
Lossless compression and coding of audio signals

Author: Christos Konstantas

Supervising Professor: Professor George Karystinos

Examination Committee: Professor Aggelos Bletsas

Examination Committee: Professor Thrasyvoulos Spyropoulos

Technical University of Crete, Department of Electrical and Computer Engineering

July 28, 2022

Contents

1 Introduction 6

2 Theoretical prerequisites 9

2.1 Stochastic Processes . 9

2.2 Audio Signals . 13

2.3 Pulse Code Modulation . 15

2.4 The Z-Transform . 24

2.5 FIR, IIR Lattice Filters . 28

2.5.1 Signal flow graphs for linear constant-coefficient difference equations 32

2.5.2 Lattice structures . 32

2.5.3 FIR Lattice Filters . 33

2.5.4 IIR Lattice Filters . 38

3 Linear Prediction 40

3.1 Parametric Signal Modeling . 40

3.2 Linear Predictive Model . 42

3.3 Optimal Linear Prediction . 44

3.3.1 Derivation of the Levinson-Durbin algorithm 47

4 Source coding techniques 56

4.1 Basic definitions on information theory . 56

1

CONTENTS

4.2 Shannon-Fano code . 62

4.2.1 Optimality of the Shannon-Fano code . 63

4.2.2 Coding with a wrong probability distribution 65

4.3 Huffman Coding . 66

4.3.1 Huffman Code Optimality . 69

4.4 Arithmetic Coding . 70

4.4.1 Implementation of Arithmetic Coding . 72

4.4.2 Uniqueness and optimality of the Arithmetic Code 80

4.4.3 Finite precision Arithmetic Coding using integer representation 83

4.5 Golomb Codes . 91

4.5.1 Uniqueness and optimality of the Golomb code 93

4.5.2 Golomb-Rice Codes . 104

4.6 Exponential-Golomb Codes . 105

5 Lossless Audio Compression 108

5.1 The IEEE 1857.2 Lossless Audio Codec . 109

5.1.1 Channel Decorrelation . 110

5.1.2 Linear Predictive Model . 110

5.1.3 Pre-Processing . 113

5.1.4 Source Coding and Source Decoding . 115

5.1.5 Post-processing . 117

5.1.6 Reconstruction . 118

5.1.7 Channel Correlation . 119

5.2 Results . 119

5.2.1 Compression efficiency and Redundancy of Source Coding. 124

6 Conclusion and Future Work 129

2

CONTENTS

A Supplementaries for the IEEE 1857.2 Standard i

A.1 RA shift and RA shift12 tables . i

B Supplementaries on Source Coding iv

B.1 Golomb Code examples . iv

3

CONTENTS

Acknowledgments

First of all, I would like to thank my parents, George and Paschalina, for their continuous support,

trust and for shaping me to who I am right now. I am most thankful for having them by my side

and I would never try to change them in any way.

I would like to specially thank my supervising Professor George Karystinos for his guidance and for

letting me pursue a thesis that interests me. Also, I would like to thank the examination commitees,

Professor Aggelos Bletsas and Professor Thrasyvoulos Spyropoulos, for accepting to participate in

my thesis and sacrifice their time to study it, it is truly an honor for me.

I am also thankful to the PhD student Ioannis Grypiotis, for the helpful discussion that we had on

my thesis.

It is also very important for me to give a respectable and big thank you to my high school math

teacher Thomas Podimatas, for showing me the beauty of mathematics with his brilliant lectures,

his perfect sense of humor and for helping me believe in myself.

Last, but of course not least, I would like to thank my friends that were next to me, not only at

the best but also at the difficult times too during the years of my studies. I would never forget our

adventures and our battles for the better.

This thesis is dedicated to the memory of my grandfather Christos and his brother Athanasios.

4

CONTENTS

Abstract

This thesis is on lossless audio compression and coding that is very important for studio applica-

tions, such as digital audio signal processing, and is prefered by many artists around the world. We

study and present an implementation of the IEEE 1857.2 standard and explicitly its lossless audio

coding extension, that typically implements a very similar process of compression and coding for

the audio signal with many other famous lossless audio compression standards (FLAC [1], MPEG-4

ALS [2], [3],etc). Many of these techniques, are being used on medical applications too [4], where

the preservation of the original information of the source is extremely important. Last but not

least, similar processes are being used for compressing losslessly optical satellite images. Another

discussion is that in order to have a greater rate of transmission and reduce bandwidth in a com-

munication system, lossless compression of the source is crucial. In the thesis, we present in detail

the theoretic foundation of the linear predictive model, Arithmetic, Golomb-Rice, and exponential-

Golomb coding, and IEEE-1857.2 defined pre- and post-processing techniques. We implement all

above techniques and illustrate by compressing and coding some input uncompressed (raw) CD

quality audio files (.wav files), achieving minimization of the number of bits while maintaining

quality.

5

Chapter 1

Introduction

To represent digital audio data with the least bits possible, it is important to apply com-

pression, i.e. detect and remove any redundancies that are contained in the uncompressed input

audio files. The software (or hardware) that does this process is often refered to as an audio codec.

A codec applies compression of the input data in order to achieve faster rate of transmission and

is capable to decompress the received data too. A lot of audio codecs are being used everyday by

many people around the world, depending on their demandings. There are lossless and lossy audio

formats. A famous lossy audio format is the well-known MP3. But with MP3 files, we get only

an approximation of the input audio file that was originally compressed. In lossless audio formats

though, the quality of the original input audio file is retained perfectly. The basic operations in

most lossless audio compression algorithms (see [5]) are depicted in Figure 1.1.

Framing Inter-Channel
Decorrelation

Source

Coding

Audio
Signal

Compressed
Signal

Figure 1.1: A general lossless audio compression scheme

6

• Framing is the process where the input audio file is being splitted into independent blocks

that contain samples. This is done because we want to apply later a predictive model and in

order to work with it, we must create frames of very small duration, so that we can consider

them to be WSS stochastic processes (see Definition 2.1.6). In other words the nonstationary

nature of audio signals does not help us to apply a predictive model, therefore we have to

work somehow with WSS stochastic processes.

• Inter-Channel Decorrelation is the process where we detect and remove redundancies by

decorrelating the samples that are stored inside a frame. In this stage we use a predictive

model, usually a modified linear predictive model, for the input signal, resulting in a prediction

error for every sample inside a frame and all of them form a sequence of prediction error

samples. The redundancy that is removed from the signal is being represented by the predictor

parameters and these predictor parameters together with the prediction error can represent

the signal in each frame (or block).

• Source Coding as we will see later, it is used to efficiently encode the given prediction error

sequence and represent it with the minimum number of bits.

Some lossless audio codecs that exist are the FLAC (Free Lossless Audio Codec) [1] that is the

most famous one, the MPEG-4 ALS [3], Dolby TrueHD [6] and the most recent IEEE 1857.2

standard, with its lossless extension [7], on which we will primarily work on this thesis.

7

Thesis outline

In this thesis, we will start by some very important theoretical definitions that are useful in

order to understand how the IEEE 1857.2 lossless audio coding extension works. We will start by

explaining some basic definitions on stochastic processes and the Z-transform, that is the counter-

part of Laplacian transform but for discrete-time signals, such as digital audio signals. Then we

will proceed on a discussion about FIR and IIR filters and later on explaining a parametric signal

modeling technique, that will be used as an autoregressive (AR) model, that is Linear Prediction

and why it is important in order to remove redundancy of the source. We will also see, how to

derive the Levinson-Durbin algorithm in order to achieve optimal Linear Prediction. After that, we

will see some basic definitions on Information Theory that will be helpful in order to understand the

optimality and unique decodability of the source coding techniques that we will implement using

the IEEE 1857.2 lossless audio coding extension and will be applied in order to efficiently represent

the output of the Linear Predictive Model. At last, we will see the basic components of the IEEE

1857.2 lossless audio coding extension and discuss the results on compression efficiency, that can

be derived from finding the compression ratio for each type of souce coding.

Below, in Figure 1.2, we see a depiction of the processes of framing, prediction and entropy

coding, i.e. source coding of the input audio signal:

Figure 1.2: Framing, linear predictive modeling and entropy encoding processes. 1

1Figure from [8]

8

Chapter 2

Theoretical prerequisites

This chapter contains some important definitions that are being used throughout this thesis. We

start from scratch with some basic stochastic processes definitions. Afterwards we proceed to the

elemental discrete-time signal and systems theory, the Z-Transform and we present some structures

for discrete time systems that help a software or hardware designer to construct algorithms based

on signal flow graphs and by using them we’ll construct FIR and IIR filters that are useful for

analysis and synthesis of a given signal.

If you are familiar with all of the above feel free to skip this chapter.

2.1 Stochastic Processes

Definition 2.1.1 (Stochastic Process)

In probability theory, a stochastic process (or a random process) is a mathematical con-

cept that can be used as a system’s mathematical model that seems to fluctuate randomly and

it can be defined as a collection of many random variables. We can define a stochastic process

as X (t) = {X(t)}t∈T or as X (t) = {Xt}t∈T ([9]) where , X(t) or Xt are used in order to make a

reference to the random variable that has an index t. There are two major categories in which a

stochastic process can belong:

9

2.1. STOCHASTIC PROCESSES

(i) Discrete-time stochastic process:

A countable collection of random variables can also be refered to as a discrete-time stochastic

process. In this case we have a finite (or countable) number of elements that the index set of the

stochastic process can take, specifically t ∈ T ⊆ Z. If T ⊂ Z the stochastic process is finite and it

can be fully defined by its joint probability density function, fX[t1],...,X[tn] where (t1, . . . , tn)∈ Tn.

When we refer to discrete-time stochastic processes we will use the symbolism X (t) = {X[t]}t∈T

with brackets instead of parenthesis.

(ii) Continuous-time stochastic process:

A noncountable infinite collection of random variables,one collection ∀t, can also be refered

to as a continuous-time stochastic process with index t, where t ∈ T ⊆ R. It is clear that we can

not fully define a continuous-time stochastic process by its probability density function. The rea-

son for this is that the number of random variables is a noncountable infinity. When we refer to

continuous-time stochastic processes we will use the symbolism X (t) =
(
X(t)

)
t∈T

.

Note: For this thesis we only consider the discrete-time case for stochastic processes. We do

this because digital audio signals can be seen as random signals with discrete time instances, or

equivalently, as discrete-time stochastic processes. In additions, the definitions used are strictly

based on [10], [11] and [12].

Definition 2.1.2 (Completely specified stochastic process)

A stochastic process X (t) is completely specified if ∀n ∈ N where (t1, . . . , tn) ∈ Tn the joint

probability density function of the random variables X[t1], . . . , X[tn] which is fX[t1],...,X[tn] can be

fully defined. For the statistical M-order description of a stochastic process one must know the

underlying probability density function of the random variables X[t1], . . . , X[tn], ∀n ≤ M where

(t1, . . . , tn) ∈ Tn. Thus, the statistical M-order description may be enough for the complete speci-

fication of the stochastic process (if n = M) or may be not (if n < M).

10

2.1. STOCHASTIC PROCESSES

Definition 2.1.3 (Averaging Operator)

We define an averaging operator of two random variables X and Y as:

ϕXY (t1, t2) = E{X[t− t1]Y [t− t2]} (2.1.1)

If Y = X it follows that

ϕXX(t1, t2) = E{X[t]X[t− (t1 − t2)]} (2.1.2)

which can be proved by defining t′ = t− t2 and then t = t′ .

Definition 2.1.4 (Autocorrelation Function)

The autocorrelation function (ACF) is one of the tools used to find patterns in the data and

is defined as the statistical correlation between two time instances of a random variable. ACF can

be written as:

RXX(t1, t2) = E{X[t1]X[t2]} (2.1.3)

Definition 2.1.5 (Strict Sense Stationarity)

A stochastic process X (t) is called Strict Sense Stationary (SSS) if

∀n ∈ N, (t1, . . . , tn)∈ Tn and ∀a : ti + a ∈ T where i = 1, ..., n:

fX[t1],X[t2],...,X[tn] = fX[t1+a],X[t2+a],...,X[tn+a] (2.1.4)

This means that in order for a stochastic process to be Strict Sense Stationary (SSS) the joint

probability density function of a finite subsequence of X (t) is time invariant. This statement is

very restrictive and Strict Sense Stationarity is a strong property a stochastic process that is SSS

implies that this process is completely specified, meaning that the probability density function of

11

2.1. STOCHASTIC PROCESSES

the random variables of the process is fully defined. Also from (2.1.4) it follows that SSS stochastic

processes have constant mean:

E{X[t1], X[t2], . . . , X[tn]} = E{X[t1+a], X[t2+a], . . . , X[tn+a]} (2.1.5)

Definition 2.1.6 (Wide Sense Stationarity)

A stochastic process X (t) is called Wide Sense Stationary (WSS) if its autocorrelation func-

tion as long as its mean function do not change by time lags (or shifts in time). Therefore, the

following conditions are true:

(i) The mean function is independent of the time instance t ∈ T . We can write this as mX (t) =

E [X (t)] = mX . We can also say that (2.1.5) is true for this case.

(ii) The autocorrelation function (ACF) RXX(t1, t2) = E{X(t1)X(t2)} (2.1.3) is only a function of

τ = t1 − t2, and not t1 and t2 individually. Thus, we can write

RXX(t1, t2) = RX(t1 − t2) = RX(τ). (2.1.6)

And from (2.1.2) this is equivalent to:

ϕXX(t1, t2) = RX(t1 − t2) (2.1.7)

Wide Sense Stationary (WSS) stochastic processes have more relaxed conditions than SSS stochas-

tic processes. All stationary random processes are WSS but a WSS process is not always SSS.

Intuitively, one can say that WSS processes take values close to their mean mX and they are simi-

lar to their delayed versions. By convention, in audio processing literature ACF can be referred as

the autocorrelation sequence.

12

2.2. AUDIO SIGNALS

Comments

• Later we will suppose that the audio signal is a collection of random variables also called a

stochastic process, where the samples of the process that are close together are correlated in

some way. Therefore, we can we can characterize short frames of the audio signal with this

correlation.

• An audio signal can not be seen as a stochastic process that is SSS because we don’t know

its probability density function.

• Audio is a non-stationary signal, consequently its statistical characteristics are fluctuating

over time. Therefore, its charachteristic properties and spectral attributes should only be

derived from small duration frames of the signal ([13]) [14]. When we frame the audio signal

([14]), we consider each frame to be a WSS stochastic process because frames have a very

small duration (≈ 23.2 miliseconds), thus its statistical properties are constant within this

time interval. For this reason we assume that our audio signal has constant mean, at least in

each frame. This argument is intuitive and it does not contain any mathematical rigor.

2.2 Audio Signals

Definition 2.2.1 (Sound Wave)

A sound wave can be created by vibrations that travel through a transmission medium (sound

travels through water, air, walls, steel etc; hence, all of them can be mediums for sound). The par-

ticles of sound waves can not be carried without a medium. Sound waves find an entrance from

the outer ear and travel to the middle ear after passing the ear canal. Then, the sound waves are

channeled to the eardrum by the auditory canal. The eardrum is a sensitive, attenuated membrane

extended firmly over the way into the middle ear, and it vibrates when it receives a sound wave.

Afterwards, these vibrations are passed from the eardrum on to the hammer, that is one of three

little bones in the human ear. When the hammer vibrates causes the anvil to vibrate too, that is

the small bone touching the hammer. These vibrations are passed from the anvil to the stirrup,

13

2.2. AUDIO SIGNALS

which is a tiny bone that touches the anvil, and from the stirrup into the inner ear. Also, the

stirrup is connected with a liquid filled sack and the vibrations travel into a shell shaped part of

the inner ear, the cochlea. The cochlea contains many special cells that are attached to nerve fibers

and by them information can be transmitted through the auditory nerve to the brain. The brain

manipulates the information that it gets from the ear and we can then distinguish many different

types of sounds. An auditory perception in humans is elicited only by sound waves lying in the

frequency range between 20 Hz and 20 kHz, .

Ultrasound waves are sound waves that lie above 20 kHz and are not audible to humans. Infrasound

waves, are also not audible to humans, and lie below 20 Hz.

Definition 2.2.2 (Analog audio signal)

Analog audio signals are electrical voltages of alternating current (AC). Thus, we can express

an analog audio signal as a function f : R → R which maps a time variable t to the voltage f(t)

at time t. The polarity of analog audio signals gets reversed from positive to negative and the

number of these oscillations per second determines the frequency of the signal. The frequencies of

audio signals have a range from 20Hz to 20kHz, which is the lower and upper limit respectively

of human hearing and this happens after low-pass filtering (2.3). Though it’s easiest to imagine a

simple sine wave with smooth oscillations, most audio signals have more complex characteristics

and they contain multiple frequencies and overtones. But frequency is only half of the equation,

because we also consider the amplitude of the positive and negative peaks which is varying too.

This property determines the level or volume (when amplified) of the signal, measured in decibels

(dB). Frequency and amplitude allow analog systems to recreate complex sounds in the form of

electrical signals with astonishing accuracy, and to convert them back again so we can hear them

through speakers and headphones. Volume amplification is determined to be the amplitude of the

analog audio signal peaks. Analog audio signals may be directly synthesized, or they may originate

at a transducer such as a microphone, musical instrument, pickup, phonograph cartridge, or tape

head. Loudspeakers or headphones can actually convert an electrical audio signal back into a sound.

In computer arithmetic we can only do countable approximations of analog signals. This creates

14

2.3. PULSE CODE MODULATION

the need to represent f in the digital domain. But how do we achieve that?

2.3 Pulse Code Modulation

Pulse Code Modulation, abbreviated as PCM, is a technique by which the analog audio signal

gets converted into digital form (binary sequence) and is usually the standard representation format

for digital audio signals (see [15], [16]). PCM allows the representation of the analog input signal

as a sequence of binary coded pulses. The new digital signal represents the original signal where the

set Z is the domain of the signal’s function (discrete-time signal). PCM systems are basically signal

coders also known as waveform coders, because they create a coded form of the original waveform.

The mission of a waveform coder is to allow the reproduction of the source’s output waveform

to its final destination (receiver) and simultaneously achieve minimum distortion of the waveform

signal. Each digit in the binary sequence represents the approximate amplitude of the input signal,

that is the amplitude of the quantized signal, at that instant. Using PCM, it is possible to digitize

every kind of analog data, including voice, music, video, etc. PCM can be used for storage or

transmission.

LPF Sampler Quantizer Binary Encoder
Analog Audio Signal
 O/p Binary Sequence

Figure 2.1: PCM encoder scheme

(1) Low Pass Filter (LPF)

At first the analog audio signal passes through a low-pass filter (LPF) (Figure 2.2). The LPF

has a cutoff frequency fc to eliminate the high-frequency components of the analog audio signal and

allows only the frequency components that lie below fc to pass. Since the human ear’s perceptual

range for pure tones is between 20 Hz and 20 kHz, the low-pass filter may be designed in such a way

15

2.3. PULSE CODE MODULATION

that the cutoff frequency fc starts at 20 kHz and a few kilohertz are allowed as the transition band

before the stopband. This happens because we want to limit the input audio signal bandwidth.

Figure 2.2: A typical low-pass filter (LPF) 1

(2) Sampler

[18] The analog audio signal is sampled according to the Nyquist-Shannon sampling theo-

rem, which states that if all frequencies in the signal are lower than Fs/2, where Fs is the sampling

frequency, the continuous-time signal can be reconstructed from its discrete-time representation.

To ensure this condition is satisfied, the input analog signal has been filtered with a low-pass filter

whose stopband frequencies lie below than the half of the sample rate. For analog audio signals the

sampling frequency is 44.1 kHz (44.1 · 103·samples

second
) which is greater than the Nyquist Frequency

(40kHz= 2 · 20kHz).We choose this sampling rate of 44.1 kHz to prevent aliasing. Aliasing can

happen if we choose Fs < 2·Fmax or because the LPF is not ideal and there is a small range of

frequencies in the stopband region implying that Fmax, which is the filtered signal’s highest fre-

quency, will be slightly greater than 20kHz. We sample the signal that is the output of the low-pass

filter s(t) instantaneously at a uniform rate, Fs, once every Ts = 1/Fs seconds. Let sd[n] = s(nTs)

1Figure from [17]

16

2.3. PULSE CODE MODULATION

and sδ(t) be a continuous time signal. We want to construct:

sδ(t) =

∞∑
n=−∞

sd[n]δ(t− nTs) (2.3.1)

And in frequency domain (2.3.1) becomes:

Sδ(F) = Fs

∞∑
k=−∞

S(F − kFs) (2.3.2)

Proof: sδ(t)
F←→ Sδ(F) ⇐⇒ Sδ(F) =

∑∞
n=−∞ sd[n]F{δ(t− nTs)} ⇐⇒

Sδ(F) =

∞∑
n=−∞

sd[n]e
−j2π(F/Fs)n = S

(
F

Fs

)
(2.3.3)

Where: sd(n)
F←→ Sd(f) and s(t)

F←→ S(F). For a discrete-time signal we have:

Sd(f) =

∞∑
n=−∞

sd[n]e
−j2πfn (2.3.4)

sd[n] =

∫ 1/2

−1/2

Sd(f)e
j2πfn df (2.3.5)

In addition sd[n] = s(nTs) ⇐⇒ sd[n] = s

(
n

Fs

)
⇐⇒
∫

1/2

−1/2
Sd(f)e

j2πfn df =

∫ ∞

−∞
S(F)ej2π(F/Fs)n dF

f’=F/Fs
= Fs

∫ ∞

−∞
S(f ′Fs)e

j2πf ′n df ′

f=f ′

= Fs

∫ ∞

−∞
S(fFs)e

j2πfn df

= Fs

∞∑
k=−∞

∫
k+1/2

k−1/2
S(fFs)e

j2πfn df

f’=f−k
= Fs

∞∑
k=−∞

∫
1/2

−1/2
S((f ′ + k)Fs)e

j2π(f ′+k)n df ′

k’=−k
= Fs

∫
1/2

−1/2

∞∑
k′=−∞

S((f ′ − k′)Fs)e
j2π(f ′−k′)n df ′

By noticing that e−j2πk′n = 1 and defining k′ = k, f ′ = f we conclude to the equation:∫
1/2

−1/2
Sd(f)e

j2πfn df = Fs

∫
1/2

−1/2

∞∑
k=−∞

S((f − k)Fs)e
j2πfn df ⇐⇒

17

2.3. PULSE CODE MODULATION

Sd(f) = Fs

∞∑
k=−∞

S((f − k)Fs) and if we define f =
F

Fs
then:

S

(
F

Fs

)
= Fs

∞∑
k=−∞

S(F − kFs) (2.3.6)

Now if we go backwards from (2.3.6) to (2.3.3) we can finally prove that the statement (2.3.2) is

true. This is a very important equation because it proves that we can retrieve the spectrum S(F)

of the continuous-time signal s(t) from the spectrum Sδ(f) of the discrete-time signal that we have

constructed at (2.3.1), and if we sample at frequent time intervals (Fs > 2·Fmax) we can assume

that there is no information loss during sampling.

Afterwards,in linear PCM or in non-linear PCM, the sampler’s output signal must be quan-

tized using a uniform quantization method or a non-uniform quantization method respectively.

(3) Quantizer

[19], [20] We define an M-point, one-dimension scalar quantizer Q as a mapping Q: R→ C,

where the domain of Q is the real line, C = {a1, a2, . . . , aM} ⊂ Z is a codebook with size M and

aj are the quantization region representation points, where j ∈ {1, . . . ,M}. The input value of the

quantizer is the analog signal sδ(t) that is the output of the sampler. A scalar quantizer partitions

the set R into M subsets R1,R2, . . . ,RM which are the quantization regions Rj = (bj−1, bj] and

bj−1, bj are the boundary decision points for all quantization levels R1,R2, . . . ,RM . In order to

say that this quantizer is regular one more condition must be satisfied which is aj ∈ (bj−1, bj).

� � � � � � � � � � � �

3.2. SCALAR QUANTIZATION 65

3.2 Scalar quantization

A scalar quantizer partitions the set R of real numbers into M subsets R1, . . . ,RM , called
quantization regions. Assume that each quantization region is an interval; it will soon be seen
why this assumption makes sense. Each region Rj is then represented by a representation point
aj ∈ R. When the source produces a number u ∈ Rj , that number is quantized into the point
aj . A scalar quantizer can be viewed as a function {v(u) : R R} that maps analog real values
u into discrete real values v(u) where v(u) = aj for u ∈ Rj .

→

An analog sequence u1, u2, . . . of real-valued symbols is mapped by such a quantizer into the
discrete sequence v(u1), v(u2) Taking u1, u2 . . . , as sample values of a random sequence
U1, U2, . . . , the map v(u) generates an rv Vk for each Uk; Vk takes the value aj if Uk ∈ Rj . Thus
each quantized output Vk is a discrete rv with the alphabet {a1, . . . , aM }. The discrete random
sequence V1, V2, . . . , is encoded into binary digits, transmitted, and then decoded back into the
same discrete sequence. For now, assume that transmission is error-free.

We first investigate how to choose the quantization regions R1, . . . ,RM , and how to choose
the corresponding representation points. Initially assume that the regions are intervals, ordered
as in Figure 3.2, with R1 = (−∞, b1],R2 = (b1, b2], . . . ,RM = (bM−1,∞). Thus an M -level
quantizer is specified by M − 1 interval endpoints, b1, . . . , bM−1, and M representation points,
a1, . . . , aM .

b1 b2 b3 b4 b5

� R1 R6 �

a1

R2 R3 R4 R5

a2 a3 a4 a5 a6

Figure 3.2: Quantization regions and representation points.

For a given value of M , how can the regions and representation points be chosen to minimize
mean-squared error? This question is explored in two ways:

• Given a set of representation points {aj }, how should the intervals {Rj } be chosen?

• Given a set of intervals {Rj }, how should the representation points {aj } be chosen?

3.2.1 Choice of intervals for given representation points

The choice of intervals for given representation points, {aj ; 1≤j≤M} is easy: given any u ∈ R,
the squared error to aj is (u − aj)2 . This is minimized (over the fixed set of representation
points {aj }) by representing u by the closest representation point aj . This means, for example,
that if u is between aj and aj+1, then u is mapped into the closer of the two. Thus the
boundary bj between Rj and Rj+1 must lie halfway between the representation points aj and
aj+1, 1 ≤ j ≤ M − 1. That is, bj = aj +aj+1 . This specifies each quantization region, and also 2
shows why each region should be an interval. Note that this minimization of mean-squared
distortion does not depend on the probabilistic model for U1, U2,

Cite as: Robert Gallager, course materials for 6.450 Principles of Digital Communications I, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Figure 2.3: Quantization regions and representation points 2

2This image is taken from [19]

18

2.3. PULSE CODE MODULATION

One must define the conditions that must exist in order to create an optimal quantizer.

(i) Choice of R1,R2, . . . ,RM for given a1, a2, . . . , aM :

Given any u ∈ R as a sample value of a random variable U , we want to minimize the squared

error (u− aj)
2. This is minimized (over the fixed set of representation points {a1, a2, . . . , aM}) by

representing u by the closest representation point aj . This means, for example, that if u is between

aj and aj+1, then u is mapped into the closer of the two. Thus the boundary bj between Rj and

Rj+1 must lie halfway between the representation points aj and aj+1 where j = 1, . . . ,M − 1.

That is bj =
aj + aj+1

2
. This specifies each quantization region, and also shows why each region

should be an interval. In addition, for this minimization we didn’t need a probabilistic model of

the quantizer’s input signal.

(ii) Choice of a1, a2, . . . , aM for given R1,R2, . . . ,RM :

To answer this problem the probabilistic model for U1, U2, . . . (which are the discrete input

random variables representing only one sample value of sδ(t) in each interval) is important. Suppose

that the random variables {Uk} are iid analog random variables with probability density function

fU (u). For a given set of points {aj}, Q(U) maps each sample value U ∈ Rj into aj . The mean

squared error (MSE) is then:

MSE = E{(U −Q(U))2} =
∫ ∞

−∞
fU (u)(u−Q(u))2 du =

M∑
j=1

∫
Rj

fU (u)(u− aj)
2 du (2.3.7)

and this quantity must be minimized.

Now let Aj = P (U ∈ Rj) =
∫
Rj

fU (u) du and fj(u) = fj(u|u ∈ Rj) ⇐⇒ fj(u) =
fj(u, u ∈ Rj)

Aj

⇐⇒ fj(u) =


fU (u)

Aj
, u ∈ Rj

0, u /∈ Rj

 (2.3.8)

From (2.3.7) and (2.3.12) it is true that:

19

2.3. PULSE CODE MODULATION

MSE = Aj

∫
Rj

fj(u)(u− aj)
2 du = Aj

∫
Rj

fj(u|u ∈ R|)(u− aj)
2 du ⇐⇒

MSE = E{(U − aj)
2|U ∈ Rj} (2.3.9)

E{(U − aj)
2} = E{U2} − 2ajE{U} + aj

2 = E{U2} − 2yE{U} + y2 where y = aj . The minimum

value of the trinomial is y = −(−2E{U}
2

) ⇐⇒ y = E{U} ⇐⇒ aj = E{U |U ∈ Rj}.

From (i) and (ii) we have proved two conditions, which are aj = E{U |U ∈ Rj} and bj =
aj + aj+1

2
.

These conditions are necessary to minimize the MSE for a given number M of representation points,

but they are not sufficient because the probability density function fU may be way more ”dense”

in a specific interval V, therefore it is more possible that U(ω) ∈ V, where U : Ω → R and ω ∈ Ω.

If the quantizer is uniform then this problem can not be treated, but, audio signals tend to have a

lot of repetitions and possibly there will be no such interval V.

(a) Sampling of analog signal (b) Quantization of samples

Figure 2.4: Quantization Process 3

In addition the SNR of quantization is

SQNRdB = 20log

[
Vrms

qe

]
(2.3.10)

where Vrms is the signal’s sδ(t) rms peak voltage and qe is the noise rms voltage also called the

quantized noise. The uniform quantization step size is defined as S =
sδmax

− sδmin

M
and it is fixed.

3Images from [15]

20

2.3. PULSE CODE MODULATION

Now we can calculate the quantization noise as qe =
1

S

∫
S/2

−S/2
q2 dq where q is the quantization

error and this follows that qe =
S√
3
. In addition the full scale of the signal is Vmax − Vmin = Vfs

where Vmax = sδmax
is the highest voltage of the input analog signal and Vmin = sδmin

the low-

est one. The peak voltage is
Vfs

2
and the rms of peak voltage is Vrms =

Vfs

2
√
2

. Now we write

S =
sδmax

− sδmin

M
=

Vmax − Vmin

M
=

Vfs

M
⇐⇒ Vfs = S ·M and the signal rms peak voltage will

be Vrms =
S ·M
2 ·
√
2
=

S · 2n

2 ·
√
2
, where n is the bit-depth of quantization. Knowing that Vrms =

S · 2n

2 ·
√
2

and qe =
S

2 ·
√
3
from (2.3.10) we have SQNRdB = 20log

(
2n·
√

3

2

)
= 20log(2n)+20log

(√
3

2

)
⇐⇒

SQNRdB = 6.02n+ 1.76(dB) (2.3.11)

The output of the quantizer is the set Z = {1, 2, . . . ,M} that contains all the indexes of the

quantization levels. If we use more quantization levels it will be true that M is increasing, therefore

more bits are being used in order to represent the approximate-quantized amplitudes of the input

signal sδ(t) (the quantizer’s input). This is equivalent to saying that the bit-depth of the quantizer

is increasing, therefore from (2.3.11) SQNRdB is increasing too and we can achieve a more accurate

representation of the analog signal sδ(t). However, this can have a great cost in terms of storage

and rate of transmission.

Figure 2.5: Quantizer example for M=8

21

2.3. PULSE CODE MODULATION

(4) Binary Encoder

In this stage we will encode the set Z = {1, 2, . . . ,M} that is the input of the binary encoder.

To do so, we first notice that the length of the set is |Z| = M , therefore we will use ⌈log2M⌉ bits to

represent each index j of the corresponding quantization levelRj = (bj−1, bj] , where aj ∈ (bj−1, bj).

The process is easy, because the code has a fixed length for every coded index.

For example if M = 6 =⇒ ⌈log2M⌉ = 3 meaning that we will need 3 bits for each codeword.

Thus, 1→ 000, 2→ 001, 3→ 010, 4→ 011, 5→ 100, 6→ 101 and if we prefer gray coding then

1→ 000, 2→ 001, 3→ 011, 4→ 010, 5→ 110, 6→ 111 . Another example is depicted in Figure 2.5

where the bitstream that will be stored in the computer is ”100101110111110100011001000001010011”.

The encoder mapping is E : Z → I where I = {1, 2, . . . ,M}2 which is a set of integers that

take binary values. Hence, we can declare a decoder mappingD : I → C, where C = {a1, a2, . . . , aM}

is the codebook (equivalently the look-up table). Thus, if Q(x) = aj =⇒ E(x) = j =⇒ D(j) = aj

and x is the amplitude value of a sample. According to this statement, Q(x) = D(E(x)). The de-

coder will decode the bitstream that contains all the binary indexes by splitting it into many

⌈log2M⌉ parts. Then it will convert each part from binary representation to integer representa-

tion,which is the index j, according to the encoding method (gray coding or not). In the end the

decoder will search the j-th value of the codebook C, aj ∈ C, and this is will be the output of the

decoder. Sometimes the decoder is reffered to as an ”inverse quantizer”.

In Figure 2.6, PCM encoding and decoding processes for Sony PCM-F1 digital audio recorder ([21])

are depicted.

The A/D converter contains the quantizer and the binary encoder circuits.

The D/A converter contains the binary decoder circuit and it converts a fixed-point binary number

into voltage.

The Low-Pass Filter is needed (the spectrum of the output of the sampler equal to (2.3.2)) for

retrieving the original spectrum (that is the middle one for k = 0) and ignore all the other delayed

4Images from [21]

22

2.3. PULSE CODE MODULATION

(a) PCM-F1 scheme. (b) Sony PCM-F1 digital audio recorder.

Figure 2.6: 4

spectrums. An ideal LPF will be like:

H(F) =


1

Fs
, |F | < Fs

0, otherwise

 (2.3.12)

In the PCM-F1 case, the LPF circuit is not ideal, therefore it will contain some extra frequencies

in the stopband region (see figure 2.2) and aliasing may happen. This is the reason for choosing a

sampling frequency of Fs = 44.1kHz that is greater than the Nyquist frequency (40kHz).

In the end the ouput of the Low-Pass Filter circuit will be fed into the amplifier circuit of the

speakers.

Comments

• Our uncompressed audio signals that are the input signals of our compression and coding

schemes are encoded using linear PCM, with bit-depth=16 bits and are stored in the computer

23

2.4. THE Z-TRANSFORM

in a signed, little-endian binary representation (.wav files). In addition they’ve been sampled

with a sampling rate of 44100
samples

second
.

• The .wav files can be decoded from the software of the computer (for example foobar, winamp,

windows media player, etc).

• In Matlab, using the function audioread() the .wav file gets decoded as an one-dimensional

matrix (if the .wav contains a mono audio signal) or as a two-dimensional matrix (if the .wav

contains a stereo audio signal). Thus we can define a stereo audio signal as X =
[
XL XR

]
.

• Sample Rate × bit-depth × channels = bit-rate, therefore the bit rate of optimal quality

digital .wav stereo signals is 44100
samples

second
x 16

bits

sample
x 2 = 1411.2kbps .

2.4 The Z-Transform

This section is based on [22] and [23]. The Z-transform for discrete-time signals is the coun-

terpart of Laplace-transform for continuous-time signals and they each have a similar relationship

to the corresponding Fourier-transform. We need the Z-transform because Fourier-transform does

not converge for all sequences and it is useful to have a generalization of the Fourier-transform that

encompasses a broader class of signals. Also, in analytical problems, the Z-Transform notation is

often more convenient than the Fourier-Transform notation.

Definition 2.4.1 (Discrete-time Fourier-transform (DTFT))

The discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable

to a sequence x[n] and is defined as:

X(f) =

∞∑
n=−∞

x [n] · ej2πfn (2.4.1)

or as:

X(ejωn) =

∞∑
n=−∞

x [n] · e−jωn, ω = 2πf (2.4.2)

24

2.4. THE Z-TRANSFORM

In this section, we will mainly use equation (2.4.2).

Definition 2.4.2 (Bilateral Z-transform)

The bilateral (or two-sided) Z-transform of a sequence x[n] is defined as:

X(z) =

∞∑
n=−∞

x[n]z−n (2.4.3)

Equation (2.4.3) is an infinite sum of power series with z considered to be a complex variable.

Definition 2.4.3 (Z-transform operator)

A Z-Transform operator transforms a sequence into a function. That is the Z-transform

operator Z{·} and we can say that

Z{x[n]} =
∞∑

n=−∞
x[n]z−n = X(z) (2.4.4)

Its unique correspondence between a sequence and its Z-transform can be written as x[n]
Z←→ X(z).

Definition 2.4.4 (Unilateral Z-transform)

The unilateral (or one-sided) Z-transform of a sequence x[n] is defined as:

X(z) =

∞∑
n=0

x[n]z−n (2.4.5)

25

2.4. THE Z-TRANSFORM

Relation of Fourier-transform with Z-transform

At first, if we state that z = ej2πf then from (2.4.3) it is true that: X(z) = X(ej2πf) ⇐⇒

⇐⇒ X(ej2πf) =
∑∞

n=−∞ x[n]e−j2πfn = X(f) that is the Fourier-transform of x[n]. When the

Fourier-transform exists it is equivalent to X(z), where z = ej2πf ⇐⇒ z = ej2ω, with ω = 2πf .

This corresponds to restricting z to have a unity magnitude, i.e , for |z| = 1 the Z-transform cor-

responds to the Fourier-transform.

Also, by expressing the complex variable z in polar form as z = rejω, thus X(rejω)=X(z)

⇐⇒ X(rejω) =
∑∞

n=−∞ x[n](rejω)−n ⇐⇒ X(rejω) =
∑∞

n=−∞(x[n]r−n) · (e−jωn) and we can

interpret the Fourier-transform of the product of the original sequence x[n] and the exponential

sequence r−n. If r = 1 this expression reduces to the Fourier-transform of x[n].

Definition 2.4.5 (Region Of Convergence (ROC))

For any given sequence x[n], the set of values of z (or the set of points in the complex plane)

for which the Z-transform power series converges is called the region of convergence (ROC), of the

Z-Transform.

ROC =

z :

∣∣∣∣∣∣
∞∑

n=−∞
x[n]z−n

∣∣∣∣∣∣ <∞
 . (2.4.6)

The Z-transform does not converge for all sequences x[n] or for all values of z. Similarly, the power

series representing the Fourier transform does not converge for all sequences; i.e., the infinite sum

may not always be finite. But if x[n] is absolutely summable, the Fourier-transform converges to a

continuous function of ω,i.e if

∞∑
n=−∞

∣∣x[n]∣∣ <∞ =⇒
∣∣∣X(ejω)

∣∣∣ ≤ ∞∑
n=−∞

∣∣x[n]∣∣ · ∣∣∣e−jωn
∣∣∣ = ∞∑

n=−∞

∣∣x[n]∣∣ <∞ (2.4.7)

Convergence of the power series of (2.4.3) for a given sequence x[n] depends only on |z|, since∣∣X(z)
∣∣ <∞ if:

∞∑
n=−∞

∣∣x[n]∣∣ ∣∣z−n
∣∣ <∞ (2.4.8)

26

2.4. THE Z-TRANSFORM

i.e, the ROC of the power series in (2.4.3) consists of all values of z, such that the inequality in

(2.4.8) holds. In addition, if the ROC includes the unit circle, then this implies convergence of

the Z-transform of x[n] for |z| = 1, or equivalently, the Fourier-transform of the sequence x[n]

converges. Inversely, if the ROC does not include the unit circle, the Fourier-transform does not

converge absolutely. Some sequences are square summable (e.g
sinωcn

πn
, n ∈ Z), meaning that the

Fourier-transform converges in the mean-square sense to a discontinuous periodic function. Other

sequences (e.g cosωcn, n ∈ Z) are neither square summable nor absolutely summable, but a useful

Fourier-transform can be defined using impulse functions. Therefore, it is not strictly correct to

think of the Fourier-transform as being the Z-transform evaluated on the unit circle.

Definition 2.4.6 (Rational Function)

A function f(x) is called a rational function if it can be written in the form: f(x) =
P (x)

Q(x)
,

where P,Q are polynomial functions of x and Q(x) ̸= 0. In addition, f(x) can be called a proper

rational function if deg(P (x)) < deg(Q(x)).

Definition 2.4.7 (Rational Z-transform)

Rational Z-transform is a very important and useful Z-transform notation for a rational func-

tion. We can say that if x[n]
Z←→ X(z) and X(z) =

P (z)

Q(z)
then from (2.4.6) X(z) is a rational

function inside the ROC where P (z), Q(z) are polynomial functions of z.

Poles: the points in z-plane where X(z) = ±∞ =⇒ Q(z) = 0.

Zeros: the points in z-plane where X(z) = 0 =⇒ P (z) = 0.

There exist a number of important relationships between the location of poles of X(z) and the ROC

of the Z-transform.

Z-transforms and LTI systems

Since we shall rely on the Z-transform notation extensively in this thesis, it is worthwhile to

illustrate how the Z-transform can be used in the representation and analysis of LTI systems. An

27

2.5. FIR, IIR LATTICE FILTERS

LTI system can be represented as the convolution y[n] = x[n] ∗ h[n] of the input x[n] with h[n],

where h[n] is the response of the system to the unit impulse sequence δ[n]. From the convolution

property of Z-transform it follows that the Z-transform of y[n] is:

Y (z) = X(z) ·H(z) (2.4.9)

where x[n]
Z←→ X(z), h[n]

Z←→ H(z). In this context, the Z-transform H(z) is called the system

function of the LTI system whose impulse response is h[n]. In addition, if H(z) is a rational function

it can be written as H(z) =
Y (z)

X(z)
.

Definition 2.4.8 (Stability)

In order to have a stable LTI system, the impulse response h[n] must be absolutely summable,

therefore h[n] has a Fourier-transform, i.e the ROC must include the unit circle .

Definition 2.4.9 (Causality)

In order to have a causal LTI system, the system’s output should only depend on present

and past inputs at any given instance n = n0. Causality implies that the system’s impulse response

h[n] is a right-sided sequence, therefore the ROC of H(z) must be outside the outermost pole.

2.5 FIR, IIR Lattice Filters

In this section, (see [24], [23]), we will start by presenting some basic block diagrams. After-

wards we will present signal flow graph descriptions of computational structures for LTI systems.

Such flow graphs are also called ”networks” in analogy to electrical circuit diagrams. Using a

combination of algebraic manipulations and manipulations of block diagram representations, we’ll

derive some basic equivalent structures for implementing an LTI discrete-time system, the lattice

structures. The basic elements required for the implementation of an LTI discrete-time system are

adders, multipliers, and memory for storing delayed sequence values and coefficients. The intercon-

28

2.5. FIR, IIR LATTICE FILTERS

nection of these basic elements is conveniently depicted by block diagrams composed of the basic

pictorial symbols shown in Figure 2.7 .

+
(a)

(b)

(c)

Figure 2.7: Block diagram symbols: (a) Addition of two sequences. (b) Multiplication of a sequence
by a constant. (c) Unit delay.

In Figure 2.7(a) we represent the addition of two sequences. In general block diagram nota-

tion, an adder may have any number of inputs. However in almost all practical implementations,

adders have only two inputs. Figure 2.7(b) depicts multiplication of a sequence by a constant and

Figure 2.7(c) depicts delaying a sequence by one sample. In digital implementations, the delay

operation can be implemented by providing a storage register for each unit delay that is required

[24]. The unit delay system is represented by its system function, z−1. Delays of more than one

sample can be denoted as in Figure 2.7(c), with a system function of z−M , where M is the number

of samples of delay. In an integrated-circuit implementation, these unit delays might form a shift

register that is clocked at the sampling rate of the input signal. In a software implementation, M

cascaded unit delays would be implemented as M consecutive memory registers.

Definition 2.5.1 (Linear-constant coefficient difference equation system)

An important class of LTI systems consists of those systems for which the input sequence x[n]

and the output sequence y[n] satisfy an N -th order linear constant-coefficient difference equation

of the form:
N∑

k=0

ak · y[n− k] =

M∑
m=0

bm · x[n−m] (2.5.1)

29

2.5. FIR, IIR LATTICE FILTERS

A linear constant-coefficient difference equation for a discrete-time system, does not provide a

unique specification of the output for a given input, therefore auxilary information or conditions

are required. If an additional condition is that the system is initially at rest, then the system will

be LTI and causal.

In addition, equation (2.5.1), using Definition 2.4.3 becomes:
N∑

k=0

akz
−kY (z) =

M∑
m=0

bmz−mX(z) ⇐⇒

H(z) =
Y (z)

X(z)
=

M∑
m=0

bmz−m

N∑
k=0

akz−k

(2.5.2)

where H(z) is the system function (or transfer function of the system) . Note that the impulse

response of the system is h[n] and h[n]
Z←→ H(z).

Setting a0 = 1 we can write (2.5.1) as

y[n] =

M∑
m=0

bmx[n−m] +

N∑
k=1

aky[n− k] (2.5.3)

where the system function can be written as:

H(z) =
Y (z)

X(z)
=

M∑
m=0

bmz−m

1−
N∑

k=1

akz−k

(2.5.4)

Definition 2.5.2 (FIR system)

A system is called FIR if its impulse response is finite in duration (FIR → Finite Impulse

Response). This reminds us of Definition 2.4.8 and we must state that FIR systems never become

unstable (∀ input x[n]), i.e FIR systems are always stable, meaning that the FIR system function

H(z) has an all-zero structure (N = 0 in equation (2.5.1)) meaning that we can characterize an

FIR system by the following equation:

y[n] =

M∑
m=0

bmx[n−m], a0 = 1 (2.5.5)

30

2.5. FIR, IIR LATTICE FILTERS

and from (2.5.2) and (2.5.5) it follows that

H(z) =

M∑
m=0

bmz−m Z−1

←→ h[n] =

M∑
m=0

bmδ(n−m) (2.5.6)

From (2.5.6) =⇒

h[m] =


bm, m ≤M

0, otherwise

(2.5.7)

where we can clearly see that the impulse response has a finite duration. Furthermore, the output

y[n] of any FIR system can be computed non-recursively where the coefficients are the values of

the impulse response sequence. We typically use FIR systems in applications where linear phase is

important and they require a good amount of memory and computational performance.

Definition 2.5.3 (IIR system)

A system is called IIR if its impulse response has infinite duration (IIR → Infinite Impulse

Response). IIR systems have data precedence relations and they are recursive in nature. If we

say that the impulse response of the system is h[n] and h[n]
Z←→ H(z) then H(z) has at least one

non-zero pole that is not cancelled by a zero. That means that h[n] will have at least one term. The

stability of an IIR filter can be studied using the zero-pole plot that concerns the transfer funtion

H(z) of the filter. A digital filter is stable if all the poles of the transfer function H(z) are lying

inside the unit circle in the z-plane. If at least a pole lies outside the unit circle, this introduces a

component in the filter’s impulse response that is exponentially increasing. This causes the filter

to be unstable. IIR filters have low implementation cost, low latency and they are less numerically

stable than the FIR filters due to feedback paths. In addition they have non-linear phase charac-

teristics. At last, there is an analog equivalent for every IIR system, meaning that IIR systems may

be used for mimicking an analog filter’s characteristics .

31

2.5. FIR, IIR LATTICE FILTERS

2.5.1 Signal flow graphs for linear constant-coefficient difference equa-

tions

A signal flow graph,[24], is used for representing a difference equation and is fundamentally

the same as a block diagram representation except for a few differences in notation.

Node
 Node

Figure 2.8: Nodes and branches in a signal flow graph.

Formally, a signal flow graph is a network of directed branches that connect at nodes. Node

variables for digital filters mainly represent sequences and we frequently use the notation wk[n]

to indicate this. The branch (j, k) denotes a branch with node j as its origin and node k as its

termination and the direction from j to k is represented by an arrow on the branch. In Figure 2.8

wj [n] is the input signal and wk[n] is an intermediate node. In a signal flow graph that is linear, the

output of a branch is a linear transformation of the input. Also, each node’s value in a graph is the

summation of all the outputs of the branches that enter the node. Multiplying with a coefficient

can be represented in the same way as in block diagram representations. Finally, we define a source

node as a node with no entering branches and a sink node as a node with entering branches only.

Figure 2.9 depicts an example that helps us clarify signal flow graphs. Having explained the

basics of signal flow graphs we will present some basic structures for IIR and FIR systems in order

to understand how to implement them using signal flow graphs.

2.5.2 Lattice structures

Lattice structures are based on a cascade (output to input) connection of the basic structure

shown in Figure 2.10(a). In this case the basic building block system has two inputs and two outputs

32

2.5. FIR, IIR LATTICE FILTERS

+ +

(a)

Source

node

Sink

node

(b)

Figure 2.9: (a) Block diagram representation of a 1st order digital filter. (b) Structure of the signal
flow graph corresponding to the block diagram in (a).

and is called a two-port flow graph. Figure 2.10(b) shows the equivalent flow graph representation.

If M two-port flow graphs are cascaded with a ”termination” at each end of the cascade, the overall

system will be a single-input-single-output (SISO) system. In this case, x[n] is the input that feeds

both inputs (a(0)[n] and b(0)[n]) of the two-port flow graph (1) and y[n] = a(M)[n] the upper output

of the last two-port flowgraph (M). The lower output of the two-port flow graph (M) is initially

ignored. This is depicted in Figure 2.11. In this thesis, we will limit our attention to a widely used

class of FIR and IIR filter structures whose shape motivates the name lattice filters.

2.5.3 FIR Lattice Filters

In this subsection we will focus on the use of lattice filters to implement FIR transfer func-

tions.

The coefficients k1, k2, . . . , kM , are the k-coefficients of the lattice structure and the node variables

a(i)[n], b(i)[n] are intermediate sequences that depend upon the input x[n] through the set of

difference equations:

x[n] = a(0)[n] = b(0)[n] (2.5.8)

33

2.5. FIR, IIR LATTICE FILTERS

Two-Port
Flow
Graph

Two-Port
Flow
Graph

Two-Port
Flow
Graph

Two-Port
Flow
Graph

(a) (b)

Figure 2.10: (a) Block diagram representation of a two-port building block. (b) Equivalent flow
graph representation.

Two-Port
Flow
Graph

Two-Port
Flow
Graph

Two-Port
Flow
Graph

Two-Port
Flow
Graph

(a) (b)

Figure 2.11: Cascade connection of M two-port building blocks.

a(i)[n] = a(i−1)[n] + kib
(i−1)[n− 1], i = 1, 2, . . . ,M (2.5.9)

b(i)[n] = b(i−1)[n− 1] + kia
(i−1)[n], i = 1, 2, . . . ,M (2.5.10)

y[n] = a(M)[n] (2.5.11)

These equations must be computed in the order shown (i = 0, 1, . . . ,M) since the output of the

two-port building block (i−1) is needed as input to the two-port building block (i). In addition, the

lattice structure in Figure 2.12 is a linear signal flow graph with only delays and constant branch

coefficients, therefore it is an LTI system and the impulse response from the input of the system

to any internal node has finite length (note that there are no feedback loops in the FIR lattice

structure). We can clarify this by saying that all paths to any node variable a(i)[n] or b(i)[n] pass

through at least one delay (z−1) with the greatest delay being along the bottom path and then

up to node variable a(i)[n] through the coefficient ki (information passes through a register and a

multiplier). This will be the last impulse that arrives at a(i)[n] with a length of i+ 1 samples.

It is convenient to say that x[n] = δ[n] so that a(i)[n] and b(i)[n] are the resulting impulse responses at

34

2.5. FIR, IIR LATTICE FILTERS

Two-Port
Flow
Graph

Two-Port
Flow
Graph

Two-Port
Flow
Graph

Two-Port
Flow
Graph

(a) (b)

Figure 2.12: Lattice flow graph for an FIR system based on cascade of M two-port building block
sections.

the associated nodes, and define their Z-transforms A(i)(z) and B(i)(z) respectively. Consequently,

the transfer function between the input and the upper node (i) is:

A(i)(z) =

i∑
n=0

a(i)[n]z−n = 1 +

i∑
n=1

a(i)[n]z−n (2.5.12)

From (2.5.8) and because we stated that x[n] = δ[n]:

A(0)(z) = B(0)(z) = 1 (2.5.13)

From (2.5.9):

A(i)(z) = A(i−1)(z) + kiz
−1B(i−1)(z), i = 1, 2, . . . ,M (2.5.14)

And from (2.5.10):

B(i)(z) = kiA
(i−1)(z) + z−1B(i−1)(z), i = 1, 2, . . . ,M (2.5.15)

Using (2.5.13),(2.5.14) and (2.5.15) we can calculate A(i)(z) and B(i)(z) recursively up to any value

of i . If we continue, the pattern that emerges in the relationship between A(i)(z) and B(i)(z) is:

B(i)(z) = z−iA(i)(1/z) (2.5.16)

A(i)(z) = z−iB(i)(1/z) (2.5.17)

35

2.5. FIR, IIR LATTICE FILTERS

Equation (2.5.17) can be proved by defining z =
1

z
in equation (2.5.16), but now we need to prove

(2.5.16). This will be done below by using the mathematical proof technique of induction:

Base case: for i = 1, using (2.5.14) and (2.5.15) it is true that:

A(1)(z) = A(0)(z) + k1z
−1B(0)(z)

(2.5.13)⇐⇒ A(1)(z) = 1 + k1z
−1

B(1)(z) = k1A
(0)(z) + z−1B(0)(z)

(2.5.13)⇐⇒ B(1)(z) = k1 + z−1 = z−1(1 + k1z) = z−1A(1)(1/z)

Now note that for i = 2, using (2.5.14) and (2.5.15) it is true that:

A(2)(z) = A(1)(z)︸ ︷︷ ︸
1+k1z−1

+k2z
−1 B(1)(z)︸ ︷︷ ︸

k1+z−1

= 1 + k1(1 + k2)z
−1 + k2z

−2

B(2)(z) = k2 A
(1)(z)︸ ︷︷ ︸

1+k1z−1

+z−1 B(1)(z)︸ ︷︷ ︸
k1+z−1

= z−2(1 + k1(1 + k2)z + k2z
2) = z−2A(2)(1/z)

Induction step: We state that for i − 1 it is true that B(i−1)(z) = z−(i−1)A(i−1)(1/z)
z=1/z⇐⇒

B(i−1)(1/z) = z(i−1)A(i−1)(z) ⇐⇒ A(i−1)(z) = z−(i−1)B(i−1)(1/z). We must prove that the

above statement is true for (i− 1) + 1 = i.

By using (2.5.15):

B(i)(z) = kiz
−(i−1)(B(i−1)(1/z))+z−1z−(i−1)A(i−1)(1/z) = z−i·[A(i−1)(1/z) + kizB

(i−1)(1/z)]︸ ︷︷ ︸
(2.5.14)

z=1/z
= A(i)(1/z)

⇐⇒

B(i)(z) = z−iA(i)(1/z), therefore we have just proved (2.5.16) ∀i ≥ 0 .

The transfer functions A(i)(z) and B(i)(z) are ith order polynomials and it is useful to obtain a

direct relationship among the coefficients of the polynomials. From (2.5.12) by setting i = i− 1 it

is true that:

A(i−1)(z) = 1 +

i−1∑
n=1

a(i−1)[n]z−n (2.5.18)

From (2.5.16) and (2.5.18) =⇒

B(i−1)(z) = z−(i−1)A(i−1)(1/z) = z−(i−1)

1 + i−1∑
n=1

a(i−1)[n]zn

 (2.5.19)

Substituting equations (2.5.18) and (2.5.19) into equation (2.5.14), A(i)(z) can also be expressed

36

2.5. FIR, IIR LATTICE FILTERS

as:

A(i)(z) =

1 +

i−1∑
n=1

a(i−1)[n]z−n

+ kiz
−1

z−(i−1)

1 + i−1∑
n=1

a(i−1)[n]zn


 (2.5.20)

And reindexing the second summation with replacing n by i− n gives us:

A(i)(z) = 1 +

i−1∑
n=1

[
a(i−1)[n] + kia

i−1[i− n]
]
z−n + kiz

−i (2.5.21)

Comparing (2.5.21) with (2.5.18) and then with (2.5.12) shows that:

a(i)[n] =
[
a(i−1)[n] + kia

(i−1)[i− n]
]
, n = 1, . . . , i− 1 (2.5.22)

a(i)[i] = ki (2.5.23)

We can use (2.5.22) and (2.5.23) recursively in order to compute the transfer functions of succesively

higher order FIR filters until we come to the end of the cascade giving us:

A(z) = 1 +

M∑
n=1

a[n]z−n =
Y (z)

X(z)
(2.5.24)

Now we have a very important algorithm that we’ll use in this thesis:

37

2.5. FIR, IIR LATTICE FILTERS

Algorithm 2.1 k-Parameters-to-Coefficients Algorithm

1: Given k1, k2, . . . , kM
2:

3: for i = 1, 2, . . . ,M do
4: a(i)[i] = ki
5: if i > 1 then ∀j = 1, 2, . . . , i− 1 :
6: a(i)[j] = a(i−1) + kia

(i−1)[i− j]
7: end if
8: end for
9:

10: a[j] = a(M)[j], j = 1, 2, . . . ,M

Figure 2.13: Lattice flow graph for an IIR all-pole system based on cascade of M two-port building
block sections.

2.5.4 IIR Lattice Filters

In the previous subsection, in equation (2.5.24), we’ve found the transfer function of the

FIR Lattice Filter, A(z), that was an all-zero transfer function. Now we define the all-pole inverse

transfer function as H(z) =
1

A(z)
. In order to create an all-pole lattice structure, assume that

we are given y[n] = a(M)[n] and we wish to compute the input a(0)[n] = x[n]. We can do this by

inverting from right to left the computations in Figure 2.12. This will be done by solving equation

(2.5.14) as A(i−1)(z) = g(A(i)(z), B(i−1)(z)) and leave equation (2.5.15) as it is. Specifically:

A(i−1)(z) = A(i)(z)− kiz
−1B(i−1)(z), i = M,M − 1, . . . , 1 (2.5.25)

B(i)(z) = kiA
(i−1)(z) + z−1B(i−1)(z), i = M,M − 1, . . . , 1 (2.5.26)

In this case the signal flow graph is from i = M to i = 0 along the top of the graph and from i = 0

to i = M along the bottom. The input of the all-pole lattice filter will be a(M)[n] and the output

38

2.5. FIR, IIR LATTICE FILTERS

will be a(0)[n]. At last, the condition x[n] = a(0)[n] = b(0)[n] at the terminals of the last stage

causes a feedback connection, that is necessary for an IIR system, which provides the sequences

b(i)[n] to propagate in reverse direction. In addition, a(M)[n] = y[n] is the input of the first stage.

This concept is depicted in Figure 2.13 and the set of difference equations represented will be:

a(i−1)[n] = a(i)[n]− kib
(i−1)[n− 1], i = M,M − 1, . . . , 1 (2.5.27)

b(i)[n] = kia
(i−1)[n] + b(i−1)[n− 1], i = M,M − 1, . . . , 1 (2.5.28)

Comments

• The k-coefficients have a special meaning in the context of all-pole and all-zero modeling of

signals, and in the next chapter we will refer to them as the PARCOR coefficients (PARtial

CORrelation → PARCOR).

• By using the FIR lattice filter implementation and specifically Algorithm 2.1, where if we know

the k-parameters we can find the a-coefficients, we are going to use these coefficients later

to perform linear prediction analysis and synthesis of the audio signal, i.e find e[n] and y[n]

of the linear constant-coefficient difference equation system in (2.5.1) by setting x[n] = e[n].

Linear prediction will be explained in the next chapter.

39

Chapter 3

Linear Prediction

Prediction is a procedure concerning statistical estimation where one or more random vari-

ables can be estimated from observations of other random variables ([25]). We call it prediction

because the variables that we will estimate can be affiliated with the ”future” and the observable

variables are affiliated with the ”past” (or past and present). A very frequent use of prediction

is to predict a sample of an SSS random process by observing several prior samples. Using linear

prediction we eliminate redundancy so that there is less waste. As a consequence, we need fewer

bits to represent each waveform time instant. In this chapter we consider the basic theory needed

for compressing random signals using linear prediction, that is a parametric modeling technique.

3.1 Parametric Signal Modeling

In this section, that is based on [12], we define a parametric random signal modeling tech-

nique, where we can represent a random signal by using a mathematical model that has a preset

structure involving a number of parameters that is limited. We represent a given signal y[n] by

choosing the particular selection of parameters that results in the model output ŷ[n], being arbi-

trarily as close as possible to the given signal y[n].

40

3.1. PARAMETRIC SIGNAL MODELING

Definition 3.1.1 (Discrete-time random signal)

We consider a random signal to be a member of a group of discrete-time signals that is

defined using a set of probability density functions. Precisely, for a particular signal at a particular

time instant, the amplitude of the signal’s sample at that time instant is supposed to be determined

by an underlying probabilistic scheme. The probability density function may be known, or not. So,

each and every sample ya[nTs] = y[n] (see 2.3) of a particular signal can be seen as an outcome of a

random variable Yn which is predefined. Using a collection of such random variables, one for each

sample time n ∈ Z, we can represent the entire signal and consider it as a discrete-time stochastic

process (Definition 2.1.1).

In our case, we will model a random signal that is the output of a discrete-time LTI system,

with transfer function H(z) that is assumed to be a rational function (Definition 2.4.6) of the form:

H(z) =

M∑
m=0

bkz
−k

1 +
N∑

k=1

akz−k

, a0 = 1 (3.1.1)

In this case the signal is modeled by the values of ak and bm (∀k ∈ {1, 2, . . . , N}, ∀m ∈ {1, 2, . . . ,M}),

or equivalently, by the poles and zeros of the system’s transfer function H(z), along with the knowl-

edge of the input. When the model is appropriately chosen, it is possible to represent a large number

of signal samples by a relatively small set of parameters. In data compression, the set of model

parameters is transmitted or stored and the receiver then uses the model with those parameters

to reconstruct the signal. Equation (3.1.1) is the transfer function of a linear-constant coefficient

difference equation system (Definition 2.5.1). Therefore we can write:

y[n] +

N∑
k=1

aky[n− k] = b0x[n] +

M∑
m=1

bmx[n−m] (3.1.2)

41

3.2. LINEAR PREDICTIVE MODEL

Special Cases:

• All-zero model ⇐⇒ Moving Average (MA) model, where ak = 0 ∀k ∈ {1, 2, . . . , N}

• All-pole model ⇐⇒ Autoregressive (AR) model, where bm = 0 ∀m ∈ {1, 2, . . . ,M}

Moving average (MA) models specify that the output signal {y[n]} is linearly dependent on the

current and various past values of the input random signal {x[n]}. In addition, autoregressive (AR)

models specify that the output signal {y[n]} depends linearly on its own previous values and the

input x[n]. ARMA models are defined as in (3.1.2) with N ̸= 0 and M ̸= 0.

Parametric signal modeling is a powerful approach to signal representation and such models which

are comprised of the input signal x[n] and the transfer function H(z) of the linear system, become

useful with the addition of constraints that make it possible to solve for the parameters of H(z)

given the signal to be represented. In the next section, we’ll explain what is a linear predictive

model and later we will use this type of modeling for achieving intra-frame linear prediction that

is a prediction for every sample inside a frame of samples of an audio signal.

3.2 Linear Predictive Model

A linear predictive model is generally an autoregressive (AR) model that is equivalent to an

all-pole model where we assume that the random signal {y[n]} is given as a linear combination of

its past values and some input {x[n]}, (see [12], [26], [27], [28]). This can be expressed as:

y[n] = −
N∑

k=1

aky[n− k] +Gx[n] (3.2.1)

G is a gain factor and we will set G = 1 for our purposes. Equation (3.2.1) is a linear constant-

coefficient difference equation where b0 = G = 1, x[n] is the input, y[n] is the output and h[n] is

the impulse response, thus h[n] = x[n] ∗ y[n] Z←→ H(z) = X(z)Y (z) ⇐⇒ H(z) =
1

1 +
N∑

k=1

akz−k

.

Given a particular random signal y[n], the problem is to determine the predictor coefficients ak,

k ∈ {1, 2, . . . , N} in some manner. If we wish to approximate y[n] using a linearly weighted

42

3.2. LINEAR PREDICTIVE MODEL

summation of its past samples we would write:

ŷ[n] = −
N∑

k=1

aky[n− k] (3.2.2)

Where N is the prediction order. Consequently (3.2.1)
(3.2.2)⇐⇒ y[n] = ŷ[n] + x[n] ⇐⇒ x[n] =

y[n] − ŷ[n] which is the difference between the actual output y[n] and the prediction ŷ[n]. This is

the prediction error (sometimes it’s called the estimation error or residual), x[n] = e[n] and we can

rewrite (3.2.1) as:

y[n] = ŷ[n] + e[n] ⇐⇒ e[n] = y[n]− ŷ[n] (3.2.3)

The Z-transform of (3.2.2) will be written as Ŷ (z) = −
N∑

k=1

akz
−kY (z) ⇐⇒ Ŷ (z)

Y (z)
= −

N∑
k=1

akz
−k

where ŷ[n]
Z←→ Ŷ (z) and the transfer function of the prediction filter is:

A(z) = −
N∑

k=1

akz
−k (3.2.4)

In (3.2.1) , with G = 1 it is true that the transfer function of the described system with input

x[n] = e[n] and output y[n] is:

H(z) =
1

1−A(z)
(3.2.5)

The inverse system with input y[n] and output x[n] = e[n] has a transfer function:

Hi(z) = 1−A(z) (3.2.6)

Our task is to obtain the {ak}Nk=1 coefficients in order to find the optimal ŷ[n] and significantly

reduce the prediction error e[n] ∀n . To assess the performance of this prediction error reduction,

prediction gain is defined as:

PG =
σ2
y

σ2
e

(3.2.7)

where σ2
y denotes the variance of the source signal {y[n]} and σ2

e denotes the variance of the

prediction error signal {e[n]}. Since the prediction error signal is likely to have a much smaller

43

3.3. OPTIMAL LINEAR PREDICTION

variance than the source signal, the mean square quantization error (MSQE) could be significantly

reduced if the prediction error signal is quantized in place of the source signal. This amounts to

linear predictive analysis and synthesis of the audio signal where the linear predictive analysis fil-

ter has a transfer function equal to (3.2.6) and it can be seen as an FIR filter, whereas the linear

predictive synthesis filter (or reconstruction filter) has a transfer function equal to (3.2.5) and it

can be seen as an IIR filter (see definitions (2.5.2), (2.5.3)) and [29].

3.3 Optimal Linear Prediction

In order to achieve an optimal linear predictive model, we must first maximize the prediction

gain (3.2.7) ([26]) or equivalently minimize σ2
e (see [12], [27]) that is the variance of the prediction

error signal {e[n]}. Note that the average ”AC” power quantity of the signal {e[n]} is directly

proportional to its variance. An approach to this problem is to use the mean square error (MSE)

that is defined as:

MSE = E{e2[n]} = EN (3.3.1)

The optimization problem is to find the set of coefficients {ak}Nk=1 that minimizes the MSE, i.e

maximizes the prediction gain and it can be written as:

min
{ak}N

k=1

{MSE} (3.2.3)
====== min

{ak}N
k=1

{E{(y[n] +
N∑

k=1

aky[n− k])2}} (3.3.2)

We must state that {e[n]} is a discrete-time random signal, as well as {y[n]}. To find the parameters

that minimize EN , we differentiate equation (3.3.1) with respect to the ith coefficient ai and set

the derivative equal to zero. We can assure that this assumption gives us a minimized MSE = EN

because
d2EN

d2ai
= y[n− i]2 ≥ 0 therefore EN is a convex function of ai and if its first derivative with

respect to ai is zero (a horizontal tangent to the lowest point of a convex function) this will give

us a global minimum:
dEN

dai
=0 ⇐⇒ dE{e2[n]}

dai
=0 ⇐⇒

dE{(y[n] +
N∑

k=1

aky[n− k])2}

dai
=0 ⇐⇒

44

3.3. OPTIMAL LINEAR PREDICTION

2E{(y[n] +
N∑

k=1

aky[n − k]) · y[n − i]}=0 ⇐⇒ E{y[n]y[n − i]} + E{
N∑

k=1

aky[n − k]y[n − i]}=0 ⇐⇒

E{y[n]y[n− i]}+
N∑

k=1

akE{y[n− k]y[n− i]}=0 ⇐⇒

N∑
k=1

akE{y[n− k]y[n− i]} = −E{y[n]y[n− i]} (3.3.3)

In our case, {y[n]} is a discrete-time random signal (Definition 3.1.1). Also, the values y[1], y[2], . . . , y[N]

are samples inside a frame of an audio signal (2.1) (and this is why we fall in the case of intra-

frame linear prediction) . This means that the discrete-time signal {y[n]} is a discrete-time WSS

stochastic process (Definition 2.1.6) and we can write (3.3.3)
(2.1.7)⇐⇒

N∑
k=1

akRy[i− k] = −Ry[i], i ∈ {1, . . . , N} (3.3.4)

Using the averaging operator notation (Definition 2.1.3) the above equation can be written as:

N∑
k=1

akϕyy[i, k] = −ϕyy[i, 0], i ∈ {1, . . . , N} (3.3.5)

~�


ϕyy[1, 1] ϕyy[1, 2] · · · ϕyy[1, N]

ϕyy[2, 1] ϕyy[2, 2] · · · ϕyy[2, N]

...
...

. . .
...

ϕyy[N, 1] ϕyy[N, 2] · · · ϕyy[N,N]


︸ ︷︷ ︸

Φ

·



a1

a2
...

aN


︸ ︷︷ ︸
A

= −



ϕyy[1, 0]

ϕyy[2, 0]

...

ϕyy[N, 0]


︸ ︷︷ ︸

Ψ

(3.3.6)

In matrix notation, the linear equation (3.3.5) has the representation Φ ·A = −Ψ.

Since ϕyy[i, k] = ϕyy[k, i] =⇒

ϕyy[i, k] = Ry[|i− k|] (3.3.7)

45

3.3. OPTIMAL LINEAR PREDICTION

The matrix Φ is symmetric, and, because it arises in a least-squares problem, it is also positive-

definite which guarantees that is invertible. Equations of this category are also refered to as Yule-

Walker equations. Considering these statements we can also rewrite (3.3.6) as:



Ry[0] Ry[1] · · · Ry[N − 1]

Ry[1] Ry[0] · · · Ry[N − 2]

...
...

. . .
...

Ry[N − 1] Ry[N − 2] · · · Ry[0]


·



a1

a2
...

aN


= −



Ry[1]

Ry[2]

...

Ry[N]


(3.3.8)

In this case, the matrix Φ is also a Toeplitz matrix, meaning that all its elements on each subdiag-

onal (from left to right) are equal. Since the coefficients Ry[i− k] form an autocorrelation matrix,

we shall call this method the autocorrelation method. An autocorrelation matrix is a symmetric,

positive definite and Toeplitz matrix.

If we wish to prove equation (3.3.7) we shall write ϕyy[i, k] = E{y[n− i]y[n− k]} m=n−i⇐⇒ ϕyy[i, k] =

E{y[m]y[m+ i−k]} = Ry[i−k] and Ry[k− i] = E{y[m]y[m+k− i]} = E{y[m+k− i]y[m]} n=m+k−i⇐⇒

Ry[k − i] = E{y[n]y[n+ i− k]} = Ry[i− k] thus we can write Ry[|i− k|] = E{y[m]y[m+ i− k]} =

ϕyy[i, k].

Now we must derive another important equation that is:

EN = ϕyy[0, 0] +

N∑
k=1

akϕyy[0, k] (3.3.9)

In order to prove that the above equation holds, we must use equation (3.3.1) and write that

EN = E{(y[n] +
N∑

k=1

aky[n− k])2︸ ︷︷ ︸
e2[n]=(y[n]+ŷ[n])2

} = E{y2[n]+2y[n]
N∑

k=1

aky[n−k]+
N∑

k=1

aky[n−k]
N∑

k=1

aky[n−k]} =

E{y2[n]}+ 2E{y[n]
N∑

k=1

aky[n− k]}+ E{
N∑
i=1

aiy[n− k]
N∑

k=1

aky[n− k]} =

ϕyy[0, 0] + 2
N∑

k=1

akE{y[n]y[n− k]}+
N∑
i=1

N∑
k=1

aiakE{y[n− i]y[n− k]} ⇐⇒

46

3.3. OPTIMAL LINEAR PREDICTION

⇐⇒ EN = ϕyy[0, 0] + 2
N∑

k=1

akϕyy[0, k] +
N∑
i=1

ai
N∑

k=1

akϕyy[i, k]. Now from (3.3.5) we know that

N∑
k=1

akϕyy[i, k] = −ϕyy[i, 0], i ∈ {1, . . . , N} → EN = ϕyy[0, 0]+2
N∑

k=1

akϕyy[0, k]−
N∑
i=1

aiϕyy[i, 0] ⇐⇒

EN = ϕyy[0, 0] +
N∑

k=1

akϕyy[0, k] + (
N∑

k=1

akϕyy[0, k] −
N∑
i=1

aiϕyy[i, 0]). Since ϕyy[k, 0] = ϕyy[0, k] by

setting i = k we have EN = ϕyy[0, 0] +
N∑

k=1

akϕyy[0, k] + (

N∑
k=1

akϕyy[0, k]−
N∑

k=1

akϕyy[0, k])︸ ︷︷ ︸
=0

⇐⇒

EN = ϕyy[0, 0] +
N∑

k=1

akϕyy[0, k] that is identical to (3.3.9) and we’ve finally proved this equation.

Another way to write (3.3.9) is:

EN = Ry[0] +

N∑
k=1

akRy[k] =

N∑
k=0

akRy[k], a0 = 1 (3.3.10)

Equations (3.3.8) and (3.3.10) will be used in order to derive a very important algorithm for

estimating the optimal set of coefficients {ak}Nk=1, namely, the Levinson-Durbin algorithm.

3.3.1 Derivation of the Levinson-Durbin algorithm

At first we can rewrite (3.3.8) and (3.3.10) with denoting the prediction order on the upper-right

side of the coefficients {ak}Nk=1. We know that the optimum predictor coefficients satisfy the set of

equations: 

Ry[0] Ry[1] · · · Ry[N − 1]

Ry[1] Ry[0] · · · Ry[N − 2]

...
...

. . .
...

Ry[N − 1] Ry[N − 2] · · · Ry[0]


·



a
(N)
1

a
(N)
2

...

a
(N)
N


= −



Ry[1]

Ry[2]

...

Ry[N]


(3.3.11)

And the MSE is:

EN =

N∑
k=0

a
(N)
k Ry[k], a0 = 1 (3.3.12)

47

3.3. OPTIMAL LINEAR PREDICTION

From compacting (3.3.4) and (3.3.12), because they both contain the same autocorrelation values,

we can derive the following set of linear equations:



Ry[0] Ry[1] Ry[2] · · · Ry[N]

Ry[1] Ry[0] Ry[1] · · · Ry[N − 1]

Ry[2] Ry[1] Ry[0] · · · Ry[N − 2]

...
...

...
. . .

...

Ry[N] Ry[N − 1] Ry[N − 2] · · · Ry[0]


︸ ︷︷ ︸

R(N)

·



1

a
(N)
1

a
(N)
2

...

a
(N)
N


︸ ︷︷ ︸
A(N)

=



EN

0

0

...

0


︸ ︷︷ ︸
e(N)

(3.3.13)

This set of equations can be solved recursively by the Levinson-Durbin algorithm. This is done by

successively incorporating a new autocorrelation value at each iteration and solving for the next

higher-order predictor in terms of the new autocorrelation value and the previously found predictor.

Thus, we state that for any order i, the set of equations in (3.3.13) can be represented in matrix

notation as: R(i) ·A(i) = e(i) . We can show that the ith solution can be derived from the (i−1)th

solution, therefore if it is known that R(i−1) · A(i−1) = e(i−1) we shall derive the solution to

R(i) ·A(i) = e(i):

(I) 

Ry[0] Ry[1] Ry[2] · · · Ry[i− 1]

Ry[1] Ry[0] Ry[1] · · · Ry[i− 2]

Ry[2] Ry[1] Ry[0] · · · Ry[i− 3]

...
...

...
. . .

...

Ry[i− 1] Ry[i− 2] Ry[i− 3] · · · Ry[0]


︸ ︷︷ ︸

R(i−1)

·



1

a
(i−1)
1

a
(i−1)
2

...

a
(i−1)
i−1


︸ ︷︷ ︸
A(i−1)

=



Ei−1

0

0

...

0


︸ ︷︷ ︸
e(i−1)

(3.3.14)

48

3.3. OPTIMAL LINEAR PREDICTION

(II) Append a zero to the vector A(i−1) and multiply by the matrix R(i):



Ry[0] Ry[1] Ry[2] · · · Ry[i]

Ry[1] Ry[0] Ry[1] · · · Ry[i− 1]

Ry[2] Ry[1] Ry[0] · · · Ry[i− 2]

...
...

...
. . .

...

Ry[i− 1] Ry[i− 2] Ry[i− 3] · · · Ry[1]

Ry[i] Ry[i− 1] Ry[i− 2] · · · Ry[0]


︸ ︷︷ ︸

R(i)

·



1

a
(i−1)
1

a
(i−1)
2

...

a
(i−1)
i−1

0


︸ ︷︷ ︸
Ã

(i−1)

=



Ei−1

0

0

...

0

γ(i−1)


︸ ︷︷ ︸

ẽ(i−1)

(3.3.15)

From this equation it is true that:

γi−1 = Ry[i] +

i−1∑
j=1

aj
(i−1)Ry[i− j] (3.3.16)

(III) Due to the special symmetry of R(i) that is a Toeplitz matrix, we can write the set of linear

equations (3.3.15) in reverse order:



Ry[0] Ry[1] · · · Ry[i]

Ry[1] Ry[0] · · · Ry[i− 1]

Ry[2] Ry[1] · · · Ry[i− 2]

...
...

. . .
...

Ry[i] Ry[i− 1] · · · Ry[0]


︸ ︷︷ ︸

R(i)

·



0

a
(i−1)
i−1

...

a
(i−1)
1

1


︸ ︷︷ ︸
Ã′(i−1)

=



γ(i−1)

0

...

0

Ei−1


︸ ︷︷ ︸
ẽ′(i−1)

(3.3.17)

(IV) Now equation (3.3.17) and equation (3.3.15) is combined according to:

R(i) ·
[
Ã

(i−1)
+ ki · Ã′(i−1)

]
︸ ︷︷ ︸

A(i)

=

[
ẽ(i−1) + ki · ẽ′

(i−1)
]

︸ ︷︷ ︸
e(i)

(3.3.18)

49

3.3. OPTIMAL LINEAR PREDICTION

We see that we are closer to derive the desired equation in the form of R(i)·A(i) = e(i) remembering

that we started from equation R(i−1) · A(i−1) = e(i−1). Also, we define the coefficients ki for

i = 1, 2, . . . , N in a way, such that e(i) has only one non-zero entry:

ki = −
γ(i−1)

Ei−1
(3.3.19)

If we take the right hand side of equation (3.3.18) and use equation (3.3.19) it is clear that:

e(i) =





Ei−1

0

...

0

γ(i−1)


︸ ︷︷ ︸

ẽ(i−1)

+ki ·



γ(i−1)

0

...

0

Ei−1


︸ ︷︷ ︸
ẽ′(i−1)



=





Ei−1

0

...

0

γ(i−1)


+



γ(i−1) · ki

0

...

0

−γ(i−1)





=



Ei−1(1− k2i)

0

...

0

0



(3.3.20)

50

3.3. OPTIMAL LINEAR PREDICTION

If we take the left hand side of equation (3.3.18):

A(i) =



1

a
(i)
1

...

a
(i)
i−1

a
(i)
i


=



1

a
(i−1)
1 + kia

(i−1)
i−1

...

a
(i−1)
i−1 + kia

(i−1)
1

ki


(3.3.21)

From (3.3.19) using (3.3.16) we can derive:

ki = −
Ry[i] +

i−1∑
j=1

aj
(i−1)Ry[i− j]

Ei−1
, i = 1, 2, . . . , N (3.3.22)

From (3.3.21), we can derive the set of equations for updating the prediction coefficients:

a
(i)
j = a

(i−1)
j + kia

(i−1)
i−j , j = 1, 2, . . . , i− 1 (3.3.23)

a
(i)
i = ki, i = 1, 2, . . . , N (3.3.24)

And from (3.3.20):

Ei = Ei−1(1− k2i), i = 1, 2, . . . , N (3.3.25)

The Levinson-Durbin algorithm

We’ve already found the basic equations needed for the Levinson-Durbin algorithm. The

next step is to be implemented as a pseudocode [30]. After this we can clearly see that if we

already know the set of the PARCOR (PARtial CORrelation) coefficients, {ki}Ni=1,thus we don’t

need Levinson-Durbin to calculate the values of the set {ki}Ni=1, we conclude to the exact same

51

3.3. OPTIMAL LINEAR PREDICTION

algorithm we’ve already implemented that is the k-parameters to coefficients algorithm (Algorithm

2.1) for converting from k-parameters of a lattice structure to the FIR impulse response coefficients

using the equations (3.3.23) and (3.3.24).

Algorithm 3.1 Levinson-Durbin Algorithm

1: -Initialization-
2:

3: a
(i)
0 = 1, ∀i = 1, 2, . . . , N

4: E0 = Ry[0]

5: k0 = −Ry[1]

Ry[0]
6:

7: for i = 1, 2, . . . , N do
8:

9: ki = −
Ry[i] +

i−1∑
j=1

aj
(i−1)Ry[i− j]

Ei−1
(3.3.22)

10: a
(i)
i = ki (3.3.24)

11:

12: if i > 1 then ∀j = 1, 2, . . . , i− 1
13:

14: a
(i)
j = a

(i−1)
j + kia

(i−1)
i−j (3.3.23)

15:

16: end if
17:

18: Ei = Ei−1(1− k2i) (3.3.25)
19:

20: end for
21:

22: aj = a
(N)
j , ∀j = 1, 2, . . . , N

Now, after defining the Levinson-Durbin algorithm, we must state that (3.3.2) has been solved.

• It is important to clarify that a
(N)
j = a(N)[j] is the jth prediction coefficient that is being

multiplied by sample y[n − j], where j = 1, 2, . . . , N . Also, i = 1, 2, . . . , j + 1 is the order of

prediction that we used in order to calculate each a
(i)
j every time using a

(i−1)
j and ki, until

index i = N .

• If we collect ∀j all the a
(N)
j coefficients and perform subtraction operation on all the elements

of the set {a(N)
j · y[n − j]}Nj=1 we can finally derive ŷ[n] ≈ y[n] (3.2.2) that is the optimal

52

3.3. OPTIMAL LINEAR PREDICTION

prediction according to the linear predictive model, with prediction error e[n] = ŷ[n]− y[n].

• The Levinson-Durbin algorithm has time complexity of O(N2) which can significantly im-

proved by Itakura’s method ([31]).

• The linear predictive model is the reason we can achieve an intra-frame linear prediction. As

we’ve already stated, each frame will have a significantly small duration because we want it

to be a WSS stochastic process.

• It is important to say that our system is initially at rest. Therefore the prediction, that is

ŷ[n] = −
N∑

k=1

a
(N)
k · y[n− k] where N is the prediction order, must always satisfy that n ≥ N .

Thus for the first N + 1 samples we can assume prediction orders Ñ = 1, 2, . . . , N . That

is, for sample 1 we assume prediction order of 0, for sample 2 we assume prediction order

of 1, for sample 3 we assume prediction order of 2 etc. When we find a prediction for all

the first N samples, then for every sample with n > N we will predict normally using the

pre-defined order. Hence, for the first N + 1 samples we have ŷ[n] = −
Ñ∑

k=1

a
(Ñ)
k · y[n − k].

If the total number of samples is T then for the rest T − (N + 1) samples we will have

ŷ[n] = −
N∑

k=1

a
(N)
k · y[n− k].

• From (3.3.25) we found that Ei = Ei−1(1 − k2i). Notice that Ei ≥ Ei−1 ≥ EN > 0, so the

greater the prediction order the less is the MSE (3.3.1). Also the MSE is always non-negative,

thus |ki| < 1 ⇐⇒ −1 < ki < 1. Also ki ̸= ±1 because MSE = 0 only for a deterministic

process. If ki = 0 then we have no performance improvement going from order i to i+ 1.

53

3.3. OPTIMAL LINEAR PREDICTION

Figure 3.1: MSE versus prediction order for 4 audio signals.

Figure 3.2: Transmitter vs Receiver for linear predictive modeling.

• In Figure 3.1 we can see that as the prediction order increases, the MSE decreases logarith-

mically.

• In Figure 3.2 we can see a transmitter and a receiver for a digital audio signal, that is the

dequantized signal after applying the Pulse Code Modulation (Section 2.3) and it is framed

in short time intervals. An underlying linear predictive modeling for each frame is implied.

54

3.3. OPTIMAL LINEAR PREDICTION

Figure 3.3: “Sending” the prediction error uncoded.

Figure 3.4: “Sending” the prediction error using source coding.

• In Figure 3.3 we depict the whole process of “sending” (storing in the computer) the dequan-

tized audio signal, where the PCM block is the Pulse Code Modulation from Section 2.3,

where we store the prediction error uncoded.

• In Figure 3.4 we again depict the same process but with an extra block: the Source Coding

block. In Chapter 4 we will see what is Source Coding and why it is important in order to

achieve compression of the signal. In communication systems compression is important for

acheiving a faster rate of transmission.

55

Chapter 4

Source coding techniques

In this chapter we introduce some basic information theory definitions ([32], [33] , [34]) that

are useful in order to understand the coding (encoding and decoding) process of the residual, also

known as the prediction error. Afterwards, we’ll proceed to the explanation of Huffman, Arithmetic

and Golomb Codes which are very useful coding techniques and prove why (and when) they are

optimal codes.

4.1 Basic definitions on information theory

Information theory is a very creative scientific subject, that is being employed in many

applications in real life. We can see this subject being applied in many different fields such as

telecommunications for achieving faster rates of either analog or digital signal transmission (source

coding-entropy coding), error resilience of a communication system (channel coding), cryptography,

quantum computing, biomedical applications that require lossless compression of images, audio com-

pression and coding and many other significant fields. In this section we’ll start by the definition of

a source code, see all the kinds of different source codes that exist, introduce the Kraft-McMillan

inequality and the definitions of entropy.

56

4.1. BASIC DEFINITIONS ON INFORMATION THEORY

Definition 4.1.1 (Source Code)

A source code is a mapping C : X → D∗. Hence ∀x ∈ X we can define a codeword C(x) ∈ D∗

with length l(x) measured in units/symbol. In addition D∗ is a set of D-ary alphabet symbols. For

example, suppose that we have a source X = {x1, x2} and we want to encode the source’s values x1

and x2. If we assign their corresponding codewords as C(x1) = 11 and C(x2) = 0 we have a valid

source code. In addition l(x1) = 2 and l(x2) = 1 coded bits per source symbol.

A source code can be singular, non-singular, uniquely decodable or prefix-free. Notice that a prefix-

free code is also a uniquely decodable code but a uniquely decodable code is not always a prefix-free

code. This can be clearly seen in Figure 4.1.

All codes

Non-singular

Uniquely Decodable
Prefix-free

Figure 4.1: Graph representation of all possible source codes.

• Singular code is every source code that can perform a mapping from a source to a codebook.

All codes are singular.

• Non-singular code is a source code that can assign a unique codeword to each source symbol,

but when we decode we may get different codewords than those in the encoding procedure.

• Uniquely decodable code is a source code where if x ∈ XM and x = x1x2 . . . xM is the mes-

sage that we want to send from a source, then C(x) = C(x1x2 . . . xM) = C(x1)C(x2) . . . C(xM).

The way we decode this type of source code is unique, but it has the disadvantage that before

the decoding of each codeword, we might need to see a big portion of x = x1x2 . . . xM .

• Prefix-free code is a type of source code that no codeword is a prefix of another codeword.

It is also called instantaneous code because every codeword can be decoded instantly i.e., at

the time it is received. This is a great advantage over uniquely decodable codes. Using a

57

4.1. BASIC DEFINITIONS ON INFORMATION THEORY

mathematic notation, if X = {x1, x2, . . . , xn} then the mapping C : X → D∗ is prefix-free if

∀i ∈ {1, 2, . . . , n} and ∀j ∈ {1, 2, . . . , n}, where i ̸= j, C(xi) is not a prefix of C(xj) and vice

versa.

Definition 4.1.2 (Kraft-McMillan inequality)

Let X = {a1, a2, . . . , aM} be the alphabet of a discrete source with codeword lengths

l(a1), . . . , l(aM) = {l(ai)} where l(ai) = l[C(ai)] with C(ai) being the codeword of the symbol

ai, i = 1, 2, . . . ,M . Then it is true that:

• Every prefix-free code satisfies the Kraft-McMillan inequality:

M∑
i=1

D−l(ai) ≤ 1

where D = 2 if the codewords are written in binary representation.

• If the Kraft-inequality is satisfied for a given set of codeword lengths {l(ai)}, i = 1, 2, . . . ,M

then a prefix-free code can be constructed using the codeword lengths of the set {l(ai)}.

Definition 4.1.3 (Shannon’s entropy)

Let’s consider a discrete source X that takes values from an alphabet X , with probability

mass function pX(x) = P (X = x) . The D-ary entropy of the discrete source X, for representing

the codewords in D−ary alphabet can be defined as:

HD(X) = −
∑
x∈X

pX(x) logD pX(x)

To be more specific, we can replace x with ai given i = 1, 2, . . . , |X | .

Definition 4.1.4 (Expected codeword length)

The expected codeword length is simply the sum of all the possible codeword lengths that

58

4.1. BASIC DEFINITIONS ON INFORMATION THEORY

exist in a codebook D∗ weighted by the probabilities of each length. Hence, if we have a source X

that takes values from an alphabet X = {a1, a2, . . . , aM}, a source probability mass function that

its probability masses are in the set A = {pX(ai)}i=1,2,...,M and the respective codeword lengths

l(a1), l(a2), . . . , l(aM) = l[C(a1)], l[C(a2)], . . . , l[C(aM)] then we can define the expected codeword

length as:

L̄ =

M∑
i=1

pX(ai) · l(ai) = EpX
{l(X)}

Theorem 4.1.1 (Jensen Inequality)

If we have a convex function f(X) where X is a random variable and EpX
{f(X)} is the

expected value of f(X) with underlying probability mass function pX(xi) with i = 1, . . . , k then

the Jensen Inequality states that:

EpX
{f(X)} ≥ f(EpX

{X}) ⇐⇒
k∑

i=1

pX(xi) · f(xi) ≥ f(

k∑
i=1

pX(xi) · xi)

Proof: The above statement can be proved by induction. The first step is to suppose that for

k = 2 probability mass points the above statement is true, thus:

pX(x1)f(x1) + pX(x2)f(x2) ≥ f(pX(x1)x1 + pX(x2)x2)

The second step is the induction step in which we say that if the desired inequality is true for k− 1

mass points then it must be true for k mass points also. To prove this step it is very helpful to

define p̃X(xi) =
pX(xi)

(1− pX(xk))
for i = 1, 2, . . . , k − 1 . Thus we have:

k∑
i=1

pX(xi)f(xi) = pX(xk)f(xk) + (1− p̃X(xk))

k−1∑
i=1

p̃X(xi)f(xi) ≥

pX(xk)f(xk) + (1− pX(xk))f(

k−1∑
i=1

p̃X(xi)xi) ≥

59

4.1. BASIC DEFINITIONS ON INFORMATION THEORY

≥ f(pX(xk)xk + (1− pX(xk))

k−1∑
i=1

p̃X(xi)xi) = f(

k∑
i=1

pX(xi) · xi)

therefore the theorem has been proved. Notice that the second inequality is true because we have

supposed that f(·) is a convex function.

On the other hand, if we have a concave function g(X) it is true that:

EpX
{g(X)} ≤ g(EpX

{X}) ⇐⇒
k∑

i=1

pX(xi) · g(xi) ≤ g(

k∑
i=1

pX(xi) · xi)

Having the proof of the Jensen inequality for a convex function, it is easy to prove the above

statement that is about a concave function g(·). This can be achieved by saying that if g(X) is

a concave function then −g(X) is a convex one (notice that the second derivative of −g(X) has

a different sign than the second derivative of g(X)). Therefore we can replace f(X) = −g(X)

and then multiply by −1 to the Jensen inequality for a convex function. This clearly gives the

Jensen inequality for concave functions. We can also use the generalization of Jensen Inequality

considering that f(·) is a convex function: E{f(g(X))} ≥ f(E{g(X)}) or f(·) is a concave function:

E{f(g(X))} ≤ f(E{g(X)}).

Theorem 4.1.2 (Entropy is the lowest bound of the expected codeword length)

In this theorem we want to prove that the entropy of a source is always the lowest bound of

the expected codeword length and this condition can not be relaxed. The best we can achieve in

source coding is a codeword length that is equal to the entropy of the source but never less than

it. The proof can be done easily by using the Jensen inequality (Theorem 4.1.1). At first using

Definition 4.1.3 and Definition 4.1.4 we can write:

HD(X)− L̄ = −
M∑
i=1

pX(ai) logD pX(ai)︸ ︷︷ ︸
HD(X)

−
M∑
i=1

pX(ai)l(ai)︸ ︷︷ ︸
L̄

= −
M∑
i=1

pX(ai)(logD pX(ai) + l(ai)) =

60

4.1. BASIC DEFINITIONS ON INFORMATION THEORY

=

M∑
i=1

pX(ai)(− logD pX(ai) + logD D−l(ai)) =

M∑
i=1

pX(ai) logD

(
D−l(ai)

pX(ai)

)
(i)

It is important to note that f(x) = logD(x) is a concave function therefore we can use Jensen’s In-

equality for this case (Theorem 4.1.1). Hence (i) ⇐⇒ HD(X)− L̄ =
M∑
i=1

pX(ai) logD

(
D−l(ai)

pX(ai)

)
≤

logD

 M∑
i=1

pX(ai)

(
D−l(ai)

pX(ai)

) = logD

(
M∑
i=1

D−l(ai)

)
≤ logD(1) = 0 and the last inequality is true

because of Kraft-McMillan inequality (Definition 4.1.2). As we can see using Jensen’s Inequality

and Kraft-McMillan inequality we’ve proved one of the most significant theorems in information

theory which is that the expected codeword length is always greater (or equal) to the entropy of

the source: HD(X) ≤ L̄ .

Definition 4.1.5 (Kullback-Leibler distance)

The Kullback-Leibler distance (or relative entropy) for discrete sources is defined for two

different probability mass functions q(·) and p(·) as:

D(p||q) ≜
∑
x

p(x) logD
p(x)

q(x)
= Ep

{
logD

(
p(X)

q(X)

)}

The Kullback-Leibler distance is always non-negative (D(p||q) ≥ 0):

D(p||q) = Ep

{
logD

(
p(X)

q(X)

)}
= Ep

{
− logD

(
q(X)

p(X)

)}
≥ − logD

(∑
x

p(x)
q(x)

p(x)

)
=

= − logD(1) = 0

and we used the Jensen Inequality (Theorem 4.1.1) for the convex function case (because f(x) =

− log(x) is a convex function) to prove the above.

61

4.2. SHANNON-FANO CODE

4.2 Shannon-Fano code

In this section we’ll explain the Shannon-Fano code ([35]) and when this type of code is

optimal. At last we’ll apply the Shannon-Fano code using a wrong source probability distribution

and discuss the results.

(a) Claude Shannon (b) Robert Fano

Figure 4.2

Before explaining the Shannon-Fano code it is sufficient to prove Theorem 4.1.2 using a

different proof and find when HD(X) = L̄, i.e. when the expected codeword length is equal to

its lowest bound that is the entropy of the source X that takes values from the alphabet X =

{x1, x2, . . .}. It is helpful to define a probability mass function qX(xi) =
D−l(xi)

c
where c =∑

∀i
D−l(xi) ≤ 1 (see Kraft-McMillan inequality in Definition 4.1.2). We must note that this is

not the underlying probability mass function of the source. Therefore we can define a different

probability mass function for the discrete source that is written as pX(xi). If one wants to prove

that qX(xi) is a legit probability distribution, then the following expression is true:
∑
∀i

qX(xi) =

∑
∀i

D−l(xi)∑
∀i

D−l(xi)
=

1∑
∀i

D−l(xi)
·
∑
∀i

D−l(xi) = 1 . In addition:

L̄−HD(X) =
∑
∀i

pX(xi)l(xi)−
∑
∀i

pX(xi) logD

(
1

pX(xi)

)
=

=
∑
∀i

pX(xi) logD

(
pX(xi)

D−l(xi)

)
=
∑
∀i

pX(xi) logD

(
pX(xi)

qX(xi)

)
+
∑
∀i

pX(xi) logD

(
1

c

)

62

4.2. SHANNON-FANO CODE

= D(pX ||qX) + logD

(
1

c

)
≥ 0,

where D(pX ||qX) ≥ 0 and c ≤ 1 . Hence, L̄ ≥ HD(X) and L̄ = HD(X) if and only if c = 1

(Kraft McMillan Inequality is satisfied with equality thus the code is complete) and D(pX ||qX) = 0

meaning that qX(xi) = pX(xi)∀xi ∈ X . This means that qX(xi) = D−l(xi) = pX(xi). By this,

one can understand that we can achieve the lowest bound of the expected codeword length , i.e

L̄ = HD(X) when pX(xi) = D−l(xi) ⇐⇒ l(xi) =
1

logD(pX(xi))
, ∀xi ∈ X .

This corollary implies that l(xi) ∈ N if and only if pX(xi) = D−l(xi). But if we can not control

the probability distribution of the source how can we define a code that will have integer lengths?

This question can be answered by using the Shannon-Fano code which states that every source sym-

bol xi will have a codeword C(xi) assigned, such that l(xi) =

⌈
1

logD(pX(xi))

⌉
= lSF (xi). We can

clearly see that
∑
∀i

D−lSF (xi) =
∑
∀i

D
−


1

logD(pX(xi))

 ≤ ∑
∀i

D
− logD

 1

pX(xi)


=
∑
∀i

pX(xi) = 1.

Hence, the Kraft-McMillan inequality is true (Definition 4.1.2) and we can construct an instanta-

neous,i.e prefix-free code encoding our source symbols with lengths lSF (xi) =

⌈
logD

(
1

pX(xi)

)⌉
.

4.2.1 Optimality of the Shannon-Fano code

In order to discuss the optimality of the Shannon-Fano code we start by stating that for a

source symbol xi:

lSF (xi) =

⌈
logD

(
1

pX(xi)

)⌉

=⇒ logD

(
1

pX(xi)

)
≤ lSF (xi) < logD

(
1

pX(xi)

)
+ 1

=⇒
∑
∀i

pX(xi) logD

(
1

pX(xi)

)
≤
∑
∀i

pX(xi)lSF (xi) <
∑
∀i

pX(xi) logD

(
1

pX(xi)

)
+
∑
∀i

pX(xi)︸ ︷︷ ︸
=1

=⇒ HD(X) ≤ L̄SF < HD(X) + 1 (D-ary digits / source symbol) (4.2.1)

63

4.2. SHANNON-FANO CODE

We can optimize this code, with block coding and assuming that the symbols of the source are

i.i.d (independent identically distributed). If a random variable X and a random variable Y are

independent then the D-ary entropy can be defined as:

HD(X,Y) = −
∑
∀x,y

pX,Y (x, y)︸ ︷︷ ︸
pX(x)·pY (y)

logD(pX,Y (x, y)) = −
∑
∀x

pX(x) logD(pX(x))−
∑
∀y

pY (y) logD(pY (y))

⇐⇒ HD(X,Y) = HD(X) +HD(Y) (4.2.2)

This can be further generalized if X1, X2, . . . , Xn are i.i.d random variables as:

HD(X1, X2, . . . , Xn) = HD(X1) +HD(X2) + . . .+HD(Xn) = n ·HD(X) (4.2.3)

where X is a random variable with the same underlying probability distribution as X1, . . . , Xn.

Then, if we apply block coding for tuples of n elements then the expected codeword length will be

decreased. So if we have a code Cn
SF : Xn → D∗ where CSF (X1, . . . , Xn) is a codeword then:

HD(X1, X2, . . . , Xn) ≤ L(Cn
SF) < HD(X1, X2, . . . , Xn) + 1

(4.2.3)⇐⇒ n ·HD(X) ≤ L(Cn
SF) < n ·HD(X) + 1 D-ary digits / n source symbols

⇐⇒ HD(X) ≤
L(Cn

SF)

n
< HD(X) +

1

n
D-ary digits / source symbol (4.2.4)

This means that as n→∞ then
L(Cn

SF)

n

n→∞−→ HD(X).

In realistic applications, block coding with big values of n is not prefered because then

we should create very large codebooks. For example if we have a source which takes values from

an alphabet that contains M different symbols then we have Mn different combinations (Mn tu-

ples) in the codebook, meaning that as n increases the spatial complexity of the code increases

exponentially.

64

4.2. SHANNON-FANO CODE

4.2.2 Coding with a wrong probability distribution

Suppose that have a discrete sourceX that takes values from an alphabet X = {x1, x2, . . . , xn}

with probability mass function pX(xi) where xi ∈ X . If we decide to apply Shannon-Fano cod-

ing using another probability mass function qX(xi) then we have codeword lengths of l(xi) =⌈
logD

(
1

logD(qX(xi))

)⌉
. Then:

∑
∀i

pX(xi) logD

(
1

q(xi)

)
≤
∑
∀i

pX(xi)

⌈
logD

(
1

q(xi)

)⌉
<
∑
∀i

pX(xi) logD

(
1

q(xi)

)
+ 1

⇐⇒
∑
∀i

pX(xi) logD

(
pX(xi)

q(xi)

)
+
∑
∀i

pX(xi) logD
(
pX(xi)

)
≤
∑
∀i

pX(xi) logD
(
l(xi)

)
<
∑
∀i

pX(xi) logD

(
pX(xi)

q(xi)

)
+
∑
∀i

pX(xi) logD
(
pX(xi)

)
+ 1

⇐⇒ HD(X) +D(pX ||qX) ≤ L̄SF < HD(X) +D(pX ||qX) + 1 (D-ary digits / source symbol)

(4.2.5)

If we compare (4.2.1) and (4.2.5) it is clear that the Kullback Leibler distance that is added

to the lowest and highest bound of the expected codeword length for the optimal Shannon-Fano

code makes this type of code ”less optimal” if we use a probability mass function that is not equal

to the original, i.e using a different probability distribution than the probability distribution of the

source. If both probability mass functions are equal (qX(xi) = pX(xi), ∀xi ∈ X) then the Kullback

Leibler distance is zero so we have an optimal Shannon-Fano code. We can also notice that the

”further away” the probability mass function qX(·) is from pX(·) the greater the expected codeword

length will be compared to the entropy of the source, i.e its lowest bound.

65

4.3. HUFFMAN CODING

4.3 Huffman Coding

The main idea that was developed by David A. Huffman ([36]) for coding a source is that we

can assign small codeword lengths to the source symbols with the highest probabilities and bigger

codeword lengths to the source symbol with lesser probabilities by adding the two least probable

symbol probabilities recursively and finally create D-ary tree. In this way the expected codeword

length can be minimized. Huffman is an optimal symbol code.

Figure 4.3: David Albert Huffman

Lemma 1

If we have a source X that takes values from an alphabet X = {x1, x2, . . . , xn} and i ∈

{1, 2, . . . , n}. If i ̸= j, for achieving a minimum expected codeword length:

pX(xi) > pX(xj) =⇒ l(xi) ≤ l(xj)

To prove this, we will start by assuming that the code C1 for the source X is optimal. Suppose also

that C2 is the same as C1 but the only thing that changes is that the codewords xi and xj will be

permuted-swapped. For this reason:

L̄C2
− L̄C1

=∑
k

pX(xk)l
′(xk)−

∑
k

pX(xk)l(xk) = pX(xi) l(xj)︸ ︷︷ ︸
l′(xi)

+pX(xj) l(xi)︸︷︷︸
l′(xj)

− (pX(xi)l(xi) + pX(xj)l(xj)) =

= pX(xi)(l(xj)− l(xi))− pX(xj)(l(xj)− l(xi))

66

4.3. HUFFMAN CODING

= (pX(xi)− pX(xj))(l(xj)− l(xi)) ≥ 0 =⇒ l(xi) ≤ l(xj)

Lemma 2

The prefix-free code with the minimum expected codeword length is complete otherwise it is

not optimal because we can delete a leaf from the tree and have a lesser expected codeword length.

In addition the codewords with the greatest codeword lengths have equal sized lengths because if

they don’t one of the two would be an intermediate node therefore the other could have a lesser

codeword length. We should state here that these codewords only differ in the last bit. This lemma

will be clarified in the examples that we’ll present below.

If we want to encode in binary the Huffman algorithm first chooses the two least probable

symbols and assigns to them arbitrarily a ”0” and a ”1” respectively. These two symbols can

be called ”siblings” and they can be merged to a new symbol with a probability equal to the

summation of their two respective probabilities. At the next step of the recursion, the comparison

of the probabilities will be done for one symbol less because the previous two symbols have been

merged into one. Huffman coding is a “greedy” algorithm yielding optimal solutions in each step of

the recursion (at each step of the recursion merge the two least probable symbols into one). This

method will lead to greater codeword lengths for lesser symbol probabilities and vice versa.

Example 4.3.1

Consider a source X that takes values from an alphabet X = {1, 2, 3, 4} and PX(1) =

PX(2) = PX(3) = PX(4) =
1

4
.

a1 → 11

a2 → 10

a3 → 01

a4 → 00

67

4.3. HUFFMAN CODING

The entropy of the binary source is H2(X) = −
∑
x∈X

pX(x) log2 pX(x) = −4 · log2
(
1

4

)
= 2

(bits/symbol) and the expected codeword length is L̄ =
∑

x∈X pX(x) · l(x) = (2 · 1
4
) · 4 = 2

(bits/symbol). In this case L̄ = H2(X) and the resulting code is optimal.

Example 4.3.2

Consider a source X that takes values from an alphabet X = {1, 2, 3, 4} and PX(1) =
1

2
,

PX(2) =
1

4
, PX(3) =

1

8
, PX(4) =

1

8
.

a1 → 1

a2 → 01

a3 → 001

a4 → 000

The entropy of the binary source is H2(X) = −
∑
x∈X

pX(x) log2 pX(x) = 1.75 (bits/symbol) and

the expected codeword length is L̄ =
∑

x∈X pX(x) · l(x) = 2.5 (bits/symbol). In this case

H2(X) ≤ L̄ < H2(X)+1 and the resulting code is achieving a minimum expected codeword length.

We would have the exact same results if we used a Shannon-Fano code given that the probabilities

are negative powers of 2.

Of course the Huffman code can be extended using D-ary codebooks. Then in every

recursion we merge the D symbols that are the least probable ones. The choice of D depends on

the application. If we want to transmit a message using a 3PSK (or 3FSK) modulation we must

use a ternary code (D = 3) and merge in every iteration the 3 least probable symbols. In order for

this type of coding to be optimal we must keep in mind that we may have to fill the huffman tree

with some extra (idle) symbols of zero probability. To do this we can say that the total number of

symbols to encode and idle symbols is n and x respectively and the number of steps of the code is k.

Therefore, we must find the minimum x such that k ∈ N using the formula (x+n)−(D−1) ·k = D.

68

4.3. HUFFMAN CODING

4.3.1 Huffman Code Optimality

Since knowing that Huffman is optimal for every source X in the sense that:

H(X) ≤ L̄H < H(X) + 1 (bits / symbol) (4.3.1)

we can apply block coding, as we did with the Shannon-Fano code, meaning that we can create all

the n-tuples (x1, x2, . . . , xn) ∈ Xn where X = {x1, x2, . . . , xM}, calculate the probability for each

one of them and encode the Mn total n-tuples. Then for a source X ∈ Xn:

H(X1, . . . , XM) ≤ L̄H < H(X1, . . . , XM) + 1

⇐⇒ nH(X) ≤ L̄H < nH(X) + 1

⇐⇒ H(X) ≤ L̄H

n
< H(X) +

1

n
(bits / symbol)

(4.3.2)

This is a very good improvement over (4.3.1) and the more we increase n the closer the expected

codeword length is to the entropy of the source. But unfortunately, it is a lot of times impractical,

as the codebook needed for decoding increases exponentially. For example if we have a source of

10 symbols then for the simple Huffman Coding we exactly 10 entries in the codebook. Only with

n = 2 we will have 102 = 100 entries in the codebook, and with n = 6 we will need 1 million entries

in the codebook, so every time in the decoding stage, we must search the encoded value inside

this huge codebook. This is not only slow, but increases spatial complexity so much and for this

reason, in real life applications it is really rare to see Huffman Block coding. Although this result

is important, in order to compare with more coding techniques, as we will see in the rest of this

chapter.

69

4.4. ARITHMETIC CODING

4.4 Arithmetic Coding

In this section a powerful source coding technique will be explained, named Arithmetic

Coding([37],[38]), that is a computationally simple algorithm which can compute the range [p, q)

for a particular message given only a table of probabilities for each symbol. The initial range is

[0, 1) and in each iteration of the algorithm, the initial range gets narrowed depending on the next

symbol’s probability. After processing the last symbol, a value x ∈ [p, q) is chosen as a representa-

tive for encoding the message. In other words, we encode the source’s sequence of symbols by using

their cumulative probabilities in order to narrow down the probability range of all the symbols in

the sequence. By applying typical linear scaling to the narrowed range that each iteration of the

algorithm gives, we can scale the cumulative probability of the present symbol that we wish to

encode. The example below will be used to clarify the above [39].

Example 4.4.1

Suppose that we wish to encode the message ”aabc” using the table below:

Symbol Probability Cumulative Probability

a .100 .000

b .010 .100

c .001 .110

d .001 .111

In this example we want to subdivide (narrow) the unit interval [0, 1) for the arithmetic code

using the table above keeping in mind that the input data string is ”aabc” . Our arithmetic code is

a type of FIFO arithmetic code. The first symbol ”a” is implied as an arbitrary fractional number

inside the interval [0, .100). After that, we subdivide in the exact same proportions the interval

[0, .100) that are defined by the cumulative probabilities of each symbol. This is done by typical

linear scaling. The same procedure is being done for the second symbol ”a” and its subinterval is

[0, .010) so in the third step our current interval [0, .100) will be narrowed into [0, .010). Afterwards,

70

4.4. ARITHMETIC CODING

the third symbol is b and the subinterval that belongs to it is [.001, .0011) so in the fourth step the

current interval [0, .010) will be narrowed into [.001, .0011). At last, the fourth symbol c defines

the subinterval [.0010110, .0010111). This process is depicted clearly in Figure 4.4. We also must

not forget to find a representative value x ∈ [.0010110, .0010111) and this is the value that we’ll

store or transmit. If we choose x = .0010110 then we will store or transmit 0010110 that is 7-bits.

Also notice that if the first symbol is ”a” and the second symbol is ”a” too, then the length of the

Figure 4.4: Arithmetic encoding of the sequence ”aabc” .

second subinterval that belongs to the second a is p(a) × p(a) = .1 × .1 = .01 . In addition the

length of the second subinterval if the second symbol was ”b” would be p(a)×p(b) = .1× .01 = .001

and to verify, .0011 − .0010 = .001 . This is an alternative way to see how the subintervals are

formed if you don’t prefer to apply linear scaling. Keep in mind that we chose the representative

x = 0010110 that is about to be decoded. The decoder will read this value as a fractional one

(.0010110) and then it will make comparisons to find the original message. In our case 0 < x ≤ .1,

therefore the first symbol is ”a”. Then it will mimic the encoder procedure for linear scaling and

will compare again, this time 0 < x ≤ .010 therefore the second symbol is ”a” . For the third step,

the comparison will be .0010 < x ≤ .0011, hence the third symbol is b . Notice that in every step

71

4.4. ARITHMETIC CODING

x lies in one and only one interval of the four possible adjoint interval and after the comparison

has been done we perform linear scaling to narrow the subintervals. At last, at the fourth step, the

decoder will understand that .0010110 < x ≤ .0010111 . But how do we know when the decoder

will stop? For this there are two solutions. The first one is to add to our alphabet one more symbol

that is the EOF (End Of File) symbol and concatenate it at the rightmost side of the message.

Another solution is send the message length in along with the entire message, so when the decoder

sees that the given message had a length of 4 (length(”aabc”) = 4) then it will stop decoding.

Using this method to encode a sequence of symbols, the encoding does not give fixed symbol

lengths and does not assign codewords for each symbol in a codebook (as in Huffman coding or

in Shannon-Fano coding), but it assigns only one single codeword for the whole input sequence.

Although this may be attractive, arithmetic coding in its primary form presents a precision problem.

In theory we can easily imply infinite precision but computers have a limited amount of memory.

Therefore, from a practical point of view, if we wish to encode a very large sequence using Arithmetic

Coding it may be needed to import libraries in our software that support the implementation of

really large integers. Nevertheless, this is not a great way to solve this problem efficiently in order

to store really large representative values because we must either tether a big portion of memory

which leads to a long time for every arithmetic operation to be done, or truncate some bits of the

representative. This truncation may lead to incorrect decoding, if the magnitude of the difference

between the original bit string and the truncated is greater (or equal) than the magnitude of any

particular symbol’s probability, otherwise the decoding will be correct. If we have a correct decoding

though this doesn’t mean that the compression efficiency of the scheme will not be negatively

affected.

4.4.1 Implementation of Arithmetic Coding

Suppose that we have a discrete source X that takes values from an alphabet of integers

X = {0, 1, . . . , n}. If we see X as a random variable then X∼
(
pX(0), pX(1), . . . , pX(n)

)
. Without

loss of generality, suppose that the input message is x1x2 · · ·xk where x1, x2, . . . , xk ∈ X .

72

4.4. ARITHMETIC CODING

The cumulative probability range of each symbol in the message will be:

[FX(xi−1), FX(xi)) ∀i ∈ {1, 2, . . . , k} (4.4.1)

where: FX(xi−1) =
i−1∑
j=1

PX(xj) , FX(xi) = FX(xi−1) + PX(xi) .

Alternatively by setting FX(xi−1) = CPlow(xi) and FX(xi) = CPhigh(xi):

CPlow(xi) =


0 , i=1

CPlow(xi−1) + pX(xi−1) , otherwise

(4.4.2)

CPhigh(xi) =


pX(x1) , i=1

CPlow(xi) + pX(xi) , otherwise

(4.4.3)

It is important to remember that the lowest value of the xi symbol’s subinterval is CPlow(xi)

and the highest is CPhigh(xi). Also notice that CPhigh(xi) = CPlow(xi+1) .

Figure 4.5: Initial cumulative probability ranges for the symbols x1, x2, . . . , xk .

Until now, we’ve completed the implementation for the initialization of the algorithm. To move

forward, it is crucial to define somehow every possible message that we might get as an input to

73

4.4. ARITHMETIC CODING

our arithmetic encoder. At first we must define EOF = 0, where EOF is the EndOfFile symbol.

We also define the set X(k) that contains all finite length strings, such that:

X(k) = {x1 · · ·xk0 : xi ∈ X − {0}, k ∈ N} (4.4.4)

The joint probability mass function of a random finite length string in X(k), where x = x1 · · ·xk0

is the input sequence, is defined as:

p̃(x) = p
X1,...,Xk,Xk+1

(x1, . . . , xk, 0) = pX1(x1) · · · pXk
(xk) · pXk+1

(0) (4.4.5)

The above equation is true because the random variables X1, . . . , Xk, Xk+1 are independent and

identically distributed (iid). The joint probability mass function p
X1,...,Xk,Xk+1

(·) is a probabilistic

model that we can define on the probability mass function
(
pX(0), pX(1), . . . , pX(n)

)
. In order to

be sure that p
X1,...,Xk,Xk+1

(·) is an actual probability mass function:

Let X1, . . . , XK , XK+1∼
(
pX(0), pX(1), . . . , pX(n)

)
be some sequence of iid random variables. The

sequence we get by concatenating these random variables will be: X1X2 · · ·XK0, where EOF = 0

and let K be a random variable too, such that:

K + 1 = min{i : Xi = 0} =⇒ K∼Geometric(pX(0)) (4.4.6)

The probability of a sequence x1 · · ·xK0 to appear is:

P (X1 = x1, . . . , XK = xk, XK+1 = 0) = P (X1 = x1) · · · ·P (XK = xK) · P (XK+1 = 0) (4.4.7)

In addition, it is indispensable to declare that if x = x1 · · ·xk0 is a given sequence, then:

∑
x

p̃(x) = 1 (4.4.8)

Example 4.4.2

Suppose we have an input sequence to the Arithmetic Encoder that is x = x1 . . . xk0. So in this case

74

4.4. ARITHMETIC CODING

we will se clearly that, beginning from the initial range of the message that is [0, 1), as each symbol

is processed their respective subintervals (and generally the probable subintervals) are getting more

and more narrow to a portion allocated to each symbol. This is a helpful example to understand

the probabilistic model of (4.4.5). This process is depicted in Figure 4.6 .

Figure 4.6: Subdividing the intervals to encode the input sequence x = x1x2 · · ·xk0 .

75

4.4. ARITHMETIC CODING

As we can see in Figure 4.6 the final interval for the whole sequence x1x2 · · ·xk0 will be

[low, high) where high = CPhigh(x1x2 · · ·xk) and low = high − L. The only thing missing is

the definition of CPhigh(x1x2 · · ·) and of CPlow(x1x2 · · ·) respectively that will be shown after

this example. At last, we must not forget to find a representative, i.e. a tag value u such that

u ∈ [low, high) . This is the value that we will consider as the encoded value by our Arithmetic

Encoder. Of course, instead of the EOF = 0 symbol, we could transmit (or store) the length of

the sequence.

Derivation of the sub-intervals and the representative

When the encoder has read the first symbol xn then the n−th sub-interval that concerns

this symbol is chosen as the current base interval. As we stated in (4.4.2) and in (4.4.3) the current

sub-interval is [low, high) =
[
CPlow(xn), CPhigh(xn)

)
. The other subintervals for the next step of

the algorithm will change in every iteration. Therefore, if we state that the second symbol of the

sequence is xm, by setting w = CPhigh(xn)− CPlow(xn) the new interval will be:

[low, high) =

=
[
CPlow(xn) + w · CPlow(xm), CPlow(xn) + w · CPhigh(xm)

)
=
[
CPlow(xnxm), CPhigh(xnxm)

) (4.4.9)

where:

CPlow(xnxm) = CPlow(xn) + w · CPlow(xm) (4.4.10)

CPhigh(xnxm) = CPlow(xn) + w · CPhigh(xm) (4.4.11)

Of course now, a = CPlow(xnxm) and b = CPhigh(xnxm) as the new interval will be [low, high). If

we had a third symbol xq then it is imperative to calculate CPlow(xnxmxq) and CPhigh(xnxmxq) .

76

4.4. ARITHMETIC CODING

The new sub-interval [low, high) will have low and high as:

low = CPlow(xnxmxq) = CPlow(xnxm) + w · CPlow(xq) (4.4.12)

high = CPhigh(xnxmxq) = CPlow(xnxm) + w · CPhigh(xq) (4.4.13)

but this time w = CPhigh(xnxm)− CPlow(xnxm) . This process is repeated until the whole input

sequence is encoded. We can also see this process, as repeatedly linear scaling the values CPlow(·)

and CPhigh(·) according to every new symbol’s corresponding cumulative probabilities. We notice

that as we are subdividing, i.e. narrowing the interval [low, high), low and high are getting closer

and closer together.

Furthermore the representative, i.e. the tag for the final sub-interval can be defined as the

lowest value of the final sub-interval [low, high), but the middle value should suffice too. Hence we

can define the tag for a sequence x = x1 · · ·xk0 in two possible ways:

T̄X(x) =
∑
y<x

p̃(y)︸ ︷︷ ︸
CPlow(x)

+
1

2
· p̃(x) (4.4.14)

or:

T̄X(x) = CPlow(x) (4.4.15)

Notice that the final subinterval is [low, high) =
[
CPlow(x), CPhigh(x)

)
.

Infinite precision algorithms

Here we will represent the infinite precision case, that we have already explained and see

some pseudocodes in order to understand it better, before moving to the finite precision case.

77

4.4. ARITHMETIC CODING

Infinite Precision Arithmetic Encoder :

The encoding procedure has been already explained in the subsections above. Below we can

see an implementation of the infinite precision encoder. Notice that this pseudocode is not always

practical but it will serve us to understand better the integer arithmetic coding scheme that will

follow.

Algorithm 4.1 Infinite precision algorithm for the Arithmetic Encoder.

1: function ArithmeticEncoderInf(x, p̃(·)):
2: Compute CPlow(u) and CPhigh(u) for each symbol u in x
3: EOF = x(end)
4: low = 0
5: high = 1
6: x = x(1)
7: while (x ̸= EOF) do
8: w = high− low
9: low = low + w · CPlow(x)

10: high = low + w · CPhigh(x)− 1
11: x = next(x in x)
12: end while
13: Choose a representative T̄X(x) using (4.4.14) or (4.4.15).
14: return T̄X(x)
15: end function

As the interval [low, high) is being sub-divided the top bits of low and high become the same

and for this reason they can be immediately stored or transmitted, since they will not be affected by

further sub-division. By that, we mean that instead of returning T̄X(x) we would achieve greater

compression if we would return
⌊
T̄X(x)

⌋
l(x)
≤ T̄X(x) that is a truncated version of T̄X(x) where

its length is now l(x). In [37] we see a proposed l(x) =

⌈
log

(
1

p̃(x)

)⌉
+1 that is 1 bit longer than

a Shannon-Fano code (see Section 4.2) that is defined for a sequence x ∈ X(k) (4.4.4). We will

see in the upcoming subsection were we will discuss the uniqueness requirements of the Arithmetic

Code that this length is suitable for a tag like (4.4.14).

Infinite Precision Arithmetic Decoder :

In order to correctly decode the representative T̄X(x) it is crucial for the decoder to mimic the

78

4.4. ARITHMETIC CODING

encoding procedure and scale in the same way the sub-intervals [low, high). It is also required to

scale the representative at every iteration, using the inverse procedure of the encoding. At the

encoder the representative was getting smaller and smaller in every iteration of the algorithm, but

at the decoder the representative gets larger and larger in every iteration of the algorithm. The

scaling method of the representative in the decoder side will be the inverse scaling method that

the encoder uses. Therefore, at the first iteration if w = high− low then the scaled representative

will be s_T̄x =
T̄X(x)− low

w
. At all times, the value s_T̄x being decoded, will obey the inequality

low ≤ s_T̄x < high.

Below follows a pseudocode for the decoding procedure:

Algorithm 4.2 Infinite precision algorithm for the Arithmetic Decoder.

1: function ArithmeticDecoderInf(T̄X(x), p̃(·), EOF):
2: low = 0
3: high = 1
4: decoded = []
5: i = 0
6: while true do
7: w = high− low

8: s_T̄X =
T̄X(x)− low

w
9: u = decoded symbol such that CPlow(u) ≤ s_T̄X < CPhigh(u)

10: if u == EOF then
11: break
12: end if
13: decoded[i] = u
14: i = i+ 1
15: low = low + w · CPlow(u)
16: high = low + w · CPhigh(u)
17: end while
18: return decoded
19: end function

79

4.4. ARITHMETIC CODING

4.4.2 Uniqueness and optimality of the Arithmetic Code

Unique Decodability

We have already seen that we can choose the midpoint (or the lower end) of the final subin-

terval [low, high) to transmit or store the arithmetic code and we named it as the representative

(or tag) and defined it in (4.4.14) and (4.4.15). But how are we sure that we have represented the

final tag uniquely and efficiently?

We have already proposed that instead of storing (or transmitting) the binary value of the tag

T̄X(x) we would prefer a truncated version of the tag that is
⌊
T̄X(x)

⌋
l(x)

, meaning that we can

truncate the tag to l(x) =

⌈
log

(
1

p̃(x)

)⌉
+1 bits. Assuming the midpoint tag in (4.4.14) we must

show that the truncated version of the code is unique, hence the code

⌊
T̄X(x)

⌋
l(x)
∈

CPhigh(x− 1)︸ ︷︷ ︸
CPlow(x)

, CPhigh(x)

 (4.4.16)

that is the final sub-interval [low, high). In order to be strict with our definitions we can say that

if x is the sequence x1 · · ·xk+1, then x−1 is the sequence x1 · · ·xk ((4.4.2),(4.4.3),(4.4.10),(4.4.11),

(4.4.12),(4.4.13)). At first it is true that:

⌊
T̄X(x)

⌋
l(x)
≤ T̄X(x) < CPhigh(x) (4.4.17)

Secondly, it is true that 2−l(x) = 2−A ≤ 2−B =
1

2
p̃(x) ⇐⇒

2−l(x) ≤ 1

2
p̃(x) (4.4.18)

where A =

⌈
log

(
1

p̃(x)

)⌉
+ 1 and B = log

(
1

p̃(x)

)
+ 1. From (4.4.14) and (4.4.18) it is true that:

T̄X(x)− CPlow(x) =
1

2
p̃(x) ≥ 2−l(x) (4.4.19)

80

4.4. ARITHMETIC CODING

It is also true that for binary fractions, if we want a binary splitted interval, this will be contained

in
[
CPlow(x), CPhigh(x)

)
and it has a length of

1

2l(x)
= 2−l(x).

⌊
T̄X(x)

⌋
l(x)

is a representation

value inside the final interval and T̄X(x) too. So it is true that:

T̄X(x)−
⌊
T̄X(x)

⌋
l(x)

< 2−l(x) (4.4.20)

From (4.4.20), (4.4.19) and (4.4.14) it is also true that:

CPlow(x) +
1

2
p̃(x)︸ ︷︷ ︸

T̄X(x)

−
⌊
T̄X(x)

⌋
l(x)

< 2−l(x) ≤ 1

2
p̃(x) ⇐⇒

⌊
T̄X(x)

⌋
l(x)
≥ CPlow(x) (4.4.21)

From (4.4.21) and (4.4.17) we can finally prove (4.4.16) that is required in order to prove the

uniqueness of the code.

Prefix-free

Before we discuss why the Arithmetic Code is prefix-free, we shall begin with the proof of a

theorem that is highly important.

Theorem 4.4.1

Given a number i ∈ [0, 1) with an n-bit binary representation b1b2 · · · bn then for any other

number j to have a binary representation with b1b2 · · · bn as the prefix, j has to lie in

[
i, i+

1

2n

)
.

Proof:

The number i has a fractional binary representation that is i = .b1b2 · · · bn therefore

i = b12
−1 + b22

−2 + . . .+ bn2
−n and if j has b1b2 · · · bn as a prefix then

j = b12
−1+ b22

−2+ . . .+ bn2
−n+ bn+12

−(n+1)+ Thus, j− i = bn+12
−(n+1)+ . . . and of course

j − i ≥ 0 ⇐⇒ j ≥ i. To show that j < i+
1

2n
we observe that

j − i = bn+12
−(n+1) + bn+22

−(n+2) + . . . ≤ 2−(n+1) + 2−(n+2) + . . . < 2−n =
1

2n
. Also notice that

n is the length of b1b2 · · · bn.

81

4.4. ARITHMETIC CODING

If we can show that for any sequence x, using Theorem 4.4.1 , that the interval[⌊
T̄X(x)

⌋
l(x)

,
⌊
T̄X(x)

⌋
l(x)

+
1

2l(x)

)
⊂
[
CPlow(x), CPhigh(x)

)
then the code for one sequence is

not possible to be the prefix for the code of another sequence. To prove this we do the following:

We have already shown that
⌊
T̄X(x)

⌋
l(x)
≥ CPlow(x).

Therefore, we only require to prove that: CPhigh(x)−
⌊
T̄X(x)

⌋
l(x)

>
1

2l(x)
. This is true because:

CPhigh(x)−
⌊
T̄X(x)

⌋
l(x)

> CPhigh(x)− T̄X(x) =
p̃(x)

2
>

1

2l(x)

where the last inequality was derived from (4.4.19). Consequently, this code is prefix-free.

Optimality

Suppose that x is a random sequence of length m. We have already shown that using a code

length of l(x) =

⌈
log

(
1

p̃(x)

)⌉
+ 1 bits, to encode the entire sequence we can have a prefix-free

Arithmetic Code with the values of x being distinct. Using Definition 4.1.4 we can declare the

expected codeword length for this type of code as

L̄m =
∑
x
p̃(x)l(x) =

∑
x
p̃(x)

⌈log(1

p̃(x)

)⌉
+ 1

 <
∑
x
p̃(x)

(
log

(
1

p̃(x)

)
+ 1 + 1

)
=

= −
∑
x
p̃(x) log

(
p̃(x)

)
+ 2

∑
x
p̃(x) = H(X1, . . . , Xm) + 2. From Theorem 4.1.2, the expected code-

word length is always greater than the entropy so the bounds on L̄m are:

H(X1, . . . , Xm) ≤ L̄m < H(X1, . . . , Xm) + 2 (bits / m source symbols) (4.4.22)

H(X1, . . . , Xm)

m
≤ L̄ <

H(X1, . . . , Xm)

m
+

2

m
(bits / source symbol) (4.4.23)

But for iid sources (see (4.2.3)) , H(X1, . . . , Xm) = mH(X) where X has the same probability

distribution as X1 . . . Xm, hence:

H(X) ≤ L̄ < H(X) +
2

m
(bits / source symbol) (4.4.24)

82

4.4. ARITHMETIC CODING

We see from (4.4.22) that the expected length of the arithmetic code is within 2 bits of the entropy

for the entire message, therefore if we compress a file, then the size of the file is within 2 bits of

the ideal compressed length. This result is very good. In addition from (4.4.24) we see a slightly

worse result that Huffman block coding but at cost of an easier and more practical algorithm, that

also has the benefit of requiring absolutely no codebook. Also, this type of code achieves greater

compression than Huffman Coding and it is widely used in many state-of-the-art data compression

techniques.

Notice :

As we have already commented under Algorithm 4.1, we know that for a range [low, high)

if we have low and high sharing n bits at the beginning of a loop, any value between low and high

also shares those n bits. But if we scale low and high at each step, how can we guarantee that

every scale sits between low and high ?

If we examine (4.4.9) to (4.4.13) we have an equation of the form:

new_low = low + (high− low)︸ ︷︷ ︸
w

·CPlow(xi) = CPlow(xi) · high︸ ︷︷ ︸
t·f(x1)

+(1− CPlow(xi)) · low︸ ︷︷ ︸
(1−t)·f(x2)

A convex combination can be written as t·f(x1)+(1−t)·f(x2) with t ∈ [0, 1] ⊃ [0, 1). It is true that

any convex combination on f(x1) ≤ f(x2) will lie in the interval
[
f(x1), f(x2)

]
⊃
[
f(x1), f(x2)

)
.

4.4.3 Finite precision Arithmetic Coding using integer representation

We have already discussed the infinite precision case for implementing Arithmetic Coding

but this procedure is impractical for very large sequences because our software gives us access to

libraries that contain data types that only have finite precision. In this subsection we are going

to implement a practical algorithm for the Arithmetic Encoder and Decoder where we can finally

implement the Arithmetic Coding scheme in realistic applications [37]. In order to do this, at first

instead of considering the cumulative probability ranges for a specific symbol that give us floating

point representations, we can consider their respective cumulative frequencies. By cumulative

83

4.4. ARITHMETIC CODING

frequencies we mean the cumulative times of appearance of every symbol that is in the input

sequence x = x1 · · ·xk︸ ︷︷ ︸
T

where x1, . . . , xk ∈ N. If we define ni as the number of times the symbol xi

occurs in the sequence x of length T , then the cumulative frequencies can be defined as:

CFhigh(xi) =

i∑
j=1

nj (4.4.25)

CFlow(xi) =

i−1∑
j=1

nj (4.4.26)

We can now estimate the range [low, high) =
[
CPlow, CPhigh

)
for a symbol xi this time as:

low = CPlow(xi) =
CFlow(xi)

T
(4.4.27)

high = CPhigh(xi) =
CFhigh(xi)

T
(4.4.28)

But the way that a half open interval has to work in real numbers doesn’t map on well to the

integers because if we choose low, high ∈ R with low < high there are always infinite numbers

inside the interval [low, high). Thus, in order to have an integer representation of the interval

[low, high) we can say the following:

Given a codeword length of m, we expand the initialization interval [0, 1) to a range of 2m binary

words. Therefore the mapping is as follows:

0→ 00 . . . 0︸ ︷︷ ︸
m times

(4.4.29)

1→ 11 . . . 1︸ ︷︷ ︸
m times

(4.4.30)

0.5→ 1 & 00 . . . 0︸ ︷︷ ︸
m − 1 times

(4.4.31)

By & we mean concatenation. In addition we will define w = high− low+ 1, thus the updated

intervals for a new symbol xi considering an input sequece x = x1 · · ·xM , xi = x1 · · ·xi and

84

4.4. ARITHMETIC CODING

i ∈ {1, . . . ,M} can be calculated as:

low = CPlow(xi) = CPlow(xi−1) +

⌊
w · CFlow(xi)

T

⌋
(4.4.32)

high = CPhigh(xi) = CPlow(xi−1) +

⌊
w · CFhigh(xi)

T

⌋
− 1 (4.4.33)

Where, CPlow(x0) = 0 (4.4.29) and CPhigh(x0) = 2m − 1 (4.4.30) and T is the greatest cumulative

frequency. The representation above will always give us a finite and countable interval .

If the interval [low, high) is entirely confined to the lower half of the unit interval that is

[0, 0.5) = [00 . . . 0, 10 . . . 0) = [00 . . . 0, 011 . . . 1] , then it is forever confined to that half of the unit

interval. Furthermore, in this case the MSB of both low and high and obviously for any value in

between will be 0. Hence, we can store 0 to the tag and perform E1 mapping that is:

E1 : [0, 0.5)→ [0, 1) ; E1(x) = 2x (4.4.34)

If the interval [low, high) is entirely confined to the upper half of the unit interval that is

[0.5, 1) = [10 . . . 0, 11 . . . 1] then it is forever confined to that half of the unit interval and this time

the MSB of both low and high will be 1, so we can store 1 to the tag and perform E2 mapping

that is:

E2 : [0.5, 1)→ [0, 1) ; E2(x) = 2(x− 0.5) (4.4.35)

The mappings from [low, high) to [0, 1) are a major reason that our arithmetic is of finite precision.

As soon as we perform these mappings, we store the MSB to the tag and we lose all information

about it. The loss of information does not matter though, because as we said it is stored. We can

observe that E1 and E2 mappings give us the same results as if we perform left shift operation to low

and high but for low we have low = (low << 1)&0 and for high we have high = (high << 1)&1,

i.e. we left shift low and high by 1 bit and then we concatenate 0 to low and 1 to high. The

concatenation of 1 to high happens after we perform the mappings in order to ensure that always

low < high. We use the term concatenation because we assume that when we shift left by one bit

85

4.4. ARITHMETIC CODING

we lose one bit too, that is the LSB. Otherwise we can replace concatenation with addition, if the

left shifts always come up with a zero at the end. Now, we can continue with the next iteration of

the algorithm. This process is called incremental encoding, and the reason is that we don’t wait to

see the entire sequence in order to generate the bits of the tag.

Critical conditions

Underflow :

We are not done yet, because we have a critical condition that is called underflow ([38]) and

this can happen when [low, high) is not entirely confined to either half of the unit interval while

low and high are approaching the midpoint of the unit interval. It is true that an underflow can

occur after the arithmetic operations of scaling (4.4.32),(4.4.33) and low and high start getting

so small that our data types can no longer represent it properly. If this problem persists for long

enough we will run out of bits and encoding will fail as we are losing precision because some bits are

solidifying. If we are unlucky then, we could end up converging to 0.5 that is the midpoint of the

unit interval. In other words this is the case where the tag interval in fact straddles the midpoint

of the unit interval, so in order to make a mapping we need to check if low ≥ 0.25 and high < 0.75

and if [low, high) is not entirely confined to either half of the unit interval. Then the mapping is:

E3 : [0.25, 0.75)→ [0, 1) ; E3(x) = 2(x− 0.25) (4.4.36)

E3 mapping is applied when in fact low ≥ .010 . . . 0 and high < .110 . . . 0 and for integer

representation low ≥ 010 . . . 0 and high < 110 . . . 0 ⇐⇒ high ≤ 101 . . . 1. We can observe that we

have two opposite most significant bits (MSBs) and second most significant bits for low and high. We

need this type of mapping because it will help us not to lose precision as the algorithm proceeds. In

order to remember how many times this condition has occured, what we need to do is use a variable

Scale3 that is actually a counter and is incremented by one every time an underflow happens. Also

this mapping is identical with saying low = (low << 1)&0 and high = (high << 1)&1 as in E1 or

86

4.4. ARITHMETIC CODING

in E2 mapping and then complement the new MSB of low and high respectively. Instead of storing

the new MSB immediately we wait for the next iteration to happen. If in the next iteration the

tag interval is entirely confined to the upper half of the unit interval, then an E2 mapping occurs

and we know that we have to store a 1 to the tag , or if the tag interval is entirely confined to the

lower half of the unit interval, then E1 mapping occurs and we have to store a 0. In order to be

precise and to show how many times E3 mapping was applied, by keeping in mind that for each

scaling-up the encoder expects the tag interval to be closer to the midpoint of the unit interval and

by knowing that Scale3 is incremented by ”1” every time E3 mapping occurs, when the tag interval

is entirely confined to either half of the unit interval (upper or lower) we store the common MSB

of low and high and Scale3 complements of this MSB.

Figure 4.7: E1, E2 and E3 mappings

Using E3 mapping, the encoder can guarantee that, after the shifting operations either:

low < First_Quarter < Half ≤ high (4.4.37)

or

low < Half < Third_Quarter ≤ high (4.4.38)

The interval is smallest when, for equation (4.4.37) high = Half and low is slightly lower than

the First_Quarter (see [38]). Supposing that low is equal to the First_Quarter we have an even

smaller range (by 1) so if m that is the length of code is large enough to accomodate uniquely the

87

4.4. ARITHMETIC CODING

set of values between 0 and the greatest cumulative frequency T in this range, then underflow will

not happen. Also remember that we defined the interval range as w = high+ 1− low. So we have

that low =
(2m − 1 + 1)

4
= 2m−2 and high =

2m

2
= 2m−1 then high − low = 2m−1 − 2m−2 =

2m−2 · (2− 1) = 2m−2 =
2m

4
.

Using the same logic for equation (4.4.38) high = Third_Quarter and low = Half . In this case

low =
(2m − 1 + 1)

2
= 2m−1 and high =

3 · (2m − 1 + 1)

4
= 1.5 · 2m−1 so high− low =

2m

4
.

Therefore, as long as the integer range [low, high) that is scaled-up by the cumulative frequencies,

fits into a quarter of that range based on the code values (0 to 2m − 1) the underflow problem can

not occur.

Hence, the requirement that T ≤ 2m

4
will prevent underflow to happen and for this reason we can

choose a word length of m =
⌈
log2(T)

⌉
+ 2 .

Overflow and Encoding Termination:

We may not show how we handle it on Algorithm 4.3 but what we must do is very straight-

forward. When an iteration is completed and we calculate the new values for low and high that

are the values after the shifts, if we have a number that needs N + m > m bits, we simply store

only the m most significant bits.

In order to be sure that the encoding procedure will be terminated, it must be true that

the value of the tag, TX , will be greater than the value of low. Therefore, we must find the m-bit

representation of low and concatenate it next to the tag TX (after the LSB). Also, if Scale3 > 0,

we must store Scale3 times the MSB of low and the rest m − 1 bits of low next to the binary

representation of TX .

Finite precision algorithms

Here we will represent the finite precision case, using integer arithmetic coding, that we have

already explained and see the pseudocodes of the finite precision arithmetic encoder and the finite

precision arithmetic decoder. We will start with the encoder algorithm and then we will proceed

to the decoder algorithm [37] [38].

88

4.4. ARITHMETIC CODING

Algorithm 4.3 Finite precision algorithm for the Arithmetic Encoder.

1: function ArithmeticEncoder(x, counts):
2: x = x1 . . . xM

3: Compute CFlow(u) and CFhigh(u) for each symbol u in x
4: T = CFhigh(end)
5: m =

⌈
log2(T)

⌉
+ 2

6: low = 0
7: high = 2m − 1
8: for u ∈ x do
9: w = high + 1− low

10: high = high +

⌊
w · CFhigh(u)

T

⌋
11: low = low +

⌊
w · CFlow(u)

T

⌋
12: while True do
13: if MSB(low) == MSB(high) then
14: store MSB to tag TX

15: low << 1 + 0
16: high << 1 + 1
17: while Scale3 > 0 do
18: store MSB to tag TX

19: Scale3 = Scale3− 1
20: end while
21: else if 2ndMSB(low) == 1 && 2ndMSB(high) == 0 then
22: Scale3 = Scale3 + 1
23: low << 1 + 0
24: high << 1 + 1
25: MSB(low) = MSB(low)
26: MSB(high) = MSB(high)
27: else
28: break
29: end if
30: end while
31: end for
32: Terminate Encoding
33: return TX

34: end function

89

4.4. ARITHMETIC CODING

Algorithm 4.4 Finite precision algorithm for the Arithmetic Decoder.

1: function ArithmeticDecoder(encoded, counts, len):
2: T = CFhigh(end)
3: m =

⌈
log2 (T)

⌉
+ 2

4: low = 0
5: high = 2m − 1
6: Scale3 = 0
7: tag←− first m bits of ENCODED
8: decoded = []
9: i = 1

10: k = m
11: while i ≤ LEN do
12: w = high + 1− low

13: scaled_symbol =

⌊
T · (tag− low + 1)− 1

w

⌋
14: j index such that CFlow(xj) ≤ scaled_symbol < CFhigh(xj)
15: decoded[i] = xj

16: i = i+ 1

17: high = low +

⌊
w · CFhigh(xj)

T

⌋
− 1

18: low = low +

⌊
w · CFlow(xj)

T

⌋
19: while E1||E2||E3 do
20: if k == length(ENCODED) then
21: break
22: end if
23: k=k+1
24: if MSB(low) == MSB(high) then
25: low << 1 + 0
26: high << 1 + 1
27: tag << 1 + ENCODED(k)
28: else if 2ndMSB(low) == 1 & 2ndMSB(high) == 0 then
29: low << 1 + 0
30: high << 1 + 1
31: tag << 1 + ENCODED(k)
32: MSB(low) = MSB(low)
33: MSB(high) = MSB(high)
34: MSB(tag) = MSB(tag)
35: end if
36: end while
37: end while
38: return decoded
39: end function

90

4.5. GOLOMB CODES

4.5 Golomb Codes

Golomb Codes, were first developed by Solomon Wolf Golomb ([40]) and they are suitable

variable-length binary codes for encoding lengths of runs of non-negative integers. The basic idea,

is to encode the run lengths between successive unfavorable events, by keeping in mind that the

probability of a run length of m is geometrically distributed and it can be expressed as pm(1− p)

for m ∈ N. We observe that the probability table can be infinite so we can’t use Huffman coding

for this type of source, because it will have the consequence of generating a codebook with infinite

entries.

Figure 4.8: Solomon Wolf Golomb

At first [41], let’s define an index function f : N → N that dissects the non-negative integers of a

discrete source into indexed sets S0, S1, . . . where Sq is the finite set of integers that map to index

q, and it can be written as:

Sq = {n : f(n) = q} (4.5.1)

The length of the set Sq is |Sq| = m ∈ N+, therefore it is fixed ∀q ∈ X = {0, 1, . . .}. The code for

the non-negative integer n will be: C(n) = q&r where r is the rank of n among all the integers of

the set Sq and ’&’ means concatenation. The rank, can be written as:

r =
∣∣{j : j ∈ Sq, , j < n}

∣∣ , r = 0, 1, . . . |Sq| − 1 (4.5.2)

91

4.5. GOLOMB CODES

The Golomb code of a non-negative integer n = qm + r ⇐⇒ n =

⌊
n

m

⌋
m + r can be defined as

G
(m)
c (n) = UnaryCode(q)&BinaryCode(r), where UnaryCode(q) is the quotient encoding using

unary code and BinaryCode(r) is the remainder that is a fixed length binary code. As we have

already stated, m is the size of the set Sq. Golomb code corresponds to the case where f(n) = q =⌊
n

m

⌋
for m ∈ N+.

Figure 4.9: Golomb code G
(m)
c (n) = UnaryCode(q)&BinaryCode(r).

Example 4.5.1

In this example we will see the case where n = 14 (run length of 14) and we need to find

G
(m)
c (n) = UnaryCode(q)&BinaryCode(r) giving m = 4. Then we have n = qm + r ⇐⇒

14 = q · 4 + r and this gives q = 3 and r = 2. For this reason UnaryCode(q) = 1110 and

BinaryCode(r) = 10 so G
(4)
c (14) = 111010. Another way to see how we derive this code is to write

n ones in a row and see how runs of m occur. When there is no more space for a run of m to occur

then the rest of the run-length of n = 14 will be represented as a binary number of
⌈
log2(m)

⌉
bits.

Another way to see this ([42]) is to say:

Run of n=14 “∗”︷ ︸︸ ︷
∗ ∗ ∗∗︸ ︷︷ ︸

m

∗ ∗ ∗∗︸ ︷︷ ︸
m

∗ ∗ ∗∗︸ ︷︷ ︸
m

∗∗︸︷︷︸
r

and for every successful run of m we store 1 in the code, thus for this example we start by storing

”111” to the code. When it is impossible for a new run of m to fit inside the rest of run of n we

store a separator that is ”0” to the code. At last, we write in binary how many remaining binary

digits do we have in our run. In this case we store ”10”. Therefore the code will be ”111010” that

is equal to G
(4)
c (14) that we have already found.

We can now understand that the construction of Golomb codes is based on the assumption that

92

4.5. GOLOMB CODES

the smaller integers of an infinite alphabet are more probable to occur than the bigger ones.

4.5.1 Uniqueness and optimality of the Golomb code

Prefix Free

Golomb Codes are prefix-free codes. This is based on the assumption that the index function

f(n) is surjective, meaning that ∀q there is an n such that f(n) = q. In addition, because n = q·m+r

and m is fixed, stating that q is determined ∀n ∈ X then, under these conditions, r has a different

value corresponding to each index q. Therefore, Golomb codes are efficient in the sense that they

satisfy Kraft-inequality with equality (Definition 4.1.2). Consequently, Golomb codes are prefix-free

and it is impossible to add a codeword without violating the prefix-free condition. Golomb codes

are also uniquely decodable for this reason (see Figure 4.1).

Optimality

Consider a reduced alphabet X = {0, 1, . . . ,m+M}, where M,m ∈ N+ and the probability

of a run of m ones is defined as P (m) = (1 − p) · pm. We are going to prove, based on [43], that

Golomb’s code is optimal for p satisfying

pm + pm+1 ≤ 1 < pm + pm−1 (4.5.3)

where p ∈ (0, 1). We can see that ∀p ∈ (0, 1) there is a unique m satisfying (4.5.3).

Consider that m is fixed and is determined by (4.5.3). For this p and m we define a probability

mass function that is PM (n), where we have anM -reduced source that takes values from the reduced

alphabet X which contains m+M + 1 symbols.

PM (n) =


(1− p) · pn , 0 ≤ n ≤M

(1− p) · pn

1− pm
, M < n ≤M +m

(4.5.4)

93

4.5. GOLOMB CODES

Notice that this is an actual probability mass function because:

M+m∑
n=0

PM (n) =

M∑
n=0

(1− p) · pn +

M+m∑
n=M+1

(1− p) · pn

1− pm

= (1− p)

M∑
n=0

pn +
(1− p)

1− pm

M+m∑
n=M+1

pn

=
(1− p)

(1− p)
· (p0 − pM+1) +

(1− p)

(1− pm)(1− p)
· (pM+1 − pM+m+1)

= 1− pM+1 +
(1− pm)

(1− pm)
· pM+1 = 1− pM+1 + pM+1

= 1

In addition, each of the finalm probabilities, as we are going to see are the accumulated probabilities

∀n > M in the probability mass function of the source. Also they are in the same equivalence class

modulo m. Notice that, if r = n:

∞∑
q=0

(1− p) · pqm+r =

∞∑
q=0

(1− p) · (pm︸︷︷︸
=a<1

)q · pr

= (1− p) · pr ·
∞∑
q=0

aq

= (1− p) · pr · 1

1− a

=
(1− p) · pn

1− pm

(4.5.5)

where in the last equality we used the fact that n = r and pm = a.

For the next step, we will use binary Huffman coding on the M -reduced source, but we need to find

a way first to sort its probabilities.

If we multiply the left side of (4.5.3) by pM we have:

pM+m + pM+m+1 ≤ pM (4.5.6)

94

4.5. GOLOMB CODES

If we multiply the right side of (4.5.3) by pM we have:

pM+m + pM+m−1 > pM (4.5.7)

Now we can say using (4.5.6) that:

pM+m + pM+m+1 ≤ pM
÷p⇐⇒ pM+m−1 + pM+m ≤ pM−1 ⇐⇒ pM+m ≤ pM−1 − pM+m−1︸ ︷︷ ︸

pM−1(1−pm)

÷(1 − pm)⇐⇒

pM+m

1− pm
≤ pM−1 ·(1 − p)⇐⇒

(1− p) · pM+m

1− pm
≤ (1− p) · pM−1 (4.5.8)

Also, by using (4.5.7) we have:

pM+m−1 > pM − pM+m︸ ︷︷ ︸
pM (1−pm)

⇐⇒ pM+m−1

1− pm
> pM

·(1 − p)⇐⇒

(1− p) · pM+m−1

1− pm
> (1− p) · pM (4.5.9)

We have just proved that the probability of the (M+m)th symbol to appear is no more probable

than the probability of the (M − 1)th symbol (4.5.8). Also the probability of the (M +m − 1)th

symbol to appear is more probable than the (M − 1)th (4.5.9). Furthermore, notice that the

probabilities of the first M + 1 values of the source are monotonically decreasing, and this is true

for the probabilities of the last m values too. Thus, for the first step of the algorithm for Huffman

coding we have:

(1− p) · pM+m

1− pm
≤ (1− p) · pM−1 <

(1− p) · pM+m−1

1− pm
(4.5.10)

and

(1− p) · pM < (1− p) · pM−1 (4.5.11)

so we will accumulate the probabilities of the Mth and the (M+m)th symbol. After we accumulate

these probabilites we will proceed considering an M −1 reduced source which will of course contain

95

4.5. GOLOMB CODES

the accumulation of the Mth and the (M +m)th symbol, with a new probability equal to A, into

one symbol. It is also important to note that:

A =
(1− p) · pM+m

(1− pm)
+ (1− p) · pM =

(1− p) · pM

1− pm

This is depicted in Figure 4.10. Now, for the M − 1 reduced source, we will use the equations

Figure 4.10: First step of Huffman Coding the M -reduced source.

(4.5.10) and (4.5.11) but this time for M = M − 1 so:

(1− p) · pM+m−1

1− pm
≤ (1− p) · pM−2 <

(1− p) · pM+m−2

1− pm

and

(1− p) · pM−1 < (1− p) · pM−2

so we will accumulate the (M − 1)th and the (M +m− 1)th symbol, with a new probability equal

to B, into one symbol, where:

B =
(1− p) · pM+m−1

(1− pm)
+ (1− p) · pM−1 =

(1− p) · pM−1

1− pm

This process is depicted in Figure 4.11

96

4.5. GOLOMB CODES

Figure 4.11: Second step of Huffman Coding the M -reduced source←→ Huffman Coding the M−1
reduced source.

This process is repeated up to and including M = 0, where after accumulating the least likely

symbols, we are going to have the M = −1 reduced source with:

P−1(n) =
(1− p) · pn

(1− p)m
, 0 ≤ n ≤ m− 1 (4.5.12)

In figure 4.12 we see the whole process (all the steps) of the Huffman Code, using the source

with probabilities as defined in (4.5.4).

Figure 4.12: Huffman Coding process for the whole source

Also in Figure 4.13 we show all the possible ways our last step can be using the probabilities in

(4.5.12).

97

4.5. GOLOMB CODES

Figure 4.13: Huffman Coding process for the M = −1 reduced source, for m = 4 = 22, m = 5 ̸= 2k,
m = 6 ̸= 2k.

For the M = −1 reduced source, notice that the sum of the two least likely symbols has a

probability that is greater than the one of the most likely symbol. This is true because:

(1− p) · pm−1

1− pm
+

(1− p) · pm−2

1− pm
>

(1− p)

1− pm

⇐⇒ pm−1 + pm−2 > 1 ⇐⇒ pm + pm−1 > pm
(4.5.13)

and from the right side of (4.5.3) we can easily prove that (4.5.13) is true. Also don’t forget that

the probabilities of the M = −1 reduced source are monotonically decreasing.

98

4.5. GOLOMB CODES

As we can see in Figure 4.13, we have two distinct cases for m:

• If m = 2k, the optimal codewords have the same length.

• If m ̸= 2k, the optimal codewords differ by 1.

These codewords are for the rank r (see 4.5.2) and concern the remainder of the equation n = qm+r.

To understand this, observe their probabilities in Figure 4.13 and then see (4.5.5). Working on a

proof of concept we can see that the optimal encoding for (4.5.12) is to use codewords of length⌊
log2(m)

⌋
for r < 2⌊log2 m+1⌋ −m and codewords of length ⌊log2 m⌋+ 1 otherwise.

In this type of code, if one observes Figure 4.12 and replaces M and m with the some

fixed values it will be clear that for n ≤M each symbol will be encoded into the optimal codeword

representation for r = nmodm, concatenated with the unary code for q =

⌊
n

m

⌋
. Hence, if we want

to show that for an infinite alphabet then we say that M →∞. This can be left as an exercise to

the reader. Also, since the resulting code is a concatenation of two prefix-free codes, we can easily

reverse the order of the codes, meaning that we are going to have and encoded codeword for n that

will be the unary code for q =

⌊
n

m

⌋
concatenated to its right with the binary code for r = nmodm.

Before proving that Golomb’s Code is optimal, we will start by some definitions. So, let:

• L̄ be the infimum of the expected codeword length over all uniquely decodable codes for source

with probabilities P (n) = (1− p) · pn.

• LG be the expected codeword length for code G̃
(m)
c which maps every integer n into a codeword

that is the concatenation of r = nmodm with q =

⌊
n

m

⌋
as BinaryCode(r)&UnaryCode(q).

• LM be the expected codeword length for the optimal code for an M -reduced source.

At first we notice that given any uniquely decodable code for the source with probabilities P (n) =

(1 − p) · pn, where we have an infinite alphabet, its infimum expected codeword length will ex-

ceed LM that it is for a finite alphabet with M + m codewords. This is because if we have an

optimum uniquely decodable code for the source P (n) we can derive a code for the M -reduced

source by using exactly the same codewords for n ≤ M and the shortest codewords remaining for

99

4.5. GOLOMB CODES

M +1 ≤ n ≤M +m. Therefore, LM ≤ L̄ . Also, given thatG̃
(m)
c is just a type of a uniquely decod-

able code we could use for P (n) = (1− p) · pn it is true that L̄ ≤ LG. So until now LM ≤ L̄ ≤ LG.

Observe that LM is increasing with M up to a point where limM→∞ LM = LG In addition, because

for 0 ≤ n ≤M the M -reduced source follows a geometric distribution equal to P (n) = (1− p) · pn

then limM→∞ LM = L̄. This means, that LG = L̄, so the code G̃
(m)
c is optimal and because it is a

concatenation of two different prefix-free codes we can reverse the order and by this we can see that

we have a Golomb Code G
(m)
c that is optimal too, because the codeword lengths will not change.

All this process to prove optimality for the Golomb Code can be studied with less details

[43] where the authors proved that Golomb Code is optimal not only for pm =
1

2
as Golomb stated

in his original paper [40], but for a more general case where pm + pm+1 ≤ 1 < pm + pm−1. At last,

we will present and example so the reader can understand this subsection better.

Example 4.5.2

In this example we will encode an M -reduced source where M = m = 3 using the probabil-

ities in (4.5.4). From what we have already explained what we want is to see the Huffman binary

tree that contains all the codewords, as long as the M = −1 reduced source tree, just to have

different perspectives and understand the code better. So the Huffman tree will be:

Figure 4.14: Huffman Coding process for the whole source, supposing that m = 3.

In addition for the M = −1 reduced source we will eventually have:

100

4.5. GOLOMB CODES

Figure 4.15: Huffman Coding process for the M = −1 reduced source, supposing that m = 3.

Notice that r = nmodm and 0mod3 = 0, 1mod3 = 1, 2mod3 = 2, 3mod3 = 0, 4mod3 = 1, 5mod3 =

2, 6mod3 = 0. Therefore r ∈ {0, 1, 2} and using the probabilities
(1− p) · pn

1− pm
where n = r we will

have the binary codewords for the remainders that are represented in Figure 4.15. This is an opti-

mal encoding as we use codewords of size
⌊
log2(3)

⌋
= 1 for n < 2⌊log2(3)+1⌋ −3 = 1 =⇒ n = 0 and

codewords of size
⌊
log2(3)

⌋
+ 1 = 2 otherwise for representing in binary n = n+ 2⌊log2(m)+1⌋ −m.

So we have some binary representations for the remainder. From Figure 4.14 we can see that the

codewords contain these binary representations for remainders concatenated with the unary code

for the quotient, claiming that n = qm + r. This happens though only untill n = M = 3, and in

this case the symbols follow a geometric distribution.

If M → ∞ then we would have some optimal representations for the codewords of an infinite al-

phabet. We should not forget also to reverse the order of the code when n ≤M in order to derive

a Golomb Code.

Golomb Encoder

Given the integers n and m, and A =
⌊
log2(m) + 1

⌋
, encode n = q ·m+r ⇐⇒ n =

⌊
n

m

⌋
+r.

For q find the Unary_Code(q) and for r:

• if r < 2A −m → Binary_Code(r) has length of
⌊
log2(m)

⌋
-bits

• if r ≥ 2A −m → Binary_Code(r) has length of
⌊
log2(m)

⌋
+ 1-bits, where r = r + 2A −m.

101

4.5. GOLOMB CODES

Algorithm 4.5 Golomb Encoder

1: Given n,m such that n = q ·m+ r and A =
⌊
log2(m) + 1

⌋
2: q =

⌊
n

m

⌋
3: r = n− q ·m
4: Calculate Unary_Code(q)
5: if m = 2k then
6: Calculate Binary_Code(r) using log2(m)-bits
7: else
8: if r < 2A −m then
9: Calculate Binary_Code(r) using

⌊
log2(m)

⌋
-bits

10: else
11: r = r + 2A −m
12: Calculate Binary_Code(r) using

⌊
log2(m)

⌋
+ 1-bits

13: end if
14: end if
15:

16: G
(m)
c (n) = UnaryCode(q)&BinaryCode(r)

Golomb Decoder

To decode G
(m)
c (n), we have to do the inverse process of the encoder.

Algorithm 4.6 Golomb Decoder

1: Given G
(m)
c (n),m and A =

⌊
log2(m) + 1

⌋
2: Calculate q by counting the “1” bits in G

(m)
c (n) until you find the first “0”

3: Ignore the first “0”, read the next
⌊
log2(m)

⌋
bits in G

(m)
c (n), and store them in r′

4: if r′ < 2A −m then
5: r = r′

6: else
7: Ignore the first “0”, read the next

⌊
log2(m)

⌋
+ 1 bits in G

(m)
c (n), and store them in r′

8: r = r′ − (2A −m)
9: end if

10: n = q ·m+ r

• Notice that, ifm ̸= 2k a representation of ⌊log2 m⌋ bits for the remainder is not always enough.

That’s the reason that we have defined a threshold, that is 2A −m (A =
⌊
log2(m) + 1

⌋
) and

when the remainder, r, is not less than the threshold we have to write the binary representation

of r = r + 2A −m.

102

4.5. GOLOMB CODES

• Notice that we have m codewords in each group Sq. In addition, q =

⌊
n

m

⌋
therefore the

unary code of q will change only when n = t ·m, for t = 0, 1, 2, Therefore, ∀ n = t ·m

Golomb Code is prefix-free. Now we have to concetrate at the m codewords inside a group,

hence we focus on the case that t ·m ≤ n < (t + 1) ·m. To represent r in an optimal way

when we are in a group of m symbols we can use Huffman Coding. The Huffman tree, as we

saw in Figure 4.13, will have codeword representations for r of log2(m) bits, if m = 2k. But

if m ̸= 2k the codewords will have
⌊
log2(m)

⌋
bits for the binary representation of r < 2A−m

and
⌊
log2(m) + 1

⌋
bits otherwise. In addition, they will differ by at most “1” bit. From

Figure 4.15 we can also observe that for r < 2A−m we have a binary representation of r but

for r ≥ 2A −m we have binary representations of r = r + 2A −m. This addition is done in

order to have a truncated binary tree of a prefix-free code for r.

Figure 4.16: Binary codewords for G
(1)
c , G

(2)
c , G

(3)
c and G

(4)
c . 1

1Figure from [44]

103

4.5. GOLOMB CODES

Golomb Codes and their binary trees :

To close the section we will also present the binary trees for the first four Golomb Codes

from Figure 4.5.2.

Figure 4.17: Binary trees for G
(1)
c , G

(2)
c , G

(3)
c and G

(4)
c . 2

• G
(m)
c (n) = UnaryCode(q)&BinaryCode(r).

• The source integer value n = qm+ r.

4.5.2 Golomb-Rice Codes

The Golomb-Rice Code is simply, a Golomb Code for m = 2k. Robert Rice used a code that

is exactly the same as G
(2k)
c in an adaptive scheme, as we can see in [45].

2Figure from [44]

104

4.6. EXPONENTIAL-GOLOMB CODES

4.6 Exponential-Golomb Codes

The Exponential-Golomb Codes, where first proposed by Jukka Teuhola [42], as a compres-

sion technique for integers following a geometric distribution. The main idea is to encode runs of

2k bits, where k is incremented by one after one run is encoded. Some people also refer to them as

Elias-Teuhola codes, because of their close resemblance to Elias gamma coding. In this approach,

Peter Elias a code that augments the natural binary representation of an integer using a length

indicator. The reader can study [46] for further information, as for this thesis we will not use Elias

gamma coding

.

(a) Peter Elias (b) Jukka Teuhola

Figure 4.18

Also the first idea for Arithmetic Coding (4.4), is the Shannon-Fano-Elias code where Peter

Elias contributed to this research too [32].

In order though to continue with the explanation of Exponential-Golomb Codes, we must

first explain how they work. The basic principle of the Exponential-Golomb Code scheme is that

when a run is encoded, we try to separate the successive sub-vectors of 2k, 2k+1, 2k+2, . . .(“∗”).

When this does not succeed any more then the end of the run will be encountered with a zero bit

(“0”) and the rest of the run will simply be encoded into a binary number. This is a method with

potential because it encodes both short and long runs efficiently, as the successive sub-vectors grow

exponentially. Also, we will symbolize the Exponential-Golomb Code of parameter k for an integer

105

4.6. EXPONENTIAL-GOLOMB CODES

n as EG
(k)
c (n).

In order to understand this concept better, a simple example will suffice:

Example 4.6.1

Encode the integer n = 19, with a parameter k = 1. So we are looking for EG
(1)
c (19).

Run of n=19 “∗”︷ ︸︸ ︷
∗∗︸︷︷︸
2k

∗ ∗ ∗∗︸ ︷︷ ︸
2k+1

∗ ∗ ∗ ∗ ∗ ∗ ∗∗︸ ︷︷ ︸
2k+2

∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸
r

For all the successful runs of 2k, 2k+1 etc, we will store bit 1 to EG
(1)
c (19). For the rest of the run

(r) that does not fit at the final run of 2k+i (in this example i = 3) we will store a separator, that

is a zero (”0”) and then we will encode r in k + i bits using a simple binary code. The binary

code for r will be 0101 (we want to represent the decimal number 5 to k + i = 4-bits. Therefore,

EG
(1)
c (19) = 11100101

Generally, if the length of the last sub-vector was 2k+i, then k + i+ 1 bits are needed to

represent the rest of the run. Consider though, that this method is not very sensitive to the value

of k. Unfortunately, there is not an exact optimization rule, because the sub-vectors aren’t fixed

as they are in the Golomb Code case that we encode successful runs of m (or sub-vectors of fixed

length m).

To summarize, we can say that: EG
(k)
c (n) = UnaryCode(q)&BinaryCode(r)︸ ︷︷ ︸

k+q bits

, where:

• q =

⌊
log2(1 +

n

2k
)

⌋

• r = n−
q−1∑
j=0

2j+k

So for Example 4.6.1 q =

⌊
log2

(
1 +

19

21

)⌋
= 3 and r = 19−

2∑
j=0

2j+k = 19−21+22+23 = 5. This

means that UnaryCode(q) = 1110 and BinaryCode(r) = 0101. We have described the encoding

procedure.

106

4.6. EXPONENTIAL-GOLOMB CODES

The decoding procedure is really simple. Because k is given, we can find the UnaryCode(q) until

we encounter a separator (”0”-bit). When we find q then the input number n that was encoded

before is n = r +
q−1∑
j=0

2j+k.

A faster implementation is to say that r = n− 2k(2q − 1) .

To close the section we will also present the binary tree for the k = 0-order Exponential-

Golomb Code, EG
(0)
c (n) [44], and we will understand better that we call it ”exponential” because

the children nodes of the binary trees grow exponentially, as the integer n gets bigger. .

Figure 4.19: Binary tree for EG
(0)
c (n). 3

3Figure from [44]

107

Chapter 5

Lossless Audio Compression

In this chapter we will work on lossless audio compression and see how we can combine all the

previous chapters in order to achieve this. Lossless audio files need more storage space in contrast

with the lossy audio files. The good thing though, is that all the original information is preserved,

hence we can achieve high quality audio, even though it is compressed, that is exactly the same

as in the original waveform coded audio .wav file (the original PCM signal from Section 2.3). In

the sections below we will work at most with IEEE 1857.2 audio standard and precisely with its

lossless extension [7].

Binary
Decoder De-QuantizerPCM

Audio Signal

Framing Inter-Channel
Decorrelation

Source Coding
Receiver

PCM Binary Decoder De-Quantizer

Framing Inter-Channel
Decorrelation

Source Coding
Receiver

Figure 5.1: Lossless Audio Coding general scheme for a single audio frame.

108

5.1. THE IEEE 1857.2 LOSSLESS AUDIO CODEC

5.1 The IEEE 1857.2 Lossless Audio Codec

In this section we will mainly follow [7], [47], [48],[49] and see how we implement a code that

is based on IEEE 1857.2 lossless audio coding extension.

Channel
Decorrelation

Linear
Predictive

Model
Pre-processing Source Coding

File

To Decoder

Inter Channel-DecorrelationFraming &

Figure 5.2: The IEEE 1857.2 encoder.

The File contains the bitstreams that we are going to store, so that the IEEE 1857.2 Decoder

can retrieve the original information, that is the PCM_Input_Audio, which is an audio signal that

is modulated using the PCM waveform coder that we explained in Section 2.3, that is a universal

technique for the digitization of an analog audio signal , but keep in mind that it is uncompressed.

So, let’s dive deep into the codec in order to understand how compression is achieved.

109

5.1. THE IEEE 1857.2 LOSSLESS AUDIO CODEC

5.1.1 Channel Decorrelation

This block is activated only when the input signal is a stereo signal, i.e when it has two

channels. That means that when the signal is mono (one channel) we deactivate this block. So we

can say that PCM_Input_Audio =
[
X(L) X(R)

]
. In IEEE 1857.2 lossless audio codec we can see

that the Channel Decorrelation is performed as:

Mid =
X(L) +X(R)

2
(5.1.1)

Side = X(L) −X(R) (5.1.2)

Figure 5.3: Diagram of Channel Decorrelation.

In Figure 5.3 we can see that the left and right channels, are converted to the Mid and Side

pair. Mid will be processed independently and Side will be stored uncompressed.

5.1.2 Linear Predictive Model

The purpose of this stage combined with the Channel Decorrelation stage is to remove redun-

dancy by decorrelating the left and right channel samples (for stereo input only) and then we use

a modified linear predictive model for the signal. We will start by framing (or blocking) the input

signal into frames (or blocks) in a way that each block is a WSS stochastic process (see Definition

2.1.6). In [5] we see that a lot of audio codecs use a 13 to 26 ms block duration. As we have already

discussed in the comments of Section 2.1 a 23.2 ms block duration will suffice. If we choose a block

110

5.1. THE IEEE 1857.2 LOSSLESS AUDIO CODEC

length of 1024 samples then we have a block duration equal to
1024

44100
· samples

samples/second
≈ 23.2 ms.

We also define a prediction order strictly less than the block length, because we apply an intra-frame

linear prediction, i.e N < L.

Figure 5.4: Diagram of Linear Predictive Modeling in IEEE 1857.2.

After the Framing step, that we have already explained, we will use the Levinson-Durbin Algo-

rithm (see Algorithm 3.1), where we will obtain the PARCOR (PARtialCORrelation) coefficients

that are the k-coefficients (or reflection coefficients) that we see in the Levinson-Durbin Algorithm.

Afterwards, we will use a compound quantization technique that is already defined by the standard

[7] and we will restrict the k-coefficients to the interval [−64, 63] by locally quantizing them. The

companding quantization for the k-coefficients is defined by (5.1.3) that we see below:

quantK[i] =



64
ln

(
2

3
+

5

6

√
1 + k1

2

)/
ln

(
3

2

), i = 1

64
ln

(
2

3
+

5

6

√
1− k2

2

)/
ln

(
3

2

), i = 2

⌊64 · ki⌋, i = 3, . . . , N

(5.1.3)

111

5.1. THE IEEE 1857.2 LOSSLESS AUDIO CODEC

• N : linear prediction order.

• L: frame length.

Then the dequantization function for the quantized k-coefficients is defined as:

dequantK[i] =



2 ·


exp

 quantK(1)

64·ln

3

2



− 2

3

 · 65


2
− 1, i = 1

2 ·


exp

 quantK(2)

64·ln

3

2



− 2

3

 · 65


2
+ 1, i = 2

quantK(i)

64
, i = 3, . . . , N

(5.1.4)

The implementation of the k-parameters to a-coefficients algorithm has been defined in this

thesis, using Algorithm 2.1, that was derived by implementing a digital FIR lattice filter. The k-

parameters are actually the dequantized k-coefficients (dequantK()). So for these k-coefficients we

derive their respective a-coefficients that we saw in Chapter 3, where we discussed Linear Prediction.

Now that we have our a-coefficients as an output from the k-parameters-to-a-coefficients algorithm,

we can now use Linear Prediction to find the prediction error e[n] from (3.2.3). This means, using

(3.2.2) and (3.2.1), for G=1 that:

e[n] = y[n]− (−
N∑

k=1

aky[n− k]︸ ︷︷ ︸
ŷ[n]

) ⇐⇒ e[n] = y[n] +

N∑
k=1

aky[n− k] (5.1.5)

Remind that, we perform an intra-frame linear prediction so the prediction errors will not propagate

112

5.1. THE IEEE 1857.2 LOSSLESS AUDIO CODEC

beyond frame boundaries. Another way that we can write this expression, is by using the IEEE

1857.2 standard implementation of linear prediction using the equation below:

ŷ(i) =



−y(i), i = 1

−
i∑

j=1

a
(i)
j y(i− j), 2 ≤ i ≤ N − 1

−
N∑
j=1

a
(i)
j y(i− j), N ≤ i ≤ L

(5.1.6)

In this case i is the time index for the samples inside the frame, y(i) denotes the input sample i

inside the frame and ŷ(i) is the prediction for the sample i inside the frame, where the frame length

is L. Having the prediction ŷ(i) ∀i ≤ L we can calculate the corresponding prediction errors using

equation (3.2.3). From the prediction errors (or prediction residues), as we can see in Figure 5.4,

one can construct the output signal of the Linear predictor block. Also ŷ is rounded.

5.1.3 Pre-Processing

The Pre-Processing block has the prediction errors e[n] (or prediction residues) and the

quantized k-coefficients (quantK) as its input (see Figure 5.1.3 and [48]). The task of this block

is to normalize the large prediction residues at the beginning of each audio frame, because they

increase the dynamic range of the prediction error in a considerable manner. This means that later,

our source coder (that performs an encoding of the source) adopts a large alphabet size. We want

to encounter this situation because it will increase the computational complexity of source coding,

as long as the compression efficiency.

The number of samples to be normalized, is determined by M = min(N, 16) and each of these

samples is downshifted by shift[n] (the number of shifts for each sample) (see (5.1.7)).

113

5.1. THE IEEE 1857.2 LOSSLESS AUDIO CODEC

Figure 5.5: Diagram of the Pre-Processing block in IEEE 1857.2.

shift[n] =



⌊
212+

n+1∑
k=1

RAshift12[quantK[n]]

⌋
213 , n = 1, 2

212 +
2∑

k=1

RAshift12[quantK[n]] +
n+1∑
k=3

RAshift[|quantK[n]|]

213

, 3 ≤ n ≤M

(5.1.7)

The RAshift12 and RAshift tables are defined by the IEEE 1857.2 standard (see Figure A.1

and Figure A.2), so they are fixed and can be used by the IEEE 1857.2 encoder and decoder. The

normalization process is described in the following pseudo-code where the LSB (Less Significant

Bits) that have been shifted out are directly stored in the output bitstream (or output File).

Algorithm 5.1 Down-shift Operation for the Pre-processing block

1: for n = 1, . . . ,M do
2: mask = (1 << shift[n])− 1
3: LSB[n] =

∣∣e[n]∣∣&&mask //output in shift[n] bits
4: flat_errors[n] = |e[n]| >> shift[n]
5: end for
6: for n = M + 1, . . . , L do
7: flat_errors[n] = |e[n]|
8: end for

An example for Algorithm 5.1 is the following:

Example 5.1.1

Suppose that e[n] = (689)10 = (1010110001)2 and shift[n] = (5)10, therefore

114

5.1. THE IEEE 1857.2 LOSSLESS AUDIO CODEC

mask = (1 << shift[n]) − 1 ⇐⇒ mask = (2shift[n] − 1)10 = (25 − 1)10 = (31)10 = (11111)2.

This means that LSB = (1010110001&&0000011111)2 = (0000010001)2 in shift[n] = 5-bits, hence

LSB = (10001)2 and this is stored to the file (bitstream). Now the rest information of the binary

representation of e[n] will be written in flat_errors[n] by right shifting the absolute value of e[n] for

shift[n] times: flat_errors[n] = |e[n]| >> shift[n] = (1010110001)2 >> 5 = (0000010101)2. In the

post-processing block (5.1.5), we will se that we can retrieve the prediction error e[n] by applying:

e[n] = flat_errors[n] << shift[n] + LSB = (1010100000)2 + (10001)2 = (1010110001)2.

Notice that in Example 5.1.3 the masking operation of the LSB can be written as LSB =

689mod2shift[n] = 689mod32 = 1710 = (10001)2.

Also the signs of the prediction errors are outputed from this block, so we don’t lose the sign

information.

5.1.4 Source Coding and Source Decoding

In the source coding block of Figure 5.1, we will find the encoded representation of the

flattened residue using three types of source coding techniques:

• Finite precision Arithmetic Coding using integer representation (see 4.4.3).

• Adaptive Golomb-Rice Codes.

• Exponential Golomb Codes.

The Arithmetic Coding procedure is considered to be ideal and non-realistic in our scenario because

it is not adaptive and the IEEE 1857.2 decoder can not estimate the source probabilities for every

prediction residue. So we suppose that these probabilities are known and we will use it only as a

benchmark to see how “close” are the adaptive Golomb-Rice and the Exponential Golomb codes,

in terms of compression efficiency. It is important to state that none of these coding techniques

use a codebook, and that the Golomb-Rice and the Exponential Golomb codes (adaptive or not)

can be seen in many audio codecs [50], [2], [1] as long as in many video [51] and image [52] codecs.

Also we can see that adaptive Golomb-Rice codes are being used in ECG signal compression for

115

5.1. THE IEEE 1857.2 LOSSLESS AUDIO CODEC

medical applications [4]. We will use the same approach as in [2], [4] and [53] in order to make the

Golomb-Rice Codes adaptive. So for m = 2k we will choose a good value for k such that:

k =

log2


Total Samples∑
n=1

flat errors[n]

Total Samples


 (5.1.8)

In equation (5.1.8), we can see that we estimate k by measuring the average of the {flat errors[n]}

signal. Using some logic, it is true that k is analogous to the expected amplitude of the {flat errors[n]}

signal, so that Golomb-Rice Coding is more efficient and Exponential Golomb Coding (from Section

4.5.2 and Section 4.6 respectively). As we have already mentioned, the source coding techniques

that we are going to use are depicted in Figure 5.6.

Source Coding Techniques

Arithmetic Coding
(benchmark)

Golomb-Rice Coding

Exponential Golomb Coding

Figure 5.6: Source Coding techniques that we are going to use.

116

5.1. THE IEEE 1857.2 LOSSLESS AUDIO CODEC

File

Source
Decoding Post-Processing Reconstruction Channel-

Correlation

Losslessly

Reconstructed

 Audio

Figure 5.7: Diagram of the IEEE 1857.2 Decoder.

5.1.5 Post-processing

In the post-processing block (see Figure 5.8 and [48]) we de-normalize (de-flatten) the flat-

tened prediction error signal’s {flat errors[n]} first M = min(N, 16) samples and we recover the

signs of the prediction error signal {e[n]}.

At first we use equation (5.1.7) for the quantized k-coefficients. Then, in order to de-flatten the

prediction errors and recover their signs we perform Algorithm 5.2.

Note that this algorithm must be performed for every frame of the audio signal. In order to

understand Algorithm 5.2, see Example 5.1.3.

117

5.1. THE IEEE 1857.2 LOSSLESS AUDIO CODEC

Figure 5.8: Diagram of the Post-Processing block in IEEE 1857.2.

Algorithm 5.2 Up-shift operation for the Post-processing block

1: for n = 1, . . . ,M do
2: e[n] = (flat_errors[n] << shift[n]) + LSB[n] //De-normalization and recovery e[n]
3: if signs[n] == 1 then
4: e[n] = −e[n]
5: end if
6: end for
7: for n = M + 1, . . . , L do
8: e[n] = flat_errors[n]
9: if signs[n] == 1 then

10: e[n] = −e[n]
11: end if
12: end for

5.1.6 Reconstruction

In Reconstruction block, the quantized k-coefficients (quantK()) are extracted from the stored

File and then they are locally dequantized (dequantK()) by using equations (5.1.3) and (5.1.4)

respectively, and converted to the linear prediction k-coefficients, which are exactly the same with

those used in the IEEE 1857.2 encoder. The linear predictor generates a prediction signal ŷ[n], which

is added to the recovered prediction error signal {e[n]} that is the output of the Post-processing

block to losslessly reconstruct the original input audio (see Figure 5.9).

Again, as in the Linear Predictive Model block in 5.1.2, we perform the k-parameters-to-a-

coefficients algorithm (see Algorithm 2.1). Having the a-coefficients and the prediction errors

e[1], . . . , e[L] we can create ŷ[n] (using (5.1.6)) and knowing that e[n] + ŷ[n] = y[n] where y[n]

is the original input sample n we can recover the input PCM signal’s frame where with the total

number of frames we have the losslessly reconstructed audio (see Figure 5.9).

118

5.2. RESULTS

Figure 5.9: Diagram of the Reconstruction block in IEEE 1857.2.

5.1.7 Channel Correlation

The Channel Correlation block is activated only if the input audio signal is a stereo signal

with two channels. Remind that the input audio signal was PCM_Input_Audio =
[
X(L) X(R)

]
and we only have the Mid signal and the Side information that is stored in the File. To originally

reconstruct the input audio we need to perform the inverse of (5.1.1) and (5.1.2). That is:

X(L) = Mid +
Side

2
(5.1.9)

X(R) = Mid− Side

2
(5.1.10)

5.2 Results

At first we will start by seeing some plots, using different audio signals, that depict the input

audio signal, the error signal and the flattened error signal. Some of them were created by my friend

Nikolaos Marinelis (you can go to [54] to listen to his music). As we can see the audio signal will

have a significantly larger alphabet if it is sent to the source encoder directly. In the IEEE 1857.2

lossless audio extension, we send the flattened prediction error signal’s frames (flattened residual’s

frames) instead of the prediction error signal’s frames (residual’s frames) to the source coder. In

Figure 5.10 we present some sub-figures to clarify this point.

119

5.2. RESULTS

(a) Nello-About Techno.wav (b) Speech.wav

(c) God Save the Queen.wav (d) indianSong.wav

(e) s1ofwb.wav (f) kdt215.wav

Figure 5.10: Residuals and flattened residuals of the input audio signal.

120

5.2. RESULTS

Before we see the underlying probability distribution of the residual and the flattened residual,

i.e. the prediction error signal {e[n]} and the flattened prediction error signal {flat errors[n]}

respectively, it is important to say that these signals always follow a geometric distribution, that

its counterpart for continuous time signals is the Laplacian distribution. A random variable X has

a Laplace(µ,b) distribution where µ = E{X}, σ = E
{
(X − µ)2

}
is the variance and b is the scale

parameter where σ2 = 2b2 and its probability density function is:

fX(x) =
1

2b
exp

(
−|x− µ|

b

)
(5.2.1)

In bibliography [53], we can see the above probability distribution being defined as:

fX(x) =
1√
2σ

exp

(
−
√
2

σ
|x− µ|

)
(5.2.2)

We will call the above probability distribution as the alternative definition for Laplacian. Below

we can see some figures, to illustrate the probability density functions of (5.2.1) and (5.2.2), where

µ = 0.

Figure 5.11: Laplacian and alternative definition for Laplacian distribution for µ = 0

Using (5.2.2) we will se how well this distribution “fits” to the probabilities of the prediction

121

5.2. RESULTS

error signal {e[n]}, i.e the residual.

(a) Nello-About Techno.wav (b) Speech.wav

(c) God Save the Queen.wav

(d) indianSong.wav

(e) s1ofwb.wav (f) kdt215.wav

Figure 5.12: Prediction error signal distribution vs alternative Laplacian distribution

To derive Figure 5.12 we normalized the Laplacian distribution of (5.2.2) by experimenting with

several values for σ. Each subfigure depicts the probability distribution of {e[n]}.

122

5.2. RESULTS

Afterwards we proceed to the pre-processing block (see 5.1.3). We can clearly see that the

flattened prediction errors, i.e. the flattened residuals, are non-negative (it is clear if we observe

the plots on Figure 5.10 and Figure 5.13).

(a) Nello-About Techno.wav (b) Speech.wav

(c) God Save the Queen.wav (d) indianSong.wav

(e) s1ofwb.wav (f) kdt215.wav

Figure 5.13: Flattened prediction error signal distribution.

123

5.2. RESULTS

We have seen that the output of the pre-processing block, that is the flattened prediction error

signal {flat errors[n]}, will be the input of the source encoder. In order to measure compression

efficiency (how much we have compressed the audio signal), it is important to define compression

ratio as:

Compression Ratio =
Input File bits

Output File bits
(5.2.3)

We also define Redundancy as the proportion of wasted “space” after applying compression. In

other words it is defined as the percentage of the distance between the expected codeword length

and the entropy of the source X:

Redundancy =
L̄−H(X)

H(X)
· 100% (5.2.4)

By Theorem 4.1.2 we can see that Redundancy is strictly non-negative.

For encoding the prediction error signal, we will use the source coding techniques mentioned below:

• Arithmetic Coding (ideal an used as benchmark)

• Adaptive Golomb Coding ([4], [53], [2]).

• Exponential Golomb Coding by exhaustively searching for the best k (the k that gives us the

best compression performance).

5.2.1 Compression efficiency and Redundancy of Source Coding.

To measure Compression Ratio correctly, we must state which values we will have to store as bits in

the computer and how many bits we will use for each one of them. We have already seen, when we

were discussing about the IEEE 1857.2 blocks, that to have a correct reconstruction we are going

to need:

• The flattened prediction error signal {flat errors[n]} in the form of an AxB sized array where

A = 1024 (fixed frame length of 1024 samples) and B is the number of total frames. The

number of bits of the flattened prediction error signal will be the total number of bits at the

output of the Source Encoder.

124

5.2. RESULTS

• The total number of frames B (negligible as 20 bits are already enough because if we have

219 − 1 total frames then with A = 1024 samples in each frame and a sampling frequency of

the input signal that is 44100 samples
second we can have an input audio file of

1024 · (219 − 1)

44100
≈ 200

minutes maximum).

• The quantized k-coefficients (or quantized PARCOR coefficients) that we defined them as

quantK in subsection 5.1.2 that are restricted to the interval [−64, 63] and are stored in a

NxB array where N =prediction_order and B is the total number of frames. Therefore we

need N ·B · 7 bits.

• The signs of the prediction error signal, as an AxB array, where we encode +1 to 0 and −1

to 1. So we just need one bit for every sample, therefore A ·B bits in total.

• The LSB data with size MxB, where M = min{N, 16} that needs totally max{shift[n]} bits

(see (5.1.7) and Algorithm 5.1) for every sample, therefore we need max{shift[n]} ·B ·M bits

in total.

• The Side Information (only for stereo audio signals) 16 bits for each sample because we send

it uncoded. There will be a discussion for this at the last chapter.

• The prediction order (negligible number of bits).

• Parameter m for adaptive Golomb-Rice Coding (negligible).

• Parameter k for exponential Golomb Coding (negligible).

To measure compression ratio for this case we will consider all of the bullets above and add the

extra bit lengths to the denominator of equation (5.2.3). Every audio signal will be of a certain

genre.

Stereo signals were converted to mono, using Audacity software [55]. In the next page we will see

a table with the results.

125

5.2. RESULTS

Compression ratio results for mono audio signals:

Compression Ratio

Audio File Genre Order Arithmetic Coding Adaptive Golomb Coding Exponential Golomb Coding

Nello-Crystal Guitar.wav Electronic 10 1.9231 1.5983 1.6187

Nello-Break.wav Hip-Hop 10 1.9459 1.7203 1.7453

Nello-About Techno.wav Techno 5 2.1739 1.8107 1.8987

Sex Pistols - God Save the Queen.wav Punk 10 1.605 1.4307 1.3967

indianSong.wav Folk 20 1.6382 1.5013 1.4713

s1ofwb.wav Speech 20 2.018 1.7145 1.7657

speech.wav Speech 10 2.3858 2.0984 2.122

kdt215.wav Speech 20 2.2603 1.8516 1.9184

racing.wav Sound Effect 5 1.8417 1.6922 1.6799

bubbles.wav Sound Effect 5 2.1203 2.0483 1.9772

Redundancies for mono audio signals:

Redundancy

Audio File Genre Order Arithmetic Coding Adaptive Golomb Coding Exponential Golomb Coding

Nello-Crystal Guitar.wav Electronic 10 9.68% 35.3% 33%

Nello-Break.wav Hip-Hop 10 14.86% 32.24% 30.1%

Nello-About Techno.wav Techno 5 10.34% 36.15% 28.9%

Sex Pistols - God Save the Queen.wav Punk 10 15.57% 31.43% 34.9%

indianSong.wav Folk 20 18.7% 31.21% 33.79%

s1ofwb.wav Speech 20 13.15% 36.6% 32.12%

speech.wav Speech 10 11.26% 29.27% 27.56%

kdt215 Speech 20 9.56% 38.4% 32.89%

racing.wav Sound Effect 5 8.67% 30.6% 31.67%

bubbles.wav Sound Effect 5 21.76% 26.77% 32.05%

As we can see, we use small prediction orders. This happens because as the prediction order

increases, the more k-coefficients we have for each frame. The LSB data might increase too if

the prediction order is greater than 16. To illustrate this, we have compressed kdt215.wav file

using a lot of prediction orders and see the compression ratio results for different prediction orders,

using Arithmetic Coding. This is depicted in Figure 5.14 where we notice that we have a peak for

prediction order N ≈ 20, i.e the highest compression ratio is achieved when the prediction order

N ≈ 20.

126

5.2. RESULTS

Figure 5.14: Compression Ratio vs Prediction Order for kdt215.wav

Compression ratio results for stereo audio signals:

Compression Ratio

Audio File Genre Order Arithmetic Coding Adaptive Golomb Coding Exponential Golomb Coding

Nello-Crystal Guitar.wav Electronic 10 1.2837 1.1858 1.1948

Nello-Break.wav Hip-Hop 10 1.2810 1.2122 1.2223

Nello-About Techno.wav Techno 5 1.3307 1.2375 1.2655

Sex Pistols - God Save the Queen.wav Punk 10 1.2214 1.1422 1.1316

We notice that the compression ratio gets significantly smaller, because we save the Side Infor-

mation uncoded, at the cost of 16-bits for each sample.

Considering our encoding and decoding algorithms, the fastest encoding is achieved by the

adaptive Golomb Code. The exponential Golomb Code has a similar encoding speed, but in our

case, because we have done exhaustive search for the optimum k it is the slowest one. Arithmetic

Coding has a similar encoding speed with the adaptive Golomb Code, but the decoding speed is

slower. Exponential Golomb Code and the adaptive Golomb code have approximately the same

decoding speeds, which are much faster than the Arithmetic decoding speed.

127

5.2. RESULTS

Optimal m and Optimal k for adaptive Golomb-Rice Coding and Exponential Golomb

Coding respectively for mono audio signals:

m = 2k̃ k

Audio File Genre Order Adaptive Golomb Coding Exponential Golomb Coding

Nello-Crystal Guitar.wav Electronic 10 128 6

Nello-Break.wav Hip-Hop 10 64 5

Nello-About Techno.wav Techno 5 64 4

Sex Pistols - God Save the Queen.wav Punk 10 256 8

indianSong.wav Folk 20 128 7

speech.wav Speech 10 16 3

s1ofwb.wav Speech 20 64 5

kdt215.wav Speech 20 32 4

racing.wav Sound Effect 5 64 6

bubbles.wav Sound Effect 5 32 5

Notice from Figure 5.12 that m and k is analogous to variance of the probability distribution

of the source. For this reason when we have a greater variance, m and k get greater too, and vice

versa. This happens because for smaller variances, we expect to assign smaller codewords for the

signal values flat errors[n] that are equal to zero (or close to zero) and have a high probability of

appearance at the cost of bigger codewords for the signal values that are futher away from zero

and have a low probability of apperance. This is because the source always follows a geometric

distribution considering that we have a discrete-time digital signal at the input of the source encoder,

whose equivalent distribution for continuous-time signals is the Laplacian (5.2.1), (5.2.2).

128

Chapter 6

Conclusion and Future Work

In Chapter 5 we have seen a method to losslessly compress and decompress digital audio signals.

This method uses a pre-processing and a post-processing block to reduce the dynamic range of the

prediction error signal. Other methods, like [3], [1] use algorithms to find adaptively the optimal

block sizes, which we considered to be fixed in this thesis. So this is something that the author

wants to study further. In addition, it is very important to do our experiments faster and Matlab

programming language, that was used exclusively in this thesis, is not the best for digital audio

compression. The author would prefer to implement an audio codec to a lower-level programming

language (C++, assembly) in order to achieve faster encodings and decodings. In addition, C++

allows for the implementation of multithreading, that would be really helpful because we could

encode more information without losing time, because the encodings (and decodings) for the Side

Information would be done in parallel. In this thesis we saved some information without coding it

(we saw in Chapter 5 and in Section 5.2 that we encode the prediction error signal e[n] only, and all

the other information is being stored uncoded). This would increase the complexity of the scheme,

but it would make it more efficient in terms of compression. Notice that the linear predictive model

has a very broad use [4], [1], [3], [51], [6] and the general scheme that was described is not limited

to digital audio signals.

The author is very pleasant and thankful that you have studied his thesis. Best wishes to you!

129

Bibliography

[1] “Free lossless audio codec.” https://xiph.org/flac/.

[2] Y. A. Reznik, “Coding of prediction residual in MPEG-4 standard for lossless audio coding

(MPEG-4 ALS),” in 2004 IEEE International conference on acoustics, speech, and signal pro-

cessing, vol. 3, pp. iii–1024, IEEE, 2004.

[3] T. Liebchen and Y. A. Reznik, “MPEG-4 ALS: An emerging standard for lossless audio cod-

ing,” in Data Compression Conference, 2004. Proceedings. DCC 2004, pp. 439–448, IEEE,

2004.

[4] T.-H. Tsai and W.-T. Kuo, “An efficient ECG Lossless Compression System for Embedded

Platforms with Telemedicine Applications,” IEEE Access, vol. 6, pp. 42207–42215, 2018.

[5] M. Hans and R. W. Schafer, “Lossless compression of digital audio,” IEEE Signal processing

magazine, vol. 18, no. 4, pp. 21–32, 2001.

[6] V. Melkote, M. Law, and R. Wilson, “Hierarchical and Lossless Coding of audio objects in

Dolby TrueHD,” in 2015 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 384–388, IEEE, 2015.

[7] “IEEE Standard for Advanced Audio Coding,” IEEE Std 1857.2-2013, pp. 1–343, 2013.

[8] V. D. B. Maxim, “Linear predictive coding and Golomb-Rice codes in the FLAC lossless audio

compression codec.” https://scripties.uba.uva.nl/download?fid=679884, 2020.

130

https://xiph.org/flac/
https://scripties.uba.uva.nl/download?fid=679884

BIBLIOGRAPHY

[9] Wikipedia, “Stochastic process.” https://en.wikipedia.org/wiki/Stochastic_process.

[10] A. Liavas, “Telecommunications I, Lecture Notes,” Technical University of Crete.

[11] M. Paterakis, “Probability Theory and Random Signals, Lecture Notes,” Technical University

of Crete.

[12] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, pp. 890–941. Upper

Saddle River, N.J.: Pearson, 3rd ed., 2010.

[13] J. Johansen, A. J. Fuglsig, K. Stern, and K. Ramsgaard-Jensen, “Improving the quality of

lpc-encoding,” tech. rep., Aalborg University, 2016.

[14] A. Malek, “Signal framing.” https://superkogito.github.io/blog/2020/01/25/signal_

framing.html.

[15] ElectronicsCoach, “Pulse code modulation.” https://electronicscoach.com/

pulse-code-modulation.html.

[16] J. G. Proakis and M. Salehi, Fundamentals of Communication Systems, pp. 313–320. Upper

Saddle River, N.J.: Pearson, 2014.

[17] “Beckhoff information system.” https://infosys.beckhoff.com/english.php?content=..

/content/1033/tf3680_tc3_filter/5843792395.html&id=.

[18] G. Karystinos and A. Liavas, “Signals and Systems, Lecture Notes,” Technical University of

Crete.

[19] R. Gallager, “Quantization, Lecture Notes,” Massachusetts Institute of Technology, 2006.

[20] A. Bletsas, “Telecommunications II, Lecture Notes,” Technical University of Crete.

[21] SONY, “Digital audio processor pcm-f1.” https://www.kenrockwell.com/audio/sony/

pcm-f1.htm, 1981.

131

https://en.wikipedia.org/wiki/Stochastic_process
https://superkogito.github.io/blog/2020/01/25/signal_framing.html
https://superkogito.github.io/blog/2020/01/25/signal_framing.html
https://electronicscoach.com/pulse-code-modulation.html
https://electronicscoach.com/pulse-code-modulation.html
https://infosys.beckhoff.com/english.php?content=../content/1033/tf3680_tc3_filter/5843792395.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tf3680_tc3_filter/5843792395.html&id=
https://www.kenrockwell.com/audio/sony/pcm-f1.htm
https://www.kenrockwell.com/audio/sony/pcm-f1.htm

BIBLIOGRAPHY

[22] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, pp. 99–152. Upper

Saddle River, N.J.: Pearson, 3rd ed., 2010.

[23] A. V. Oppenheim, “MIT, Digital Signal Processing Lectures.” https://www.youtube.com/

watch?v=rkvEM5Y3N60&list=PL8157CA8884571BA2, 1975.

[24] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, pp. 374–492. Upper

Saddle River, N.J.: Pearson, 3rd ed., 2010.

[25] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, pp. 83–112. New

York: Springer Science + Business Media, LLC, 3rd ed., 1992.

[26] Y. You, Audio coding. Theory and applications, pp. 53–65. New York Dordrecht Heidelberg

London: Springer, 2010.

[27] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of the IEEE, vol. 63, no. 4,

pp. 561–580, 1975.

[28] D. O’Shaughnessy, “Linear predictive coding,” IEEE potentials, vol. 7, no. 1, pp. 29–32, 1988.

[29] J. Makhoul, “Stable and efficient lattice methods for linear prediction,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 25, no. 5, pp. 423–428, 1977.

[30] C. Margina and B. Costinescu, “Implementing the Levinson-Durbin Algorithm on the Star-

Core™ SC140/SC1400 Cores,” 2001.

[31] F. Itakura, “Minimum prediction residual principle applied to speech recognition,” IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. 23, no. 1, pp. 67–72, 1975.

[32] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-Interscience, 2nd ed.,

2006.

[33] R. Gallager, Information Theory and Reliable Communication. John Wiley and Sons, 1968.

[34] G. Karystinos, “Information Theory and Coding, Lecture Notes,” Technical University of

Crete.

132

https://www.youtube.com/watch?v=rkvEM5Y3N60&list=PL8157CA8884571BA2
https://www.youtube.com/watch?v=rkvEM5Y3N60&list=PL8157CA8884571BA2

BIBLIOGRAPHY

[35] C. E. Shannon, “A mathematical theory of communication,” The Bell system technical journal,

vol. 27, no. 3, pp. 379–423, 1948.

[36] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proceedings

of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[37] K. Sayood, Introduction to Data Compression, Third Edition (Morgan Kaufmann Series in

Multimedia Information and Systems), pp. 81–115. San Francisco, CA, USA: Morgan Kauf-

mann Publishers Inc., 2005.

[38] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,” Com-

munications of the ACM, vol. 30, no. 6, pp. 520–540, 1987.

[39] G. G. Langdon, “An introduction to Arithmetic Coding,” IBM Journal of Research and De-

velopment, vol. 28, no. 2, pp. 135–149, 1984.

[40] S. Golomb, “Run-length encodings,” IEEE Transactions on Information Theory, vol. 12, no. 3,

pp. 399–401, 1966.

[41] A. Kiely and M. Klimesh, “Generalized Golomb codes and adaptive coding of wavelet-

transformed image subbands,” Interplanetary Network Progress Report, vol. 42, pp. 1–14, 2003.

[42] J. Teuhola, “A compression method for clustered bit-vectors,” Information processing letters,

vol. 7, no. 6, pp. 308–311, 1978.

[43] R. Gallager and D. Van Voorhis, “Optimal source codes for geometrically distributed integer

alphabets,” IEEE Transactions on Information theory, vol. 21, no. 2, pp. 228–230, 1975.

[44] A. Said, “On the determination of optimal parameterized prefix codes for adaptive entropy

coding,” HP Labs Report, pp. 11–24, 2006.

[45] R. F. Rice, “Some practical universal noiseless coding techniques,” tech. rep., 1979.

[46] P. Elias, “Universal codeword sets and representations of the integers,” IEEE Transactions on

Information Theory, vol. 21, no. 2, pp. 194–203, 1975.

133

BIBLIOGRAPHY

[47] H. Huang, H. Shu, and R. Yu, “Lossless audio compression in the new IEEE standard for

advanced audio coding,” in 2014 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 6934–6938, IEEE, 2014.

[48] A. R. Lopez, “Lossless audio compression in IEEE 1857.2.” https://github.com/

adriaromero/lossless-audio-compression.

[49] F. A. Muin, T. S. Gunawan, E. M. Elsheikh, and M. Kartiwi, “Performance analysis of IEEE

1857.2 lossless audio compression linear predictor algorithm,” in 2017 IEEE 4th International

Conference on Smart Instrumentation, Measurement and Application (ICSIMA), pp. 1–6, 2017.

[50] V. D. B. Maxim, “Adaptive Flac.” https://github.com/amsqi/adaptive-flac, 2020.

[51] S. Nargundmath and A. Nandibewoor, “Entropy coding of H.264/AVC using Exp-Golomb cod-

ing and CAVLC coding,” in International Conference on Advanced Nanomaterials Emerging

Engineering Technologies, pp. 607–612, 2013.

[52] M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: A low complexity, context-based, loss-

less image compression algorithm,” in Proceedings of Data Compression Conference-DCC’96,

pp. 140–149, IEEE, 1996.

[53] T. Robinson, “Shorten: Simple lossless and near-lossless waveform compression,” 1994.

[54] N. Marinelis, “Spotify channel.” https://open.spotify.com/artist/

5RnFZhnod15UpgMGw9rHMu?si=1ZKaPrDzQu6LPRoK3Iq4Ug.

[55] “Audacity software.” https://www.audacityteam.org/.

134

 https://github.com/adriaromero/lossless-audio-compression
 https://github.com/adriaromero/lossless-audio-compression
https://github.com/amsqi/adaptive-flac
 https://open.spotify.com/artist/5RnFZhnod15UpgMGw9rHMu?si=1ZKaPrDzQu6LPRoK3Iq4Ug
 https://open.spotify.com/artist/5RnFZhnod15UpgMGw9rHMu?si=1ZKaPrDzQu6LPRoK3Iq4Ug
https://www.audacityteam.org/

Appendix A

Supplementaries for the IEEE

1857.2 Standard

A.1 RA shift and RA shift12 tables

Here we present the RAshift and RAshift12 tables for the IEEE 1857.2 standard (see [7]). Note

that ak are the quantized k-coefficients from (5.1.3), so ak = quantK(k) and must not be confused

with the a-coefficients that are used for linear prediction synthesis and linear prediction analysis.

In the standard we do not see a clear explanation of how these tables were derived. These tables

are depicted in Figure A.1 and in Figure A.2.

1Figure from [7].

i

A.1. RA SHIFT AND RA SHIFT12 TABLES

Figure A.1: RAshift table for the pre-processing and post-processing blocks. 1

2Figure from [7].

ii

A.1. RA SHIFT AND RA SHIFT12 TABLES

Figure A.2: RAshift table for the pre-processing and post-processing blocks. 2

iii

Appendix B

Supplementaries on Source Coding

B.1 Golomb Code examples

At first we will se some tables representing some Golomb codewords for m = 13, m = 11 and m = 7:

G
(13)
c (n)

n Codeword

0 0|000

1 0|001

2 0|010

3 0|0110

4 0|0111

5 0|1000

6 0|1001

7 0|1010

8 0|1011

9 0|1100

10 0|1101

11 0|1110

12 0|1111

13 10|000

14 10|001

15 10|010

n Codeword

16 10|0110

17 10|0111

18 10|1000

19 10|1001

20 10|1010

21 10|1011

22 10|1100

23 10|1101

24 10|1110

25 10|1111

26 110|000

27 110|001

28 110|010

29 110|0110

30 110|0111

31 110|1000

iv

B.1. GOLOMB CODE EXAMPLES

G
(11)
c (n)

n Codeword

0 0|000

1 0|001

2 0|010

3 0|011

4 0|100

5 0|1010

6 0|1011

7 0|1100

8 0|1101

9 0|1110

10 0|1111

11 10|000

12 10|001

13 10|010

14 10|011

15 10|100

n Codeword

16 10|1010

17 10|1011

18 10|1100

19 10|1101

20 10|1110

21 10|1111

22 110|000

23 110|001

24 110|010

25 110|011

26 110|100

27 110|1010

28 110|1011

29 110|1100

30 110|1101

31 110|1110

v

B.1. GOLOMB CODE EXAMPLES

G
(7)
c (n)

n Codeword

0 0|00

1 0|010

2 0|011

3 0|100

4 0|101

5 0|110

6 0|111

7 10|00

8 10|010

9 10|011

10 10|100

11 10|101

12 10|110

13 10|111

14 110|00

15 110|010

n Codeword

16 110|011

17 110|100

18 110|101

19 110|110

20 110|111

21 1110|00

22 1110|010

23 1110|011

24 1110|100

25 1110|101

26 1110|110

27 1110|111

28 11110|00

29 11110|010

30 11110|011

31 11110|100

Notice that in this thesis we have encoded discrete sources that have an underlying probability

distribution, whose continuous-time counterpart is similar to the Laplacian (see (5.2.1), (5.2.2)),

that is the geometric probability distribution. This has been done in a way, such that for greater

values of the variance σ2, we need greater values for m and vice versa.

vi

B.1. GOLOMB CODE EXAMPLES

Now for m = 11 we are going to show a binary tree using a code where we first perform unary

coding of the quotient q and we concatenate it to its right with a binary code for the remainder r,

considering that n = qm+ r.

Figure B.1: Representation of r using
⌊
log2(m) + 1

⌋
bits.

Notice that in the binary tree of Figure B.1 we can truncate the binary tree as the code we have

applied, even though is prefix-free, it is not complete. Therefore Kraft-Inequality (Definition (4.1.2)

is not satisfied with equality. When we truncate the binary tree for this type of source code we will

see that the code becomes complete, in the sense that Kraf-Inequality is satisfied with equality, thus

we can not add a codeword without violating it. Also the code still retains its prefix-free property.

To represent the new code we have created the truncated binary tree in Figure B.2. The encoding

that is performed in Figure B.2, considering that A =
⌊
log2(m) + 1

⌋
, is to represent the quotient q

using an unary code and the code for the remainder r as explained below:

• if r < 2A −m → the binary code of r has length of
⌊
log2(m)

⌋
-bits

• if r ≥ 2A−m → the binary code of r has length of
⌊
log2(m)

⌋
+1-bits, where r = r+2A−m.

vii

B.1. GOLOMB CODE EXAMPLES

Figure B.2: Representation of r using
⌊
log2(m)

⌋
bits for the smallest integers and

⌊
log2(m)

⌋
+ 1

bits for the greatest.

The code represented in Figure B.2 is a Golomb Code for m = 11, or as we represented it in

Section 4.5, it is the binary tree for G(11)(n) where 0 ≤ n ≤ 21 and n ∈ N.

viii

	Introduction
	Theoretical prerequisites
	Stochastic Processes
	Audio Signals
	Pulse Code Modulation
	The Z-Transform
	FIR, IIR Lattice Filters
	Signal flow graphs for linear constant-coefficient difference equations
	Lattice structures
	FIR Lattice Filters
	IIR Lattice Filters

	Linear Prediction
	Parametric Signal Modeling
	Linear Predictive Model
	Optimal Linear Prediction
	Derivation of the Levinson-Durbin algorithm

	Source coding techniques
	Basic definitions on information theory
	Shannon-Fano code
	Optimality of the Shannon-Fano code
	Coding with a wrong probability distribution

	Huffman Coding
	Huffman Code Optimality

	Arithmetic Coding
	Implementation of Arithmetic Coding
	Uniqueness and optimality of the Arithmetic Code
	Finite precision Arithmetic Coding using integer representation

	Golomb Codes
	Uniqueness and optimality of the Golomb code
	Golomb-Rice Codes

	Exponential-Golomb Codes

	Lossless Audio Compression
	The IEEE 1857.2 Lossless Audio Codec
	Channel Decorrelation
	Linear Predictive Model
	Pre-Processing
	Source Coding and Source Decoding
	Post-processing
	Reconstruction
	Channel Correlation

	Results
	Compression efficiency and Redundancy of Source Coding.

	Conclusion and Future Work
	Supplementaries for the IEEE 1857.2 Standard
	RA_shift and RA_shift12 tables

	Supplementaries on Source Coding
	Golomb Code examples

