈ R
Ii
pi

×R, for j ∈ Npi .

Communication domains

We define certain communication domains (or processor groups) [31] over subsets of
the p processors, which are used for the efficient collaborative implementation of specific
computational tasks, as explained in detail below.

First, we define the (N − 1)-dimensional groups of processors involving the
∏N

k=1,k ̸=i pk

processors having the i-th index equal to j, i.e.,

Pi,j := {pk1,k2,...,ki−1,j,ki+1,...,kN : kl ∈ Npl , l ̸= i}, i ∈ NN , j ∈ Npi . (4.13)

These processor groups form hyperlayers in the processor space and are used for the col-
laborative update of U(i)j

k .
We also define the 1D processor groups involving the pi processors that differ only at

the i-th index, for i ∈ NN :

Pk1,...,ki−1,:,ki+1,...,kN := {pk1,...,ki−1,j,ki+1,...,kN : j = 1, . . . , pi}, kj ∈ Npj . (4.14)

Each of these groups forms a mode-i fiber in the processor space and is used for the
collaborative computation of U(i)T

k+1U
(i)
k+1, for i ∈ NN .

4.5.2 Variable partitioning and data allocation
We describe in detail the implementation of the NTC algorithm for the decomposition

of a mode-N tensor X ∈ RI1×···×IN on an N -dimensional Cartesian processor space, whose
processors are denoted as pi1,...,iN , with ij ∈ Npj and j ∈ NN .

At first, we introduce certain partitionings of the factor matrices and the tensor X .
The collaborative update of U(i)j

k on Pi,j is achieved as follows:

1. Term W
(i)j

k is computed in a collaborate manner on Pi,j and scattered among the
processors of the group via a reduce-scatter operation.
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2. Before the execution of the while loop of Algorithm 3, we must compute the global
parameter L = max

(
eig
(
K

(i)T
k K

(i)
k

))
.

3. During each iteration of the while loop, indexed by l (see line 6 of Algorithm 3, we
compute matrix Z

(i)j

k,l according to (4.11). Each processor in the group Pi,j computes
its contribution to Z

(i)j

k,l in a row-wise fashion. By a reduce-scatter operation over
Pi,j, all processors in the group learn the appropriate rows of Z(i)j

k,l and perform an
accelerated gradient step. An all-gather operation over Pi,j follows, and thus all
processors in the group learn Y

(i)j

k,l+1 and become ready for the next iteration of the
while loop.

4. After the end of Algorithm 3, the updated parts of U
(i)j

k are all-gathered at all
processors of the group Pi,j, so that all processors in the group learn the updated
factor U

(i)j

k+1.

5. By applying an all-reduce operation to
(
U

(i)j

k+1

)T
U

(i)j

k+1, for j ∈ Npi , on each of the
mode-i 1D processor groups, all processors learn U

(i)T
k+1U

(i)
k+1. Thus, all processors can

compute K
(i+1)T
k K

(i+1)
k .

4.6 Numerical Experiments
Next, we present results for the nonnegative tensor completion problem. In the cases

where the tensor dimensions differ significantly over the modes the processor grid resembles
the tensor, that is, we assign more processors along the modes with the largest dimensions.

We start with the nonnegative case with synthetic and real-world data. In Fig. 4.2
(left), we plot the execution time for a synthetic tensor of size 9, 200× 9, 200× 9, 200 with
8, 000, 000 non-zero entries (99.999% sparsity) and R = 15, 50. In Figs. 4.3 (right) and 4.4
(left), we plot the execution times for synthetic tensors with size 71, 567 × 65, 133 × 171

and 800, 000× 1000× 1000, respectively, both having 8, 000, 044 non-zero entries (99.999%
sparsity), and R = 15, 50.

In Fig. 4.5 (right), we consider the real-world nonnegative sparse dataset Chicago
Crime, which concerns crime reports in the city of Chicago starting from January 1st
2001 up to December 11th, 2017 [32]. Data are arranged in a 4–th order tensor X ∈
R6,186×24×77×32

+ with 5, 330, 673 non-zeros. The modes correspond to (day, hour, community,
crimetype), where ’community’ is one of the communities of Chicago, and the non-zeros
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represent the number of reports of a specific type of crime. In this experiment, we set
R = 10, 30.

4.6.1 Comments
In Figure 4.4, we are noticing that for R = 10 and for p = 2, 8, 64, 144, the speedup

achieved is above the linear speedup. This could be attributed to one of the dimensions
being large, which makes memory access operations very costly in the serial case.

4.6.2 Speedup and time plots
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Figure 4.2: Speedup plot (left) and execution time in sec (right) for a synthetic nonnegative
tensor of dimensions 9, 200 × 9, 200 × 9, 200 with 8, 000, 000 elements (99, 99% sparsity)
and p = 1, 2, 8, 27, 64, 125, 216 cores.
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Figure 4.3: Speedup plot (left) and execution time in sec (right) for a synthetic nonnegative
tensor of dimensions 71, 567 × 65, 133 × 171 with 8, 000, 044 elements (99, 99% sparsity)
and p = 1, 9, 64, 144, 171, 240 cores.
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Figure 4.4: Speedup plot (left) and execution time in sec (right) for a synthetic nonnegative
tensor of dimensions 800, 000× 1, 000× 1, 000 with 8, 000, 044 elements (99, 99% sparsity)
and p = 1, 2, 8, 64, 144, 240 cores.
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Figure 4.5: Speedup plot (left) and execution time in sec (right) for a tensor, formed from
the Chicago Crime dataset, with dimensions 6, 186×24×77×32 with 5, 330, 673 elements
(68, 62% sparsity) and p = 1, 20, 40, 80, 120, 160, 200, 240 cores.
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Chapter 5

Tensor Completion with Smoothing
Constraints

We are now focusing on the CPD tensor completion problem that is augmented with
smoothness regularization

min fΩ
(
U(1),U(2), . . . ,U(N)

)
+ λ

N∑
i=1

∥U(i)∥2F +
N∑
i=1

µi∥TiU
(i)∥2F . (5.1)

Ti ∈ R(Ii−1)×Ii is a smoothness promoting matrix. We define it as Ti(j, j) = 1 and
Ti(j, j + 1) = −1, with the rest of the elements being equal to zero. We redefine
fΩ
(
U(1),U(2), . . . ,U(N)

)
for this problem as

fΩ
(
U(1),U(2), . . . ,U(N)

)
=

1

M

∥∥M⊛
(
X − ⟦U(1),U(2), . . . ,U(N)⟧

)∥∥2
F
, (5.2)

where M is the number of available data points that we use for training and M is defined as
in chapter 4. The authors in [24] use the cost function in (5.1) and try to approximate any
arbitrary function, using the CP decomposition. The method is referred to as Canonical
System Identification (CSID). They solve this problem using an alternating optimization
method. In addition, for each factor, the update is performed in a row–wise manner. Let
u
(i)
k denote the k–th row of the i–th factor, m(i)k the k–th column of the matricization of

M with respect to the i–th mode, x(i)k the k–th column of the matricization of X with
respect to the i–th mode and K(k) is defined as in chapter 4. For each row, the following
problem is being solved

min
u
(i)
k

1

M
∥diag(m(i)k)(x(i)k −K(k)u

(i)
k )∥22 + λ∥u(i)

k ∥22 + µk∥u(i−1)
k − u

(i)
k ∥22 + µk∥u(i+1)

k − u
(i)
k ∥22.

(5.3)
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Figure 5.1: Tensor X , factors U(1), U(2), and U(3), and their partitioning for p1 = p2 = 3
and p3 = 2.

The solution for uk
i is given by

u
(i)
k =


(K(k)T diag2(m(i)k)K

(k) + (λ+ µk)I)
−1(K(k)T diag2(m(i)k)x(i)k − µk(u

(i+1)
k )), if k = 1

(K(k)T diag2(m(i)k)K
(k) + (λ+ µk)I)

−1(K(k)T diag2(m(i)k)x(i)k − µk(u
(i−1)
k )), if k = Ii

(K(k)T diag2(m(i)k)K
(k) + (λ+ 2µk)I)

−1(K(k)T diag2(m(i)k)x(i)k − µk(u
(i−1)
k + u

(i+1)
k )), else

(5.4)
We notice that for the update of the i-th row we need the previous updated row, as well as
the next one. The method has also been used in [33] for the problem of self–interference
cancellation. The results are comparable to the state of the art algorithms utilizing neural
networks.

5.1 Parallel Scheme

5.1.1 Topology preliminaries
We consider that we have available p =

∏N
i=1 pi processing elements. pi corresponds to

the number of processing units, for mode i. We describe in detail the implementation of the
algorithms for the computation of the mode-N tensor X ∈ RI1×···×IN onto an N -dimensional
Cartesian processor space, whose processors are denoted as pi1,...,iN , with ij ∈ {1, . . . , pj}
and j ∈ {1, . . . , N}. We introduce certain partitionings of the factor matrices. We partition
each factor matrix U(i) into pi block rows as

U(i) =
[ (

U(i)1
)T

· · ·
(
U(i)pi

)T ]T
, (5.5)

with Uij ∈ R
Ii
pi

×R, for j ∈ Npi .
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Communication Domains

As in chapter 4, we define the one–dimensional groups Pk1,...,ki−1,:,ki+1,...,kN and the
(N − 1)–dimensional groups Pi,j. The latter are used for the collaborative computation of
K(k)T diag2(m(i)k)K

(k) and K(k)T diag2(m(i)k)x(i)k , while the former are used for send and
receive operations needed in the algorithm.

5.1.2 Parallel Algorithm for Unconstrained Tensor Completion
with Smoothing Constraints

There are no dependencies for the terms

(K(k)T diag2(m(i)k)K
(k) + (λ+ 2µk)I)

−1

and
K(k)T diag2(m(i)k)x(i)k .

We can exploit it when trying to derive a parallel scheme. Before we start a factor update,
we suggest to first create the non-dependent terms and store them. We refer to this initial
phase as phase 1 of the algorithm.

We refer to the calculation of the updated rows and the propagation of the results
as phase 2. Without loss of generality, let us consider the update of U(1). Initially, the
processes that contain U(1)1 will start updating their rows, while the other processes will
remain inactive. Once the computations are complete, these processes will have to send
the last row of U(1)1 to the processes that have U(1)2 , so they can start their respective
computations. Once all lines of U(1)2 are computed, the last row of this matrix will
be sent to the processes that contain U(1)3 , and so on, until the whole factor has been
updated. We note here, that before entering phase 2, all processes that have U(1)p , where
p ∈ {2, . . . , p1}, send the first row of U(1)p to the processes that have U(1)p−1 , so they can
complete their respective factor update. A pseudo–algorithm describing this procedure is
shown in Algorithm 5.
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Table 5.1: Processor grids used for the Uber Pickups dataset

Number of Processors Grid Formation
1 1× 1× 1× 1
4 1× 1× 2× 2
16 1× 1× 4× 4

Number of Processors Grid Formation
64 2× 1× 4× 8
128 4× 1× 4× 8
256 8× 1× 4× 8
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Figure 5.2: Speedup plot, for the Uber Pickups dataset, for a grid with the formations in
table 5.1, for the initial partitioning scheme.

5.2 Adaptive Partitioning

5.2.1 Motivation
The nonzero elements of several real world datasets are nonuniformly distributed. As

a result, if we partition the data into p processors, without taking the distribution of the
nonzero elements into account, the speedup gain may not be substantial. Let us consider
the dataset ‘Uber Pickups’. The tensor formed is in R183×24×1,140×1,717 and the distribution
of the nonzeros across each mode appears in Figure 5.3. We consider the grid formations
in Table 5.1 and set R = 10.

For the case where we do not take the distribution of the nonzeros into account, when
creating the partitions for the tensor, the gained speedup is presented in Figure 5.2. We
observe that the speedup gained is low.
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Figure 5.3: Distribution of nonzeros per dimension for the Uber Pickups dataset.
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Algorithm 5: Algorithm for parallel Unconstrained Tensor Completion with
Smoothing Constraints

Input: [I1, . . . , IN ]: Dimensions of the Tensor,
R: The rank of the decomposition,
D: The Dataset,
λ: Regularization parameter,
[µ1, . . . , µN ]: Smoothing parameters for each dimension,
[p1, . . . , pN ]: Processes per mode,
M : Number of data points.

Result: X : The Tensor model that approaches the data,
[U(1), . . . ,U(N)]: Rank-R factors of CPD model.

1 D_local = Distribute_Dataset(D)
2 k = 0
3 repeat
4 for i = 1, . . . , N do
5 Create inv_term_list, Kkyi_list
6 Create yi based on D_local

7 for k = 1, . . . , Ii
pi

do
8 Create Kk based on D_local

9 Kk_Kk = KkTKk

10 Kk_yi = KkT yi
11 All_reduce(Kk_Kk, layer_ comm[i])
12 All_reduce(Kk_yi, layer_ comm[i])
13 Kkyi_ list.append(Kk_Y i)
14 Create inverse term and append to inv_term_list according to (5.4)
15 if pi > 1 then
16 for p = pi, pi − 1, . . . , 1 do
17 process p sends u

(i)
1 to process p− 1

18 process p− 1 stores the received row

19 for i = 1, . . . , N do
20 for p = 1, . . . , pi do
21 for k = 1, . . . , Ii

pi
do

22 update u
(i)
k according to (5.4)

23 if pi > 1 and p ̸= pi then
24 process p sends u

(i)
k to process p+ 1

25 until convergence is achieved, or maximum number of iterations has been reached
26 return [X ,U(1), . . . ,U(N)]
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Algorithm 6: Algorithm for adaptive partitioning
Input: N : Order of the tensor,

[I1, . . . , IN ]: Dimensions of the Tensor,
[p1, . . . , pN ]: The processors assigned to each mode,
nnz: The number of nonzeros,
NNZ_mode[][]: Each cell contain the number of nonzeros for an
index in a specific mode,
thres_error: Tolerance for the number of nonzeros,

Result: local_dims: The dimensions of the local tensor that each processor has,
local_true_nnz: The number of non–zero elements each processor
has.

1 MasterID = 1
2 local_dims = cell(N, 1)
3 local_optimal_nnz = cell(N, 1)
4 local_true_nnz = cell(N, 1)
5 for i = 1, . . . , N do
6 if pi > 1 then
7 isDone = 0
8 true_threshold_error = thres_error
9 while isDone == 0 do

10 for p = 1, . . . , pi do
11 local_dims{i}(p) =

⌊
Ii
pi

⌋
+ (p == MasterID) ∗ (Ii % pi)

12 local_optimal_nnz{i}(p) =
⌊
nnz

pi

⌋
+ (p == MasterID) ∗ (nnz % pi)

13 threshold_err_i =
⌈
true_threshold_error ∗ nnz

pi

⌉
14 pivot = 1
15 for p = 1, . . . , pi − 1 do
16 isBalanced = 0
17 nnz_sum = 0
18 if pivot+ local_dims{i}(p)− 1 > Ii then
19 isDone = 0
20 break
21 else
22 isDone = 1
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19

20

21

22

23 for r = pivot, . . . , pivot+ local_dims{i}(p)− 1 do
24 nnz_sum = nnz_sum+NNZ_mode{i}(r)
25 while isBalanced == 0 do
26 error = nnz_sum− local_optimal_nnz{i}(p);
27 if (error > threshold_err_i) & (local_dims{i}(p) > 0) & (r > 0)

then
28 local_dims{i}(p) = local_dims{i}(p)− 1;
29 r = r − 1;
30 nnz_sum = nnz_sum−NNZ_mode{i}(r);
31 else if

(error < −threshold_err_i) & (local_dims{i}(p) > 0) & (r < Ii)

then
32 local_dims{i}(p) = local_dims{i}(p) + 1;
33 r = r + 1;
34 nnz_sum = nnz_sum+NNZ_mode{i}(r);
35 else if local_dims{i}(p) ≤ 0 then
36 isDone = 0;
37 break;
38 else
39 isBalanced = 1;

40 pivot = pivot+ local_dims{i}(p);
41 local_true_nnz{i}(p) = nnz_sum;
42 if (isDone == 1) & (Ii − pivot+ 1 > 0) then
43 local_dims{i}(p+ 1) = Ii − pivot+ 1;
44 local_true_nnz{i}(p+ 1) = nnz − sum(local_true_nnz{i}(1 :

p));
45 else
46 isDone = 0;
47 true_threshold_error =

true_threshold_error + threshold_error;
48 else
49 local_dims{i}(1) = Ii;
50 local_optimal_nnz{i}(1) = nnz;
51 return [X ,U(1), . . . ,U(N)].
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Figure 5.4: Speedup plot, for both partitioning methods, for a grid with the formations in
Table 5.1.

5.2.2 The algorithm in a nutshell
The goal of the algorithm is, given the tolerance parameter thres_error and the optimal

number of nonzeros for each processor, to readjust the dimensions for their local tensor,
in order to have a number of nonzeros as close to the optimal number as possible. There
may be cases where, given a threshold parameter, no possible partitioning can be created.
In these cases, we double the threshold parameter and we repeat the algorithm. The
algorithm is presented in Algorithm 6.

5.2.3 Result on Uber Pickups dataset
We present the results after using Algorithm 5 for the partitioning procedure, in Figure

5.4. We set thres_error equal to 0.1. We see that there is a substantial improvement in
the performance over our initial algorithm.

5.3 Experiments on real world datasets
For all datasets considered, we will test for ranks R = 10 and R = 50. We also set

thres_error to 0.1. We also tested for values of thres_error equal to 0.2 and 0.05, but
those cases had worse results.
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5.3.1 Chicago Crime
The tensor that is formed from this dataset is in R6,186×24×77×32. The number of nonze-

ros is 5, 330, 673. The distribution of the nonzeros is presented in Figure 5.5, while the
grids that were used are presented in Table 5.2.
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Figure 5.5: Distribution of nonzeros per dimension. Upper left: First Dimension, Up-
per right: Second Dimension, Lower left: Third Dimension, Lower right: Fourth
Dimension.
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Table 5.2: Processor grids used for the Chicago Crime dataset

Number of Processors Grid Formation
1 1× 1× 1× 1
4 4× 1× 1× 1
8 8× 1× 1× 1
16 16× 1× 1× 1

Number of Processors Grid Formation
32 32× 1× 1× 1
64 64× 1× 1× 1
128 64× 1× 2× 1
256 64× 1× 2× 2
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Figure 5.6: Speedup plots, for both partitioning methods, for a grid with the formations
in Table 5.2, for the Chicago Crime dataset. Left is for R = 10, right is for R = 50.

5.3.2 Uber Pickups
The tensor that is formed from this dataset is in R183×24×1,140×1,717. The number of

nonzeros is 3, 309, 490. The distribution of the nonzeros is presented in Figure 5.3, while
the grids that were used are presented in Table 5.1.
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Figure 5.7: Speedup plot, for both partitioning methods, for a grid with the formations in
Table 5.1, for the Uber Pickups dataset. Left is for R = 10, right is for R = 50.

5.3.3 Nips Publications
The tensor that is formed from this dataset is in R2,482×2,862×14,036×17. The number of

nonzeros is 3, 101, 609. The distribution of the nonzeros is presented in Figure 5.9, while
the grids that were used are presented in Table 5.3.

Number of Processors Grid Formation
1 1× 1× 1× 1

4 1× 1× 4× 1

8 1× 1× 8× 1

16 1× 1× 16× 1

32 1× 2× 16× 1

64 2× 2× 16× 1

128 2× 4× 16× 1

256 4× 4× 16× 1

Table 5.3: Processor grids used for the Nips Publications dataset.
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Figure 5.8: Speedup plot, for both partitioning methods, for a grid with the formations in
Table 5.3, for the Nips Publications dataset. Left is for R = 10, right is for R = 50.
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Figure 5.9: Distribution of nonzeros per dimension. Upper left: First Dimension, Up-
per right: Second Dimension, Lower left: Third Dimension, Lower right: Fourth
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Chapter 6

Discussion and Future Work

6.1 Conclusions
We considered tensor completion problems. We first studied nonnegative tensor com-

pletion. We expanded on the work in [34], by solving the problem in an N–dimensional
grid, instead of a linear array. We note that the speedup gained in our experiments is
substantial. Next, we studied unconstrained tensor completion problems with smoothing
constraints. We provided a distributed solution for the problem and tested the speedup
gain for our method. We developed a method that creates a partitioning for the tensor,
based on the distribution of the nonzeros. This makes it possible to attain larger speedups,
in cases where the initial speedup would be low.

6.2 Future Work
We conclude this thesis by presenting possible future extensions of this work.

6.2.1 Distributed Nonnegative Tensor Completion with
Smoothing Constraints

We examined a distributed algorithm for unconstrained problems with smoothing con-
straints. A development of a similar algorithm for Nonnegative Tensor Completion with
Smoothing Constraints could be a possible topic of interest.

6.2.2 Tensor Completion with other possible constraints
Another topic of interest could be the studying of algorithms for tensor completion for

constraints other than nonnegativity and smoothness. Some examples include orthogonal-
ity constraints and sparsity constraints.
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6.2.3 Distributed Algorithms for Nonnegative Tensor
Completion with other tensor models

In this thesis, we considered the PARAFAC model for the task of tensor completion.
An additional topic of interest would be the development of distributed algorithms for Non-
negative Tensor Completion that utilize other models (for example, Nonnegative Tucker
Decomposition).
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