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Abstract

Wireless Endoscopy Capsule becomes more and more famous since it is the only way for

the physicians to have a non-invasive view of the small intestine and identify bleeding,

polyps, Crohn’s disease and other abnormalities of the small intestine. Wireless Capsule

Endoscopy is happening with the patient swallowing an electronic capsule, the capsule in-

cludes a camera, that way is taking photographs of the Gastrointestinal Track as it moves

from one organ to another. Those pictures are transferred to a recorder and from there

a software is producing a video stream using those frames. The journey of the capsule in

gastrointestinal track might last 8 or more hours based on the movement of the track, dur-

ing that time it will collect more than 50,000 to 100,000 pictures producing a long video.

Examining that amount of frames, it is a very time-consuming procedure and a tiring

task for gastroenterologists. There are many researches that try to reduce that time using

extra processing of the videos. Nowadays, with the evolution of Machine Learning and Ar-

tificial Intelligence for image classification, they are a great supporting tool for physicians.

This thesis studies the spatial information extraction problem for Wireless Endoscopy

Capsule using Machine Learning techniques. Being able to locate the endoscopy capsule

can provide doctors with the opportunity to examine only the part of the gastrointestinal

track that is of their most interest. Moreover, producers of endoscopy capsules can use

such techniques in order to save battery, by reducing the pictures tracked in areas that

are not of the most importance.

In order to resolve that problem, we developed three different Convolution Neural Net-

works models, which achieve the automatic classification of the pictures they receive to

the corresponding organ of the digestive system (esophagus, stomach, small intestine and

large intestine). The data we used to train and verify our models are from the same col-

lection as in the Thesis of Mr. A. Polydorou, at the Electrical and Computer Engineering

Department of Technical University of Crete in 2018. For the feature extraction part of

the model, Convolutional two-dimensional (Conv2D) and Maxpooling two-dimensional

(Max2D) were used with ReLU activation function. For the classification were used Flat-

ten and Dense layers with activation function softmax function. In one model there was

also use of Dropout in order to randomly disconnect nodes and their edges.
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For the validation of the performance of our models, we used metrics such as Accu-

racy(Acc), Sensitivity(Sens), Specificity(Spe), Error Rate(Err) and Precision(Pre). Since

it is a multi-class classification those values are calculated for each organ (or class) in-

dividually. The best performance among our models holistically comes from Model 2

where is providing for esophagus: Accuracy of 95.16%, Error Rate of 4.83%, Precision of

84.84%, Specificity of 94.73% and Sensitivity of 96.55%. For stomach provides, Accuracy

of 91.93%, Error Rate of 8.06%, Precision of 90.9%, Specificity of 96.55% and Sensitivity

of 81.08%. For small intestine, is performing with Accuracy of 95.96%, Error Rate of

4.03%, Precision of 92.85%, Specificity of 97.89% and Sensitivity of 89.65%. Finally for

large intestine, Accuracy of 99.19%, Error Rate of 0.8%, Precision of 96.66%, Specificity

of 98.94% and Sensitivity of 100%.

Keywords:

Wireless Capsule Endoscopy(WCE), gastrointestinal (GI), Machine Learning(ML), Arti-

ficial Intelligence(AI), Convolutional Neural Network(CNN), Deep Learning, supervised

learning, False Positive Ratio (FPR), False Negative Ratio (FNR), Dropout, Layer, ReLU

function, Softmax function, digestive organ classification, Sensitivity, Specificity, Error

Rate, Accuracy(ACC), Precision.
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Abstract

Η ενδοσκοπική κάψουλα γίνεται όλο και πιο διάσημη καθώς αποτελεί τον μόνο μη-επεμβατικό

τρόπο ώστε να υπάρχει μια εικόνα του λεπτού εντέρου, ώστε να αναγνωριστούν αιμορρα-

γίες, πολύποδες, ασθένεια του Crohn και άλλες δυσμορφίες του βλενογόννου του λεπτού

εντέρου. Για την εξέταση ο ασθενής καταπίνει την ηλεκτρονική κάψουλα, η οποία περιέχει

και κάμερα, έτσι μπορεί να λαμβάνει φωτογραφίες του γαστρεντερολογικού συστήματος κα-

θώς κινείται από το ένα όργανο στο άλλο. Αυτές οι φωτογραφίες μεταφέρονται σε έναν

υπολογιστή και με την βοήθεια λογισμικού παράγεται ένα βίντεο το οποίο περιέχει αυτές τις

εικόνες. Το ταξίδι της ενδοσκοπικής κάψουλας μέσα στο γαστρεντερολογικό σύστημα του

ασθενούς μπορεί να διαρκέσει από 8 εώς και περισσότερες ώρες ανάλογα με την κίνηση του.

Μέσα σε αυτή την ώρα η κάψουλα λαμβάνει 50.000 με 100.000 φωτογραφίες παράγοντας ένα

αρκετά μεγάλο σε διάρκεια βίντεο. ΄Ετσι η διεξοδική εξέταση αυτού του βίντεο αποτελεί μια

εξαιρετικά χρονοβόρα διαδικασία για τους γιατρούς. Υπάρχουν πολλές έρευνες οι οποίες

προσπαθούν μέσω προεπεξεργασίας του βίντεο να μειώσουν αυτό τον χρόνο. Σήμερα, με

την εξέλιξη της Μηχανικής Μάθησης και της Τεχνητής Νοημοσύνης, ειδικά στον τομέα της

ταξινόμησης φωτογραφίων, αποτελούν σπουδαία εργαλεία για τους ειδικούς υγείας.

Αυτή η διπλωματική, μελετάει την εξαγωγή χωρικών πληροφοριών της Ενδοσκοπικής κάψου-

λας με την χρήση τεχνικών Μηχανικής Μάθησης. Το να είμαστε σε θέση να εντοπίζουμε την

ενδοσκοπική κάψουλα κατά την πορεία της στο γαστρεντερολογικό σύστημα δίνει την δυνα-

τότητα στους γιατρούς να εναποθέσουν ενέργεια στην εξέταση μέρους του βίντεο που αφορά

μονάχα το σημείο ενδιαφέροντος. Επιπλέον, οι κατασκευαστές της ενδοσκοπικής κάψουλας

θα μπορούσαν να χρησιμοποιήσουν τα προτεινόμενα μοντέλα ώστε να κάνουν εξοικονόμι-

ση μπαταρίας όπου δεν χρειαζόμαστε πολλές φωτογραφίες και να λαμβάνουν περισσότερες

λήψεις, όταν αυτό είναι απαραίτητο.

Για την επίτευξη αυτού, δημιουργήθηκαν 3 διαφορετικά μοντέλα Νευρωνικών Δικτύων, τα

οποία επιτυγχάνουν την ταξινόμηση των φωτογραφιών στο αντίστοιχο όργανο που ανήκουν.

Τα δεδομένα που χρησιμοποιήσαμε έρχονται από την διπλωματική του κ. Α. Πολυδώρου για

την σχολή ΗΜΜΥ, του Π.Κ. το 2018. Για την εξαγωγή των χαρακτηριστικών χρησιμοποι-

ήθηκαν Convolutional επίπεδα και Maxpooling επίπεδα και ReLU activation function. Για

την πρόβλεψη χρησιμοποιήθηκαν Flatten και Dense επίπεδα με την χρήση Softmax activa-
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tion function. Σε ένα από τα μοντέλα χρησιμοποιήθηκε και Dropout το οποίο αποσυνδέει

τυχαία του κόμβους και όλες τις ακμές τους από το νευρωνικό δίκτυο.

Για την αξιολόγηση των μοντέλων χρησιμοποιήθηκαν μετρήσεις όπως Accuracy(Acc), Sensi-

tivity(Sens), Specificity(Spe), Error Rate(Err) και Precision(Pre). Καθώς είναι ένα πρόβλη-

μα με πολλαπλές τάξεις, οι τιμές αυτές υπολογίζονται για κάθε όργανο ξεχωριστά. Η κα-

λύτερη ολιστικά απόδοση έρχεται από το Μοντέλο 2 το οποίο προσφέρει όσον αφορά τις

τιμές αυτές και για κάθε ξεχωριστό όργανο του πεπτικού συστήμα. Για τον οισοφάγο: Ac-

curacy 95.16%, Error Rate 4.83%, Precision 84.84%, Specificity 94.73% και Sensitivity

96.55%. Για το στομάχι: Accuracy 91.93%, Error Rate 8.06%, Precision 90.9%, Speci-

ficity 96.55% και Sensitivity 81.08%. Για το λεπτό έντερο: Accuracy 95.96%, Error Rate

4.03%, Precision 92.85%, Specificity 97.89% και Sensitivity 89.65%.. Τέλος, για το παχύ

έντερο: Accuracy 99.19%, Error Rate 0.8%, Precision 96.66%, Specificity 98.94% και

Sensitivity 100%.
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Chapter 1

Introduction

In this chapter, we are setting out the aims and objectives of our project, explaining

the overall intention of the project and specific steps that will be taken to achieve that

intention.

1.1 Motivation

Endoscopy capsule looks like a pill that patients can swallow in order to examine the

majority of their digestive system. It is starting from esophagus and is ending up at the

colon. Many times, physicians need to go through videos that might even last 16 hours

so that they make sure that their examination was in every part of the digestive system.

Often it is beneficial to know where the endoscopy capsule is at the moment as well as

where each organ starts to be obvious by the endoscopy capsule. That will save a great

amount of time from the doctors that are examining the video of endoscopy capsule.

In the current research, the aim is to be able to classify the digestive organ that each

frame belongs using machine learning techniques. Resulting into having the important

information of where the capsule is currently located. In average an experienced doctor

needs approximately 40 minutes in order to examine a video from an area of interest, that

amount of time is much bigger for a doctor without experience. Using spatial information

extraction, doctors can focus only in the area of interest from the very beginning, without

the need of going through the video so to detect where that areas stand. Taking under
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2 Chapter 1. Introduction

consideration, the amount of videos that a doctor might be in the need to examine each

day, without smarter ways of eliminating the information that he needs to manually go

through, the possibilities of a human error or a misdiagnosis are getting higher, so using

such techniques a diagnosis is becoming faster and more accurate.

1.2 Aims and Objectives

The aims and objectives of the project are the following:

• Create and test different machine learning models using as a base Convolutional

Neural Networks in order to extract spatial information of the endoscopy capsule

by using image classification techniques.

• One other main objective was to be able to have quite good results without the

need of going in any further image pre-processing of the frames before feeding them

to the model for training. Without extra pre-processing of the images, there is a

resources gain.

• After creating the models, extract information from their comparison.

• Broaden our knowledge around Machine Learning and the tools that are currently

been used in the field.

1.3 Description of the work

This research is based on the frames that were extracted from Endoscopy Capsule videos

of patients that were provided to us by Dr. Polydorou. Used the Pillcam Software in

order to view and process the Endoscopy Capsule videos, it provides also the ability to

extract smaller videos from the areas of interest. So videos were divided into smaller once,

for each area of interest(esophagus, stomach, small intestine and colon).

A small python script was used in order to split the videos into frames and perform a

sampling of the images. Then those images were divided into folders and label so to



1.4. Structure of the thesis 3

become input in the training models that we developed.

The final goal of the research was to be able to locate the endoscopy capsule by using

machine learning techniques, and that translates to an image classification problem.To

implement that, we used python programming language and some tools that come with

it like Keras API and Tensorflow in order to create our models. All the three models were

created, compiled and ran using Google Colab platform in order to have better perfor-

mance of GPU and CPU.

When the models were ready, we analyzed their performance, taking under consideration

the loss and accuracy values of both training and validation datasets. For the models that

those results were sufficient, we stepped in and calculated also Sensitivity, Error Rate,

Precision Specificity and Accuracy when it comes to predictions of unknown images.

1.4 Structure of the thesis

Following comes a brief description of the document, explaining in short what you should

expect reading in each chapter of it.

Chapter 1: A brief introduction around the objectives of this thesis and the motivations

behind it.

Chapter 2: What is endoscopy capsule and the evolution of spatial information extrac-

tion using machine learning.

Chapter 3: Theory around Machine Learning, Convolutional Neural Networks and some

tools that were used in order to implement the current research.

Chapter 4: Design of the thesis, how the data were prepared and manipulated. Machine

Learning parameters that were tuned. Design of the models.

Chapter 5: Architecture and implementation of the models. Models’ elements and de-

cisions based on their outputs.

Chapter 6: Results of each model and comparison of those results, analysis of values
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such as sensitivity, Error Rate.

Chapter 7: Future work that can be benefit out of the current research.

Appendix A: Sample images of the dataset, representing all the different organs of the

digestive system.

Appendix B: Graphs of accuracy and loss while running the Machine Learning algo-

rithms.



Chapter 2

Background and Related Work

In this chapter, there follows an explanation of the endoscopy capsule and a presentation

of researches that are around the same topic as this one. Goal is to provide information

around the endoscopy capsule and what is the current state of researches around the

spatial information extraction using image classification and machine learning.

2.1 Endoscopy Capsule

All images used for this research were taken from the endoscopy capsule and specifically

from Pillcam SB3. It is intended for visualization of the small bowel mucosa, may be

used for diagnosis of Crohn’s disease, the detection of bleeding and lesions that might be

causing iron deficiency anemia. Can be used as a diagnosis tool for adults and children

above 2 years old [1]. The patient should fast for at least 12 hours before the examination.

The patient ingests the capsule in the supine position with 10 ml of water. The images

are received to the recorder via three thoracic sensors.[[2]]

Pillcam SB3 comes with a frame rate per second of 2 to 6 frames and a 12 hours battery

life. The size of the camera is 12x26 mm and weights 3 gr and is build out of biocompat-

ible plastic. It has a field of view as of 156 degrees, and it is using 4 white light emitting

diodes for illumination[3].

5
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Figure 2.1: Structure of wireless endoscopy capsule

In Figure 2.1 you can see the structure of a wireless endoscopy capsule[4]. Breaking down

its components based on the numbers that are in the figure:

1. Optical dome

2. Lens holder

3. Lens

4. Illuminating Lens

5. CMOS

6. Battery

7. ASIC Transmitter

8. Antenna

2.2 Similar researches

Starting with the research of Yuexian Zou et al. [5], one of the first researches around

Deep Convolutional Neural Networks and organ classification for Endoscopy Capsule.

Their dataset consists of 25 WCE test cases, at an amount of 1 million images. There was

a selection of 60 thousand images for training and 15 thousand images for testing. Since

they classified three organs: stomach, small intestine and colon, that means 20 thousand
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Figure 2.2: Paper 1 Model

images for testing from each organ. The resolution of the images is 480x480.

There was an implementation of different experiments in order to examine the perfor-

mance while using different network parameters. The system design comes in Figure 2.2.

In the first experiment, there is a comparison of the Deep Neural Network of Figure 2.2

performance and the state-of-art classification of the moment that refers to a SIFT-SVM

classifier. The outcome is that SIFT-SVM classifies is providing less accuracy than a

Deep Convolutional Neural Network plus is introducing higher computation cost since

SIFT-SVM and SIFT-SC-SVM feature extraction is the most time-consuming.

Next, in the second experiment, there are changes in the parameters that the model is

using in order to examine how the system corresponds to different configurations in terms

of classification accuracy. From these experiments they came to the following conclusions:

1. Maxpooling is more robust for Wireless Endoscopy Capsule images than average

pooling

2. Reducing number of filters will bring a reduction of training time but will reduce

also the accuracy

3. Larger filter size may fail to catch the details of the image, again though it will

reduce the training time

4. The impact of non-overlapping or overlapping for pooling way is not apparent.
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In conclusion and after examining the results from table in Figure 2.3, using a deep Neu-

ral Network so to succeed to organ classification for Wireless Endoscopy Capsule, the

classification accuracy is among 95%.

Another research, on digestive organs’ classification, comes from Lee et al. [6]. They

proposed a novel technique to segment Wireless Capsule Endoscopy video into the diges-

tive organs using color change pattern analysis. Each digestive organ different patterns

of intestinal contractions that are quantified as the features. They convert the frames

for Red Green Blue (RGB) domain to the Hue Saturation Intensity (HSI) domain, using

the mean of entire pixel of a frame. Then transform them in the frequency domain and

using the High Frequency Content (HFC) function they segment the video into events.

Those detected boundaries are either transition to another organ either unusual events in

the current organ(e.g. bleeding). Lastly, there is a high level event representation using

a tree structure, that is called event hierarchy of Wireless Endoscopy Capsule. Those

events represent the different digestive organs. That technique is providing as a maxi-

mum Recall(Hr) of 76% and a maximum Precision(Hp) of 51%.

In 2013, Zhou et al.[7] proposed a new way of Wireless Capsule Endoscopy video segmen-

tation, with the intention to break the video into two basic parts, stomach/small intestine

and small intestine/large intestine. Using Color Uniform Local Binary Pattern (CULBP)

for the variation of illumination and Ada-Support Vector Machine or Ada-SVM, a varia-

tion of SVM that boosts the performance of general SVM algorithm. There was a two-level

segmentation method that is utilized for segmentation, which is reducing the computation

time and overcomes the difficulty of training data acquisition. Later they use CULBP to

advance discrimination of general uniform local binary pattern feature extraction, pro-

viding a more robust variation of illumination and better input for classification. Finally,

Ada-SVM classifier is non-sensitive to changes of SVM classifier parameters, providing

more robust predictions. To conclude, their method provides an average Precision(Hp)

of 91.37% and an average Recall(Hr) of 88.5% when it comes to stomach/small intestine
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Figure 2.3: Paper 1 Results

recognition and respectively an average Precision(Hp) of 90.35% and average Recall(Hr)

of 97.28% for small intestine/large intestine.

2.3 Present work

It this research, the goal if to extract spatial information of the endoscopy capsule using

machine learning techniques, precisely using convolutional neural networks. As we can see

in researches similar to this usually image preprocessing is used, we try to achieve equally

good results without having to go through any image preprocessing since this increases

the computational complexity and the resources’ demands. Moreover, another thing we

want to examine is the training behavior while using a quite small dataset for supervised

learning process.



Chapter 3

Machine Learning Theory

In this chapter, there will be a discussion around Machine Learning and Convolutional

Neural Networks. Nowadays, there are more and more people that are using machine

learning, for a great variety of reasons. Stating with predicting values, for example stock

values or how the real estate market will be in a couple of years. Continuing with matters

of life such as predicting the possibility of cancer for a patient or making a classification

between a bleeding image and a non-bleeding image. As it is becoming obvious, being

able to use machine learning in order to extract outcomes and predictions will become a

part of our date to date tasks regardless of the field that one is working on.

3.1 What is Machine Learning

A Machine Learning system will always have the same high level workflow. What will

be different among the different methods and categories is actually what is taking place

inside the different steps of the workflow.

The high level workflow that is taking place is the following:

1. Gather data

2. Process data

3. Create training model

10
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Figure 3.1: Machine Learning high level workflow

4. Test training model

5. Optimize model

The high level workflow can be found as a graph in Figure 3.1.

Machine learning can be divided in three big categories:

1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning

Let’s see what each one is representing and when is better to use each.

3.1.1 Supervised Learning

The main difference of Supervised Learning among the rest of machine learning methods

is in the training process. In Supervised learning as input data rather than the data that

will be used, it is included also a file that contains the labels of the data that are received.

For example if you are building a supervised learning model to classify images of cats and

dogs, the input of the model will be the images of cats and dogs and a file that every

image will be labeled with its corresponding category. That way you know what label

will use before giving it to our algorithm [8].
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Figure 3.2: Dog and cat classifier

The two main subcategories of supervised learning are classification and regression. Clas-

sification is used when the goal is to determine in which group a data instance belongs

to. For example, let’s say that you want to determine if an email belongs to the spam

category or not, this is a binary classification problem. When the problem contains more

than two possible categories, then we call it a multi-class classification. Recognizing let-

ters, for instance, belongs to a multi-class classification problem. In Figure 3.2 there is

an example of a binary image classifier.

Regression, is a method that allows us to predict a continuous outcome variable (y)

based on the value of one or multiple predictor variables (x). Given the size of a house

predict its price for the upcoming years (Figure 3.3) or predict the stock price, these two,

could be regression problems.

3.1.2 Unsupervised Learning

When it comes to Unsupervised Learning, the data that are inserted in the training

model, have no labels associated with them. A high level architecture of a cats and dogs

classifier using unsupervised learning can be seen in Figure 3.4. The goal is to organize

the data into that way that they could describe their structure. This could mean grouping

them into clusters or finding different ways of looking at complex data so that they appear

simpler (like quantization). Usually, since there is no prior knowledge regarding the data,
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Figure 3.3: Prediction of house price based on their size for city of Branalle

Figure 3.4: Unsupervised Learning model

there is the need of big amount of data in order the training processes to be efficient [9].

3.1.3 Reinforcement Learning

The last category of Machine Learning is the Reinforcement Learning. Here there is

an agent that improves the performance of the model based on the state of the environ-

ment during repeated interactions with an environment[10]. It is easier while trying to

understand that process, thinking of it as a reward system with an agent that makes a

series of decisions about how to interact with the environment and then evaluates those

decisions he made, according to the state of the environments after the interactions.



14 Chapter 3. Machine Learning Theory

Figure 3.5: Reinforcement Learning model

3.2 Convolutional Neural Networks

Convolutional Neural Networks were inspired by the biological processes that the connec-

tivity pattern between the neurons resembles the organization of the animal visual cortex

[11]. Usually they are fully connected networks, each neuron in one layer is connected

with all neuron in the next layer. That property makes those networks sensitive when it

comes to overfitting the model, there are techniques that are used so to overcome that,

more information on that are coming later. Convolutional Neural Networks have many

applications when it comes to image and voice processing:

• Image and video recognition

• Image classification

• Image Segmentation

• Medical Image Analysis

• Natural Language Processing

They took the name Convolution Neural Networks since they use the mathematical op-

eration of convolution in at least one of the connected layers. That convolution acts as a

filter of a general matrix multiplication designed to process the pixel data that are used

for the image recognition [12].
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Figure 3.6: Convolutional Neural Network High Level Design

When it comes to the architecture of the models, they follow the same high level archi-

tecture. There is the input, later on what are called hidden layers and finally the output.

Such a high level description can be found on Figure 3.5. When we refer to the depth of

the model, then we speak about the number of hidden layers. When we refer to the width

of the model, then that number refers to the number of units in each hidden layer. Input

layer will take the raw input data and transfer them to the hidden layers. Hidden layers

take input from one layer and transfer the output to another layer. Finally, the output

layers will make the predictions.

In more depth, now is the time to see what exists inside the hidden layer or layers. Hidden

layer, consists of multiple different layers that each one is fully connected with the next

layer. Main components of those layers are, Convolutional layers, Pooling layers, Flatten

layers and Dense layers. Depending on what you want to succeed and the techniques that

one is using there can be used even more layers plus layers can be connected differently

for each case.

3.2.1 Convolutional Layer

Starting with Convolutional Layer, they are the main building block of the Convolu-

tional Neural Network. When it comes to image detection and recognition, convolution
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Figure 3.7: Convolution over a two-dimensional image

is the simple application of a filter over the image. The filter is smaller than the input

data, and the type of multiplication applied between a filter-sized patch of the input and

the filter is a dot product. What is achieved through that is the creation of a feature map

that summarizes the detected features of the input(Figure 3.6).

A dot product is the element-wise multiplication between the filter-sized patch of the

input and filter, which is then summed, always resulting in a single value. Because it

results in a single value (Figure 3.7), the operation is often referred to as the scalar prod-

uct. Using a filter smaller than the input is intentional, as it allows the same filter (set

of weights) to be multiplied by the input array multiple times at different locations on

the input. Specifically, the filter is applied systematically to each overlapping filter-sized

patch of the input data, left to right, top to bottom. There is a sliding filter that will

perform a convolution over the whole table of pixels of the image of interest[11].

3.2.2 Activation Functions

Another important element of the hidden layers and the Convolutional Neural Networks

are the Activation Functions, also called transfer functions. Their role is to define how
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Figure 3.8: Convolution example with matrices

the weighted sum of the input is transformed into an output from a node or nodes in a

layer of the network. Usually the activation functions are non-linear functions and this

is something desired since we can not stack together layers that are following all linear

relations. Typically all hidden layers use the same Activation Function, the output layer

will use a different activation function from the hidden layer and the type will depend

on the detection type we want to perform. For example, is it a binary classification or a

multi-class classification?[13]

There are many types of activation functions used in convolutional neural networks,

though some of them are becoming more often used for hidden and output layers. More

commonly used activation functions for hidden layers [13]:

• ReLU Hidden Layer Activation Function

• Sigmoid Hidden Layer Activation Function

• Tanh Hidden Layer Activation Function

The most commonly used among the activation functions is ReLU or Rectified Linear

Unit function. It became more famous since it is both easy and effective in overcoming

the limitations of other activation functions. What will happen with ReLU is that if the

input is positive, it will provide as output that one, otherwise the output will be zero

(3.1).

ReLU(x) = max{0.0, x} (3.1)
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Figure 3.9: ReLU activation function

ReLU has become the default activation function for Convolutional Neural Networks,

since it is working pretty good with deep neural networks [14]. A visual representation of

the function can be found in Figure 3.8.

The Sigmoid activation function, also called the logistic function since it is the same

function used for the logistic regression classification function. This function takes any

input and transforms it in the range of [0,1]. As the input gets bigger the output value

will be closer to 1 and respectively as the input gets smaller or negative then the output

will be closer to 0 (3.2).

Sigmoid(x) =
1

1 + e−x
(3.2)

A graphical representation of Sigmoid function can be found in Figure 3.9. Although

sigmoid function used to be the default activation function in the previous decade, now is

presenting some drawbacks [15]. Sigmoid activation function can not be used in networks

with many layers due to the vanishing gradient problem. If the input values are very

big the output tends to be stacked in the value of 1 and similarly if the values are very

small then the output tends to be in 0, that behavior is reducing the models’ sensitivity

since models are getting more sensitive in the change of the middle value(0.5). Another
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Figure 3.10: Sigmoid activation function

disadvantage is that the model learning rate is low while using the sigmoid activation

function.

Lastly, another hidden layer activation function that is not that commonly used nowadays

is Tanh or The hyperbolic tangent activation. That function is quite similar to sigmoid

hidden layer activation function. This time, the function takes as input any real value

and transforms it in a range of [-1,1]. As before, the higher the input then the output will

be close to 1 and the lower the input then the output gets closer to -1(3.3).

Tanh(x) =
ex − e−x

ex + e−x
(3.3)

A graphical representation of Tanh hidden activation function can be found:

Tanh was getting more popular in the later 1990s and at the beginning of 2000s since

it was providing better results when it comes to speed of training and the performance

of the predictions than sigmoid that before was the state of the art for the activation

functions [15]. Though it is carrying the same issues that were mentioned earlier, as the

sigmoid function.

For those reasons, the most commonly used hidden layer activation function is ReLU.
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Figure 3.11: Tanh activation function

So far, we analysed the activation functions that are used inside the hidden layers. As

was mentioned before, activation functions are also used in the output layer. Here there

are three main activation functions and the decision on which one to use is coming based

on the type of prediction you wish to make. Otherwise, based on the prediction problem

you want to solve, then you select the most proper output layer activation function. The

three most common ones[13]:

• Linear

• Sigmoid

• Softmax

Sigmoid activation function was analyzed before, therefore we will not go more through it.

Worth mentioning that sigmoid is commonly used in binary classification problems. Think

that you want to classify images that are taken using the endoscopy capsule in bleeding

and non-bleeding images, then sigmoid can be used as an output layer activation function.

For the Linear output layer activation function, or called identity or no-activation. This

is because the linear activation function does not change the weighted sum of the input



3.2. Convolutional Neural Networks 21

Figure 3.12: Linear output layer activation function

in any way, and instead returns the value directly[13]. Using that function there will be a

diagonal line (Figure 3.11) draw and based on where the output stats (over or under the

line) a prediction and final decision will be made. Also, another way to make a predic-

tion using the linear function is based on the distance of the result from the line. Those

two make linear activation function perfect when it comes to solving a regression problem.

Following, the Softmax output activation function receives as input a vector of real val-

ues and provides as output a vector of the same length as the input vector, with its values

summing up to 1(Equation 3.4)[16].

Softmax(x) =
ex∑
ex

(3.4)

We can think of it as summing up the probabilities of each class. For example, if the

experiment is about classifying fruits in the categories of apples, bananas and mango,

then the output of the softmax activation function will be something like :
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Softmax(apple) = 0.5 (3.5)

Softmax(banana) = 0.3 (3.6)

Softmax(mango) = 0.2 (3.7)

Having the above example, if the problem we are trying to resolve is the one of classifying

fruits among those three categories, then the output layer will come to the conclusion

that the input image refers to an apple.

Therefore, Softmax is commonly used as an output layer activation function is problems

such as image classification [17].

3.2.3 Pooling Layer

While trying to create the features’ map using Convolutional Neural Networks so to

conclude to a prediction, another important layer is the Pooling layer. That layer is

used in order to reassure that only the most important features of the input will be used

while training the model and concluding to a prediction [18]. Additionally, when it comes

to image detection and recognition, pooling is important while detecting the edges and

the lines. There are two main types of Pooling functions:

• Max Pooling

• Average Pooling

Pooling works by selecting a mask size, this mask size will be applied over the input

matrix and depending on the pooling type either it will select the maximum value (Max

Pooling) either the average of the values (Average Pooling). This is leading to a down

sample and moreover having only the most important elements in the feature map.

For Max Pooling, The mask will slide to the matrix positions as many spaces as the mask

size is and select the maximum value for that window. For example, in Figure 3.12, it is
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Figure 3.13: Max Pooling for 2x2 mask

Figure 3.14: Average Pooling for 2x2 mask

used in a mask of size 2x2. We can see that the original input is an array 4x4 and after

using the 2x2 max pooling the output comes up as a 2x2 array with the maximum matrix

values.

For the Average Pooling again the window will be moving across the matrix as many

positions as the size of the mask with the difference that this time, the output will be the

average value of the elements that the mask covers (Figure 3.13).

3.2.4 Flatten Layer

After convolutional and pooling layers are done, their output is a multidimensional matrix,

its dimensions depend on the original input and their masks’ sizes. In order to be able
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Figure 3.15: Flatten Layer

to proceed with the prediction, there is a need to create a column out of those results

(Figure 3.14). This is happening in the flatten layer. In simple words, in flatten layer,

the data are converted in a single dimensional array. This is happening, so the data can

be properly prepared to become input for the next layer [19]

3.2.5 Dense Layer

Dense layer seems to be the most commonly used in artificial neural networks. It is a deep

layer and a fully connected layer, meaning each neuron of previous layer is connected with

every neuron in that layer. In the background, dense layer is performing a matrix-vector

multiplication[20].

Output = activation(dot(input, kernel) + bias) (3.8)

As we can see from the equation 3.8 the main ingredients of dense layer are the activation

function, the kernel weights matrix, the input matrix and the bias vector. Dense requires

the input to be a single-dimensional array i.e. 1-D array, that is the reason we are using

Flatten layer that was mentioned before, one layer before the Dense Layer while building

a Convolutional Neural Network model. Dense layer is used to classify an image based

on output from the convolutional layers. The number of Dense layers to be used to verify

with main differentiator to be the number of classes that we have to predict upon.



3.2. Convolutional Neural Networks 25

Figure 3.16: Dense Layer

3.2.6 Overfitting & Underfitting

One of the main problems that someone can face while experimenting with Machine

Learning and Convolutional Neural Networks is overfitting and underfitting. Overfit-

ting is when a model learns the data too well, that leads the model to perform very well

with that dataset but failing to perform with an unknown image. Underfitting on the

other hand happens when a model fails to sufficiently learn the problem and performs

poorly on a dataset as well as while trying to make a prediction for an element outside

the dataset [21]. Both behaviors are unwanted when it comes to our model and should

be taken seriously under consideration and be resolved.

Overfitting of a model can be recognized when viewing the model’s behavior during a

single run, observing the performance curve of the model for each iteration that is run-

ning. Splitting the data into two datasets, one that will represent the training dataset

and another that will be the validation dataset. When the results for the training dataset

are significantly better than the validation dataset, then there the possibilities that your

model is overfitting are high (Figure 3.17) [22].

You can recognize underfitting using the same technique, the difference now will be that

now the model will have a great difference between the training dataset and the valida-

tion dataset with training dataset performing even iller than the validation dataset(Figure
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Figure 3.17: Overfitting model

Figure 3.18: Underfitting model

3.18)[22].

While, you can observe in Figure 3.19 how a model with a good learning curves looks like.

That is the goal for your model learning curve [22].

3.2.7 Dropout

One of the ways to resolve overfitting problems is using Dropout Layer in your model.

What dropout will actually do is randomly dropping out (or ignoring) nodes during the

training process(Figure 3.20). It is a computationally cheap and exceptionally effective

way to reduce overfitting in deep neural networks [23]. By ignoring some nodes, dropout

makes the training process noisy, forcing nodes within a layer to probabilistically take on
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Figure 3.19: Good fit learning curve

Figure 3.20: Dropout

more or less responsibility for the inputs [23]. Dropout can be implemented on any or all

hidden layers in the Convolutional Neural Network as well as in the input layer. Though

it cannot be used on the output layer.

As mentioned also before, it can be used with all types of neural networks. Dropout rate,

is the hyperparameter that will define the percentage of nodes that will be dropped out.

If dropout rate is 1.0 mean that there is no dropout, and 0.0 means that all nodes will be

ignored. Usually a value between 0.5 and 0.8 is sufficient dropout rate for a hidden layer,

input layers are using a larger dropout rate such as 0.8[24].
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3.3 Tools and libraries

In this section, we explain tools and python libraries that were used in the implementation

of this thesis.

3.3.1 Python

The programming language that we used is Python version 3.6. Python is a high level

programming language that is widely used in the Machine Learning world, and it empha-

sizes in code readability with the use of significant indentation [25]. It is coming with

many ready to use libraries and APIs for this purpose, such as Tensorlow and Keras API.

Some other libraries that were used in order to be able to work with arrays and manip-

ulate the images were NumPy and cv2(OpenCV is the newest version). Pandas library

was also used, helping us while working with Excel sheets when calculating the results of

the models and comparing the predictions with the real values of the images.

NumPy library is adding support for large, multidimensional arrays and matrices, along

with high-level mathematical functions to operate on these areas [26] [27].

OpenCV is a library that supports image processing and manipulation. It was used in

order to read the images from the files as well as in order to extract the frames from the

videos[28].

3.3.2 Tensorflow

Tensorflow is an end-to-end open source platform for machine learning. It can be used

for training and inference of deep neural networks. It was developed by the Google Brain

team for initially for internal Google use in research and production. In cooperation with

Keras API makes Machine Learning easier and faster in use and prototyping. It helps in

model creation, in data loading and in the model training [29].
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Figure 3.21: Tensorflow graph operations

Tensorflow accepts data in the form of multidimensional arrays or even higher dimensions

called tensors, this is where it took the name from. Tensorflow supports both CPUs

and GPUs Computing devices, training process requires high computational capabilities.

When the activities are performed in a CPU level then it takes much longer time than

when they are executed in a GPU, so one of the main advantages of Tensorflow is that it

can work also with GPUs.

It allows you to create data flow graphs that describe how data moves through a graph.

The graph’s nodes represent mathematical operations. A connection or an edge between

nodes is a multidimensional data array(Figure 3.22) [30]. So in simple words, Tensorflow

is providing all the mathematical operations that need to be performed in the arrays or

tensors that are loaded for the model creation, training and execution.

3.3.3 Keras API

Keras is running as a northbound interface of Tensorflow, taking easily and fast informa-

tion by the user and providing them to Tensorflow library as input. It was developed with

a focus on enabling fast experimentation. It is quite simple while using it, providing you

more time and freedom into thinking the actual model architecture rather than the code

that needs to come with it later on. It can support the implementation of small and deep
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Figure 3.22: Model definition using Keras API

neural networks [31].

From Keras API, we used the APIs: Layers and Models and their functions. Layers

API consists of all the necessary actions for layer creation, definitions of the core layers:

Convolutional layers, Pooling layers, Dense Layers, Regularization Layers, etc [32] and

their hyperparameters as well as the definitions of the activation functions. Models API

[33] is used to create the models, there are three ways to create a Keras model:

• Sequential Model

• Function API

• Model subclassing

We used the Sequential Model type of creation, it is a straightforward way to create a

model since you create a simple list of layers, example of a model creation using Keras

Models and Layers APIs come in Figure 21. After model definition, you need to compile

it, then build it and finally fit it in order to the training process to start. All those actions

are easily provided by keras Models API.

3.3.4 Google Colaboratory

Google Colaboratory or Google Colab for short is a Google Research product that pro-

vides everyone with the ability to write and execute python code using Jupyter notebooks
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and resources from CPU and GPU point of view that lay in the cloud. That way, you

are able to use resource better than your local system and execute faster your machine

learning training process. It is an open source tool, so everyone can use it [34].

You can save your files in the cloud, select the size of the resource you are going to need

and there is no need of configuring them. Since your code will be hosted on cloud more

precisely, all your Jupyter notebooks will be saved in Google Drive, it is very easy to share

it with other developers.



Chapter 4

Design

4.1 Dataset

Data gathered for this Thesis are coming from the personal collection of Dr. Polydorou.

All data refer to the period May 2016 - May 2017. Using videos coming from different

patients, using the same dataset from videos that were used in thesis of Mr. A. Polydorou

in 2018[35] extracted frames that represent each different organ of the digestive system

(esophagus, stomach, small intestine, great intestine). In order to do that, the tool of

Pillcam Reader was the video player and the information extractor.

After getting the smaller videos with the places of interest with Pillcam Reader, those

videos were used in order to extract the frames to be used later on for both the train-

ing and testing data. That happened through a function created by the writer. With

the frames per minute of the camera, there were 5 frames for each instance, so there was

the need to select one image of those in order to downsample and not use duplicated data.

4.2 Data Preprocessing

All images are of the size 576x576, data are referring both to male and female pa-

tients.Based on the results, there was no need to perform any kind of preprocessing though

32
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Figure 4.1: Sample images of different organs

might be interesting for future work and investigation to implement the same Machine

Learning Models in images from different spectrums, such as HSV and grayscale images

even further in images as a signal in the frequency spectrum. For a sample of the images,

refer to Figure 4.1.

After extracting the images in order to use them for machine learning purposes, images

were divided in different folders. Foremost, they were distinguished in training and test

data. Training data will be the once that will be fed into the model in the training phase,

and testing are the ones to be used in order to verify that the model is producing compre-

hensive data. Later on, the train data were divided in 4 folders. Each folder represents

one of the 4 points of interest, so for example, the stomach folder will contain only images

that are coming from that area. Also for the training process there was created a CSV

file in which there is a labeling of the images based on the category they belong and

their name. Folder structure can also be found in Figure 4.2. All images are in three

color channels (RBG - Red Blue Green). Pixel level are the typical ones: [0,255] although

during the experiment the data are normalized.

Some famous data preprocessing techniques on Machine Learning are the following:

• Image scaling: When you handle square images, there are techniques to scale
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Figure 4.2: Folder structure

each image based on your needs. There are prebuild functions in machine learning

libraries that can support in down-scaling and up-scaling of the image.

• Data Augmentation: This technique is great when it comes to having small range

of samples use during the training process. For example, in the current experiment

case, the dataset size is very low.

• Dimension Reduction: In the current experiment, all images were in 3 color

channels (RBG), there is also the option to implement the same experiment using 2

color channels (grayscale images). Someone may decide to use less color dimensions

in order to reduce the computational cost.

• Normalization of data: So to ensure that all pixels follow a uniform data distri-

bution. This will make the convergence faster in the training step of the machine

learning process. This is achieved by subtracting the mean of each pixel and then

diving that result by the standard deviation. That will lead to a Gaussian curve

centered to zero. In case of images the possible values are only the positive ones, so it

will move the data from [0,255] to [0,1]. This is also used in the current experiment.

• Splitting : Also in the case of our data, they were divided in the structure that is

defined in Figure 4.2.
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4.3 Machine Learning Parameters

In this section, there is a definition of basic machine learning parameters and how those

affect the models and their results. Some of them and were defined in Chapter 3 (e.g. ac-

tivation functions, dropout), so we will not go through them again. In this section, there

will be a discussion on how different filter number and size effect convolutional layers,

what different optimizers, loss functions and metrics bring when compiling the model and

how epochs affect how the model fits.

When it comes to filter size, as discussed in Chapter 3, convolutional layer is supporting

with feature extraction of the images. Using bigger filters it becomes computationally

cheaper, but it covers fewer areas, meaning that it is reducing the accuracy and the pos-

sibility of observing a feature. Vice versa, smaller filters will have more work to do, and

it will take more time, but it will provide better chances when it comes to catching all

details[36]. Regarding the number of filters, convolutional neural networks learn mul-

tiple features in parallel for a given input and that is affected by the number of filters.

For example, a convolutional neural network might be learning from 32 to 512 filters in

parallel for a given input. This provides the model with the corresponding number of

different ways of extracting features or many different ways of seeing an input[12]. As

you can see in the following chapter we used different sizes and number of filters so to

conclude to our best method.

Epochs is a hyperparameter which defines the number of times that the algorithm will

work through the entire training dataset. You can think of it as a loop over the dataset,

usually the number of epochs is big, allowing the algorithm to iterate over the dataset

multiple times until it is the optimal. Creating a curve of loss and accuracy over the

epochs of the training procedure is common and that curve is called learning curve[37].

Finally, other parameters worth of mentioning are the once that are inputs in the compile

function of Keras: optimizer, loss function, metrics. Keras compile function comes with
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an argument where you can specify the metric to be used while making a decision if the

model works good or not. There are different types of metrics based on the prediction

problem you are trying to resolve[38]. Since our case is a classification case, follows more

information on them. The available Keras Classification Metrics:

• Binary Accuracy

• Categorical Accuracy

• Sparse Categorical Accuracy

• Top k Categorical Accuracy

• Sparse Top k Categorical Accuracy

Since we are resolving a multi-class classification problem in our study, we use Sparse

Categorical Accuracy.

Regarding losses, there are even more that you can use and are divided in three bigger

categories[39]:

• Probabilistic losses

• Regression losses

• Hinge losses for ”maximum-margin” classification

In all of our models’ compilation, we are using the Sparse Categorical Crossentropy which

computes the cross entropy loss between the labels and the predictions. It is beneficial to

use it in cases as ours that involves more than two labels.

Finally, the other hyperparameters of compile function worth of mentioning are the Op-

timizers. Optimizer is one of the two arguments required to compile a Keras model[40].

In our models, we used the optimizer with name: Adam. Adam is a stochastic gradient

descent method[41].
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Implementation

For the current Thesis there were created and tested 3 different models of Convolutional

Neural Networks:

• Model 1: Model with 3 layers of 2D convolution.

• Model 2: Model with 4 layers of 2D convolution.

• Model 3: Model with 4 layers of 2D convolution but different mask size.

All models will be described in detail in this chapter.

As was mentioned before, the main objective of this thesis is to be able to allocate the

endoscopy capsule through image classification using machine learning techniques. In

order to succeed that and create the models, similar researches and convolutional networks

that are achieving the same were studied. The model tuning, parameters used for that as

well as some technical terms will be analyzed in the first section of this chapter.

5.1 Before creating the models

Before model creation, there were some tasks to take care of. Firstly, as was men-

tioned above, since the original source was a video stream, it was needed to transform

that stream into frames and downsample them so that we use 1 image at a time. For
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that a function was created that could have as an input a video and the number of

frames the user wants to extract and as an output creates a folder containing the de-

sired number of images. In order to do that, main function for frame creation was

videocaptureandinordertocreateandwritetheimageswascv2libraryandfunction : cv2.imwrite.

Data are separated in two different big folders, one that contains the training data and the

other that contains the testing data. The purpose of the training data folder is to host 4

subfolders, each one of those contains images of the digestive organ that represents (refer

to Figure 4.1). There is a CSV file that contains two columns, the first column refers to

the image ID and the second to the image class. Image classes were created using one hot

encoding with the following principle:

digestive organ code

esophagus 0

stomach 10

small intestine 11

large intestine 10

After creating the dataset as above, then the actual machine learning can start. Since for

the experiment Google Colab was used, the folders and images were uploaded to Google

Drive for easier access. After the images and folders were read, using the keras library

and the preprocessing of images from directory function we can[42]:

• Create validation data: data are created using the 20 percent of the training

data, they are useful in order to act as unknown data during the training process.

• Reduce images size: image size is reduced in order to be of 256x256 size.

• Batch size: Define the batch size to be 16.

• Autotune data: This will help our model to be faster, since it will decouple the

time when data is produced from the time when data is consumed. It will use

a background thread and an internal buffer to prefetch elements from the input
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dataset ahead of the time they are requested. Autotune function will prompt the

tf.data to tune the value dynamically at runtime.

• Data normalization: All pixel values were transformed in the interval of [0,1].

Now the dataset contains images of size 256x256 in 3 color channels (RGB) with batch

size 16 and normalized in the interval of [0,1].

5.2 Model creation steps

The input of the models are pixel values in the shape of [WIDTH, HEIGHT, CHAN-

NELS], in our cases specifically the size is [256x256x3].

Model creation is following the same structure:

1. Define the model: Here you define all the different layers that the network will

have, defining also values such as filter size, number of filters, activation function,

layer type.

2. Compile the model: After defining the model, you need to compile it in order to

be configured with losses and metrics used.

3. Fit model: This way you start the training process.

4. Model prediction: Using that method you can start having predictions, anyhow

this is the final outcome from model creation!

After following those principles, came the creation of all three model of our research. As

you can see, we used the Sequential model for creating the model.

Model 1 (Figure 5.1), consists of Convolutional Layers that their size is same every time

(3x3) and there is a different number of filters. Also, they use Maxpooling after each Con-

volutional layer. When the feature extraction is done, one Flatten layer and two Dense
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Figure 5.1: Definition of Model 1

Figure 5.2: Definition of Model 2

layers follow.

Model 2 (Figure 5.2), consists of Convolutional Layers that their size is same every time

(3x3) and there is a different number of filters, this time starting with a larger and contin-

uing with a bigger filter number (32,64,128 and 256). Again, there are Maxpooling layers

after each Convolutional layer. As before, one Flatten layer and two Dense layers follow.

Model 3 (Figure 5.3), consists of Convolutional Layers with same number (32) and size

(5x5). Again there are Maxpooling layers after each Convolutional layer. As before, one

Flatten layer and two Dense layers follow. In that model there is also a Dropout layer,
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Figure 5.3: Definition of Model 3

Figure 5.4: Compile model

which is ”dropping” nodes in a 20% sequence

After we define the models, we compile them using the Sparse Categorical Cross En-

tropy as loss function and accuracy as a metric (Figure 5.4). We use Adam function as

an optimizer, since it is one of the best optimization algorithms for deep machine learning.

Lastly, we fit the model in order to initiate the training process. Using 30 epochs where

each epoch is repeated 16 times.

Figure 5.5: Fit model
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Table 5.1: Model 1 Summary

Layer Name Layer Type Number of filters Output Shape Number of Parameters

Conv2D Conv2D 16 (256,256,16) 448
Max Pooling2D MaxPooling2D (128,128,16) 0

Conv2D 1 Conv2D 32 (128,128,32) 4640
Max Pooling2D MaxPooling2D (64,64,32) 0

Conv2D 2 Conv2D 64 (64,64,32) 18496
Max Pooling2D MaxPooling2D (32,32,64) 0

Flatten Flatten 65536 0
Dense Dense 128 8388736

Dense 1 Dense 4 516

A detailed description of the models comes in the next section.

5.3 Our models description

Model 1 consists of connected two-dimensional convolution layers and two-dimensional

maxpooling layers as feature extractors, a flatten layer in order to have a vector of features

after the last pooling layer that will be an input for the upcoming two dense layers that

follow in order to make the final decision of the classification. In total, using that model,

there were 8.412.836 trainable parameters. In the table 1, there are details regarding the

different layers, as well as the sizes of the filters and the trainable parameters. Also in

Figure 2 there is a graphical representation of Model 1.(Figure 5.1)

Model 2 is a deeper neural network using again connected two-dimensional convolution

layers and two-dimensional maxpooling layers as feature extractors, a flatten layer in or-

der to create a vector of features after the last pooling layer that will be an input for the

upcoming two dense layers. In total, that model leads to 13.235.756 trainable parame-

ters. In table2, there are details regarding output size of the different layers, as well as

the sizes of the filters and the trainable parameters. In Figure 5.2 there is a graphical

representation of the Model 2.

The third model is using convolutional layers with filters of the size (5x5) instead the
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Figure 5.6: Structure of Model 1

Table 5.2: Model 2 Summary

Layer Name Layer Type Number of filters Output Shape Number of Parameters

Conv2D Conv2D 32 (256,256,32) 896
Max Pooling2D MaxPooling2D (127,127,32) 0

Conv2D 1 Conv2D 64 (125,125,64) 18496
Max Pooling2D MaxPooling2D (62,62,64) 0

Conv2D 2 Conv2D 128 (60,60,128) 73856
Max Pooling2D MaxPooling2D (30,30,128) 0

Conv2D 3 Conv2D 256 (28,28,256) 295168
Max Pooling2D MaxPooling2D (14,14,256) 0

Flatten Flatten 50176 0
Dense Dense 256 12845312

Dense 1 Dense 4 1028

Figure 5.7: Structure of Model 2
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Table 5.3: Model 3 Summary
Layer Name Layer Type Number of filters Output Shape Number of Parameters

Conv2D Conv2D 32 (252,252,32) 2432
Max Pooling2D MaxPooling2D (126,126,32) 0

Conv2D 1 Conv2D 32 (122,122,32) 25632
Max Pooling2D MaxPooling2D (61,61,32) 0

Conv2D 2 Conv2D 32 (57,57,32) 25632
Max Pooling2D MaxPooling2D (28,28,32) 0

Flatten Flatten 25088 0
Dense Dense 256 6422784

Dropout Dropout 256 0
Dense 1 Dense 4 1028

Figure 5.8: Structure of Model 3

filters of size (3x3) that were using the previous models. Also in the previous models

there was an increase of the number of filters that were used as the network was getting

deeper. For this model, there were used in all steps filters of the same size and number, in

all convolutional layers there were used 32 filters of the size (5x5). Another difference of

this model is that there was used also a Dropout layer between the last two dense layers.

Rather than those two key differences the rest remain the same. In total that model re-

sults to 6.477.508 trainable parameters. In Figure 5.3 there is a graphical representation

of model 3.
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Evaluation

In this chapter we examine the results of the models and specifically their performance.

6.1 Models comparison

Taking under consideration the small set of data that we are using for training as well as

the fact that the data did not go under any pre-processing before getting to the training

process, our results stand out. Following, there are references on the curves that refer to

the loss and accuracy of training and validation data as per epoch of the training process.

Those curves are provided as per Model.

All models used 30 epochs in order to conclude to a stable value of validation and train-

ing accuracy, this amount of epochs worked good enough to allow our training model to

conclude to a good training converge. There was used also, instead of individual images,

a patch of images of size 16. For the Model 1, training accuracy and validation accuracy

start being stable after epoch 15, for Model 2 we see the same behavior after epoch 20 and

for the Model 3 those values start being stable after epoch 25. The graphs for training

loss, accuracy and validation loss and accuracy can be found for Model 1 at Figure 6.1,

for Model 2 at Figure 6.2 and for Model 3 at Figure 6.3.

We can observe that even though there were used a small amount of images in order to
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Figure 6.1: Loss and accuracy graph Model 1

Figure 6.2: Loss and accuracy graph Model 2

Figure 6.3: Loss and accuracy graph Model 3
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train the models, after a relatively small amount of epochs, the results we are taking are

pretty sufficient. Model 1 concludes with a training accuracy 1, and with a validation ac-

curacy 96.77%. Model 2 provides a training accuracy 1 and a validation accuracy 96.77%.

Moreover, Model 3 provides a training accuracy 1 and a validation accuracy 1. All those

values refer to the results of 30th epoch. Among the three models the one that provides

a more stable view as many times as the experiment was reproduced is the Model 2, we

observe that increasing the number of filters as the model becomes deeper shows that is

providing a more stable result.

Another part of analyzing the models is calculating the confusion matrix. Since our

experiment refers to a multi-class classification in order to calculate the values of True

Positive(TP), True Negative (TN), False Positive(FP), False Negative(FN) so that we

conclude in the calculation of the rest of the metrics. All the metrics will be calculated

as per class for each model for example in order to calculate the accuracy of predicting

the frames that refer to esophagus for Model 1, the formula will be:

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

Accuracy is providing the overall accuracy of the model for that specific class. Meaning

the fraction of the total class objects that were correctly classified by the classifiers. All

the values will refer to the outcomes when it comes to esophagus frames while using Model

1 to predict the class of the frame.

Furthermore, with same way for class calculation we provide the value of Error Rate:

ErrorRate =
FP + FN

TP + TN + FP + FN
(6.2)

Error rate is calculated by the sum of all error predictions divided by the total number

or predictions and indicates the quality of the classifiers towards the wrong predictions.

Another metric is Precision, which is telling you what fraction of predictions as a positive

class were actually positive. To calculate is, the formula is:
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Table 6.1: Metrics of Model 1

Model 1 Accuracy Error Rate Precision Specificity Sensitivity

Esophagus 91.93% 8.06% 77.14% 91.57% 93.1%
Stomach 87.09% 12.9% 86.2% 95.4% 67.56%
Small
Intestine

94.35% 5.64% 86.66% 95.78% 89.65%

Colon 99.19% 0.8% 96.66% 98.94% 100%

Presicion =
TP

TP + FP
(6.3)

Specificity is the value that tells you what fraction of all negative samples are correctly

predicted as negative by the classifier. To calculate it, use the formula:

Specificity =
TN

TN + FP
(6.4)

Lastly, the value of Sensitivity or Recall, tells you what fraction of all positive samples

were correctly predicted as positive by the classifier. To calculate that value, use:

Sensitivity =
TP

TP + TN
(6.5)

After using the formulas above for each class and for each model, the results of the metrics

when it comes to each model are presented in the tables below. For Model 1 follows in

Table 6.1, we can observe that the model is working well for all organs, with slightly bigger

error rate when it comes to stomach. After the examination of the error that we saw in

the predictions, many times this error is coming because the presence of pituitary or of

saliva is misunderstood as the pituitary of colon which is causing a confusion in the model.

Next, for model 2, the results of the analysis can be found in Table 6.2. As it coming

from the table too, this model is the most accurate among the three when it comes to

predictions, Error Rate is improved for stomach frames prediction and also provides the

best metrics for esophagus frames prediction.

Lastly, Model 3 metrics appear in Table 6.3. As we can observe from the following table,
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Table 6.2: Metrics of Model 2

Model 1 Accuracy Error Rate Precision Specificity Sensitivity

Esophagus 95.16% 4.83% 84.84% 94.73% 96.55%
Stomach 91.93% 8.06% 90.9% 96.55% 81.08%
Small
Intestine

95.96% 4.03% 92.85% 97.89% 89.65%

Colon 99.19% 0.8% 96.66% 98.94% 100%

Table 6.3: Metrics of Model 3

Model 1 Accuracy Error Rate Precision Specificity Sensitivity

Esophagus 98.38% 1.61% 100% 100% 93.1%
Stomach 87.9% 12.09% 89.28% 96.55% 67.56%
Small
Intestine

94.35% 5.64% 100% 100% 75.86%

Colon 85.48% 14.51% 61.7% 81.05% 100%

model 3 provides the biggest Error Rate in stomach frames prediction among the rest of

the models. Although the predictions for esophagus and small intestine frames are having

better metrics using that model.
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Summary and Reflections

Including a discussion of results in a wider context (considering other work).

7.1 Discussion of results

From the results, we can see that there is the possibility of reaching out to good results

in the problem of localization of Wireless Endoscopy Capsule using machine learning and

specifically Neural Convolutional Networks. Also, that can be succeeded without any

image preprocessing, which is adding an extra computational cost, and with a quite small

training dataset. That way the time of training is smaller and the resource needs of CPU

and GPU are reduced.

7.2 Reflections and Future Work

Using our research as a localization and classification algorithm, physicians can recognize

the digestive organ that the capsule is at the point. This can be used as a compass for

navigating in the digestive system, as well as an energy saver tool. That can be achieved

by loading the algorithm in the capsule and having an organ as the main point of interest,

the endoscopy capsule can shoot fewer images if the capsule is not yet located in the

desired area. Later on, by saving that energy can be configured to shoot more images
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without the fear or running out of energy before the process is completed. Concluding,

as a future work, we suggest the use of the algorithm for that purpose.

Another proposition for future work is the use of transfer learning, something that might

reduce the learning process time even more.

Lastly, it would be interesting to use data augmentation in order to examine if using a

larger input out of the same frames will increase the performance of the models.
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Appendix A

Dataset samples

Following you can see how the frames of different digestive organs that were used for the

research look like.
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Figure A.1: Esophagus images
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Figure A.2: Stomach images
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Figure A.3: Small intestine images
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Figure A.4: Colon images



Appendix B

Accuracy and Loss graphs
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62 Chapter B. Accuracy and Loss graphs

Figure B.1: Model 1 Accuracy and Loss for training and validation data

Figure B.2: Model 2 Accuracy and Loss for training and validation data
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Figure B.3: Model 3 Accuracy and Loss for training and validation data
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