
Technical University of Crete

School of Electrical and Computer Engineering

Clustering of Inference Algorithms in
Communication Networks

by Emmanouil Kariotakis

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Diploma Degree of

Electrical and Computer Engineering

September, 2022

Thesis Committee
Professor Aggelos Bletsas, Thesis Supervisor

Professor Michail Zervakis
Professor George N. Karystinos

Abstract

This work offers an algorithmic framework for in-network inference, using message passing among
ambiently powered wireless sensor network (WSN) terminals. The stochastic nature of ambient
energy harvesting dictates intermittent operation of each WSN terminal and as such, the message
passing inference algorithms should be robust to asynchronous operation. A version of Gaussian
Belief Algorithm (GBP) is described, which can be reduced to an affine fixed point (AFP) problem,
used to solve linear systems of equations. To achieve this, we have to cluster the Probabilistic
Graphical Model (PGM) behind GBP, in order to map it to the WSN terminals. We propose
two different clustering approaches, namely edge and node clustering. For the first approach, we
explain the reasons why a previous method does not produce the expected results and we offer
another method, which performs better. We also explain limitations of edge-based clustering. On
the other hand, node clustering has a clear metric for performance, which is relevant to the number
of edges connecting the different clusters. For this approach, we utilize three different clustering
algorithms, the k-means, the spectral clustering and an autonomous, in-network clustering algo-
rithm. Furthermore, we show in both theory and simulation that there is strong connection between
spectral radius and the convergence rate of AFP problems with probabilistic asynchronous schedul-
ing. The latter corroborates known theory for synchronous scheduling. Interestingly, it is shown
through simulations that different clustering offers similar convergence rate, when probabilistic
asynchronous scheduling is utilized with carefully selected probabilities that accelerate convergence
rate in the mean sense. Finally, we show an existing distinction between convergence rate and
energy consumption of the network and we present experimental results comparing the different
clustering methods. In most cases, spectral clustering outperforms the rest, with reduced energy
consumption (by a factor of 2 compared to k-means in specific cases).

Acknowledgements

After 5 wonderful years at the Technical University of Crete, a hard yet exciting journey has come
to an end. I cannot but express my gratitude towards the people that supported me throughout
these years and made everything I achieved possible.

First and foremost, I would like to thank my supervisor, Prof. Aggelos Bletsas, for giving me
the opportunity to conduct research into a very fascinating scientific field. I am also grateful to the
other two members of my committee. I would like to thank Prof. George Karystinos for his amazing
courses and his mentoring and valuable advice. I am also thankful to prof. Michail Zervakis for
his support and understanding when I had to make difficult decisions. In addition, I would like to
thank Prof. Athanasios Liavas for his exciting courses though which I set a strong mathematical
basis. Finally, I would like to thanks all my colleagues from Bletsas Group for their great help and
advice.

However, I could not have undertaken this journey without my family. My family’s constant
and unconditional support through every decision I made is what kept me going all these years.
Thank you for always being there for me and encouraging me to reach my goals, no matter how
difficult they might seem at the time! Last but not least, I cannot thank enough my closest friends.
You were by my side in both good and bad times, for all these years, and we formed memories that
I will never forget!

-Emmanouil Kariotakis, September 2022

1

Contents

1 Introduction 4

1.1 WSN as an Inference Platform . 5

2 Algorithms 8

2.1 Inference Algorithms and Probabilistic Graphical Models 8

2.1.1 Inference Algorithms . 8

2.1.2 Probabilistic Graphical Models . 9

2.2 Gaussian Belief Propagation (GBP) . 11

2.2.1 Gaussian Belief Propagation under High-Order Factorization and Asynchronous
Scheduling . 12

2.2.2 Solving Systems of Linear Equations . 16

2.2.3 Message Passing Probabilities of GBP in WSNs 16

2.3 Affine Updates Convergence . 18

2.3.1 Affine Fixed Point (AFP) Problem . 18

2.3.2 Convergence Conditions . 19

3 Clustering Methods 21

3.1 k-Means . 21

3.2 Spectral Clustering . 22

3.2.1 Spectral Clustering with 2 Clusters . 22

3.2.2 Generalized Spectral Clustering . 26

3.3 Mapping PGMs to WSN Terminals . 28

2

3.3.1 Edge Clustering . 29

3.3.2 Node Clustering . 32

3.4 Autonomous Clustering . 37

3.4.1 Polynomial Filtering . 37

3.4.2 Implementation . 40

3.4.3 Results . 41

4 Simulations 43

4.1 Minimization of Convergence Time . 43

4.1.1 Minimization using Clustering . 43

4.1.2 Minimization using Spectral Radius . 49

4.2 Minimization of Energy Consumption . 60

5 Conclusions and Future Work 63

A Matrix M 64

B Proofs 67

B.1 Proof of Theorem 3.1 . 67

B.2 Proof of Proposition 3.1 . 68

B.3 Proof of Proposition 3.2 . 68

B.4 Proof of Proposition 3.3 . 69

B.5 Proof of Theorem 4.1 . 70

B.6 Proof of Theorem 4.2 . 71

3

Chapter 1

Introduction

Recent advances on powerful message passing algorithms (e.g. sum-product, max-product), also
known as belief propagation [1, 2, 3], have offered concrete examples on how decision making and
inference can be facilitated through communication at carefully crafted graphs. These algorithms
have been the focus of much research; multiple extensions have been proposed and have been
applied successfully to a variety of domains.

More importantly, recent advances on backscatter (or simple scatter) radio sensor networks,
have demonstrated feasibility of µWatt power for low-cost, joint sensing and wireless networking
[4, 5, 6, 7, 8, 9, 10, 11]; all is needed at the transmitter side are a radio frequency (RF) transistor,
an antenna and a low-cost microcontroller unit (MCU). As described in previous work [12, 13], it is
possible to build ultra-low power wireless sensor networks (WSN) that have no central processing
unit in order to make autonomous, in-network decisions, solely powered by the environment. This
is possible due to the network’s asynchronous scheduling [12, 13].

Message passing algorithms exploit the factorization of the joint probability distribution (for
discrete variables) or density function (for continuous variables) to a product of factors and the cor-
responding encoding of conditional (in)dependencies between variables into a carefully constructed
probabilistic graphical model (PGM). The sum-product (max-product) message passing algorithm
runs in these PGMs and offers the marginal densities (maximum aposteriori probability values) of
the random variables.

Our goal is to take advantage of the WSNs’ and the algorithms’ distributed nature and carefully
map the nodes of the PGMs used in such algorithms to the WSN terminals, in order to minimize
the required computation and communication load across different WSN terminals or minimize the
convergence time, and exploit the power of the aforementioned algorithms and make in-network
decisions. More specifically, we utilize Gaussian Belief Propagation algorithm [14] in order to
solve linear systems of equations. The matrices that are used in our experiments are provided in
Appendix A.

4

1.1 WSN as an Inference Platform

In this section we are going to formulate the aforementioned mapping. At the end of the chapter
there is a detailed explanation of the used notation.

Consider an ambiently powered WSN with N (physical) terminals. In addition let x(0) ∈ Rn;
our goal is to utilize the network in order to calculate the update:

x(l) = f
(
x(l−1)

)
=
[
f1

(
x
(l−1)
J1

)
. . . fn

(
x
(l−1)
Jn

)]
, l = 1, 2, . . . , (1.1)

where x
(l−1)
Ji

denotes a subset of elements
{
x
(l−1)
k

}
of x(l−1), according to the set of indices Ji,

f : Rn → Rn is a real mapping and fk : R|Jk| → R is that real valued function the is used to update

element x
(l−1)
k . On top of that, assume that at each iteration, WSN terminal i is responsible for

updating a unique subset of the elements
{
x
(l−1)
k

}
of x(l−1), denoted by x

(l−1)
Ii , where

⋂N
i=1 Ii = Ø

and
⋃N

i=1 Ii = {1, . . . , n}, utilizing the appropriate subset of functions {fj(·)}, j ∈ Ii. In other
words, each WSN terminal is responsible for updating a subset of the variables, all variables are
allocated to specific WSN terminals and no variable is allocated to more than one WSN terminal.
Given that each function fj(·) might require variables that are allocated to different WSN terminals,
communication between the WSN nodes is required; before any computations, the required values
must firstly be transmitted between the WSN nodes as messages. An example of such a mapping is
presented in Figure 1.1, where we can see the Graphical Model, the Wireless Sensor Network and
the final mapping that has been done.

However, such message passing may fail, simply because the WSN terminal does not have suf-
ficient energy; thus the necessary message passing is interrupted probabilistically. As a result,
some subsets of x(l−1) may not be updated at iteration (l); this is what we refer to as asynchrony.
Considering this asynchronous operation, messages between variable or factor nodes, that belong
to different WSN terminals, may fail to be transmitted or received due to energy outage of a WSN
terminal or because of a failure in transmission between WSN terminals. Let pouti denote the prob-
ability of terminal i being in energy outage, ptransi,j denote the probability of successful transmission
between terminals i and j and finally, pcomm

i,j the probability of successful communication between i

and j, which is pcomm
i,j ≜ pcomm

j,i = (1−pouti)(1−poutj)ptransi,j . For simplicity, we assume that messages
between WSN terminals fail to communicate only due to energy outage, i.e. ptransi,j = 1, hence,

pcomm
i,j ≜ pcomm

j,i = (1− pouti)(1− poutj). (1.2)

We also assume that messages mgj→xi are stored in node variables xi and that the probability of
a messages being sent from gj to xi equals to the probability from xi to gj , i.e. pgj→xi = pxi→gj .

Thesis Outline

In Chapter 2 we provide the basic algorithm that we use throughout this work and some conver-
gence conditions for it, in Chapter 3 we present some clustering methods that are used in order to

5

run this algorithm in communication networks. In Chapter 4 we state two optimization problems,
on which we provide solutions, and we present experimental results of those problems. Finally, in
Chapter 5 we state the main contributions and propose future directions of our work.

(a) An example of a Probabilistic Graphical Model
that we want to map.

Terminal 1
Terminal 2

Terminal 3

(b) A Wireless Sensor Network with 3 physical
Terminals.

(c) The Network after the mapping is performed.

Figure 1.1: An example of mapping a PGM to a WSN.

6

Notation

Scalars, vectors, matrices and sets are denoted using lower-case, bold lower-case, bold upper-case
and calligraphic upper-case letters, respectively. For a vector x, xi denotes the i-th entry. For a ma-
trix A, Aij denotes the element of its i-th row and j-th column. The notations A ≻ 0 and A ⪰ 0 in-
dicate that A is positive definite and positive semi-definite, respectively. A⊤ denotes the transpose
of A and ρ(A) denotes the spectral radius of matrix A, namely ρ(A) = max{|λ1|, |λ2|, . . . , |λm|},
where λ1, . . . , λm are the eigenvalues of A. In an iterative process x(l) = f(x(l−1)), x(l) denotes
the value of x at iteration (l). diag{x} denotes the diagonal matrix, whose diagonal entries are
the elements of x. O denotes the matrix whose all entries are zero, the identity matrix is denoted
by I and 1 denotes a vector of all ones. xI denotes a subset of the elements of x according to
the set of indices I, namely xI ⊆ (x1, x2, . . . , xn). For a set B, the notation B\i denotes all the
elements in B except i. The notation a ∝ b denotes that a is proportional to b. N (x;µ,C) denotes
that a random variable follows the Gaussian distribution with mean µ and covariance matrix C.
R(A) and N (A) denote the rangespace and nullspace of matrix A, respectively. dimV denotes the
dimension of vector space V, namely the number of vectors in any of its bases.

7

Chapter 2

Algorithms

In this Chapter at first we are going to set the basis for Probabilistic Graphical Models and explain
what Inference is. Later, we are going to present the Gaussian Belief Propagation algorithm and
its application on solving linear systems of equations.

2.1 Inference Algorithms and Probabilistic Graphical Models

2.1.1 Inference Algorithms

Inference is the procedure of learning about the generically hidden state of the world that we care
about from available observations.

Consider a collection of random variables x = (x1, . . . , xN) and the observations about them be
presented by random variables y = (y1, . . . , yN). Let each of these random variables xi, 1 ≤ i ≤ N ,
take on a value in X and each observation variable yi, 1 ≤ i ≤ N , take on a value in Y. Given
observations y, our goal is to say something about possible realizations of x [15]. Given this setup,
there are two primary computation problems of interest:

1. Calculating posterior beliefs,

p(x|y) = p(x,y)

p(y)
=

p(x,y)∑
x′∈XN p(x′,y)

. (2.1)

In general computing the denominator of Equation 2.1 is expensive. If we are thinking of N
variables then this starts scaling like |XN |. That is because, without any additional structure,
a distribution over N variables, with each variable taking on values in X , requires storing a
table of size |X |N , where each entry contains the probability of a particular realization. Thus,
computing posterior has complexity exponential in the number of variables N .

8

2. Calculating the maximum a posteriori (MAP) estimate,

x̂ ∈ argmax
x∈XN

p(x|y)

= argmax
x∈XN

p(x,y)

p(y)

= argmax
x∈XN

p(x,y)

(2.2)

As before, without any additional structure, the above optimization problem requires search-
ing over the entire space XN , resulting in an exponential complexity in the number of variables
N .

Suppose that the N random variables are now independent, i.e.

p(x1, . . . , xn) = p(x1) · . . . · p(xN). (2.3)

Then posterior belief calculation can be done separately for each variable. Computing the posterior
belief of a particular variable has complexity |X |. Similarly, MAP estimation can be done by finding
each variable’s assignment that maximizes its own probability. This is done for N variables, so the
computational complexity of MAP estimation drops to N · |X |.

Thus, independence or some form of factorization enables efficient computation of both posterior
beliefs and MAP estimation. By exploiting factorizations of joint probability distributions and
representing these factorizations via graphical models, we can achieve huge computational efficiency
gains.

2.1.2 Probabilistic Graphical Models

Probabilistic Graphical Models use a graph-based representation as the basis of compactly encoding
a complex distribution over a high-dimensional space [15].

The three main types of graphical models are [16]:

1. Directed Graphical Models (or Directed Acyclic Graphs (DAGs) or “Bayesian Networks”)
A directed graphical model is a graph G = (V, E) which consists of nodes V, which represent
random variables, and directed edges E ⊆ V × V. The notation (i, j) ∈ E means that there is
a directed edge from i to j. By choosing a topological ordering of the node (i.e. an ordering
where any node i comes after all of its parents), then the graph G implies the conditional
independence

xi ⊥ xνi |xπi , (2.4)

where νi is the set of nodes that are not parents of i but they appear in the topological
ordering before i. Hence, DAGs define families of distributions which factor by functions of

9

nodes and their parents. In particular, we assign to each node i a random variable xi and a
non-negative-valued function fi(xi, xπi) such that,∑

xi∈X
fi(xi, xπi) = 1,

∏
i

fi(xi, xπi) = p(x1, . . . , xN),

where πi denotes the set of parents of node i. The graph is acyclic, thus we must have
fi(xi, xπi) = p(xi|xπi).

Figure 2.1: An example of a directed acyclic graph representing a distribution with 6 random
variables.

2. Undirected Graphical Models or “Markov Random Fields”
An undirected graphical model is a graph G = (V, E) which consists of nodes V, which
represent random variables, and undirected edges E ⊆ V × V. These graphs define a family
of probability distributions which satisfy the following graph separation property,

xA ⊥ xB|xC , (2.5)

whenever there is no path from any node in A to any node in B which does not pass through
any node in C. Unlike directed graphical models, undirected graphical models do not have
a natural factorization into a product of conditional probabilities. Instead, we represent the
distribution as a product of functions called potentials, times a normalization constant. Given
the set of variables x1, . . . , xN and a set C of maximal cliques, we can define the following
representation of the joint distribution,

p(x) ∝
∏
C∈C

ψ(xC) (2.6)

=
1

Z

∏
C∈C

ψ(xC), (2.7)

where Z is called the partition function and is chosen such that it normalizes the probabilities,

Z =
∑
x

∏
C∈C

ψ(xC). (2.8)

10

Figure 2.2: An example of a Markov random field representing a distribution with 5 random
variables.

3. Factor Graphs [17]
A factor graph consists of a vector of random variables x = (x1, . . . , xn) and a graph
G = (V, E ,F), which in addition of variable nodes it consists of factor nodes F . The joint
probability distribution associated to a factor graph is given by

p(x1, . . . , xn) ∝
∏
j∈J

gj(Xj), (2.9)

where J is a discrete index set, Xj is a subset of {x1, . . . , xn} and gj(Xj) is a function having
the elements of Xj as arguments.

The factor graph is a bipartite graph between variable nodes and factor node, i.e. there are
no edges connecting a variable node with another variable node or a factor node with another
factor node, that expresses the structure of the factorization 2.9. A factor graph has a variable
node for each variable xi, a factor node for each local function gi and an edge that connects
a variable node to a factor node if and only if xi is an argument of gi.

For better understanding of the factor graphs, we provide an example. Let p be a probability
density function that can be expressed as the product

p(x1, x2, x3, x4) ∝ g1(x1, x3, x4) · g2(x2, x3, x4) (2.10)

of two factors, so that J = {1, 2}, X1 = {x1, x2, x3} and X2 = {x2, x3, x4}. The factor graph
that corresponds to p is shown in Figure 2.3.

Factor graphs are very useful in our work, since our main application runs the Gaussian Belief
Propagation algorithm on that specific type of graphical models.

2.2 Gaussian Belief Propagation (GBP)

Gaussian Belief Propagation [14] is a special case of the sum-product algorithm (or belief prop-
agation) where the distributions are Gaussian. The sum-product algorithm is a message passing
algorithm that operates in undirected graphical models or factor graphs. It was firstly introduces
by R. G. Gallager [3] during the 1960s and it is still one of the most famous inference algorithms.
Given a probability distribution function, sum-product computes -either exactly or approximately-

11

Figure 2.3: A factor graph for the product p(x1, x2, x3, x4) ∝ g1(x1, x3, x4) · g2(x2, x3, x4).
The variable nodes are represented with circles and the factor node with squares.

various marginal distribution functions using message passing between the graph’s nodes and fol-
lowing a few simple computational rules [17, 18].

2.2.1 Gaussian Belief Propagation under High-Order Factorization and Asyn-
chronous Scheduling

Consider a Gaussian random vector x = [x1, x2, . . . , xn]
⊤ ∈ Rn. Its probability density function

can be written as

p(x) =
1

(2π)N/2|Λ|1/2
exp

{
−1

2
(x− µ)⊤Λ−1(x− µ)

}
(2.11)

∝ exp

{
−1

2
(x− µ)⊤Λ−1(x− µ)

}
, (2.12)

denoted as x ∼ N (µ,Λ), with mean µ = E[x] and covariance matrix Λ = E[(x−µ)(x−µ)⊤]. This
form of representation is call the covariance form. Another very useful form is the information
form, where the probability density function can be written as

p(x) ∝ exp

{
−1

2
x⊤Jx+ h⊤x

}
, (2.13)

denoted as x ∼ N−1(h,J), with potential h and information (or precision) matrix J. Note that
J = Λ−1 ≻ 0 and h = Jµ.
Conventionally, Gaussian BP is performed under a pairwise factorization of the joint Gaussian pdf

p(x) ∝
∏
i

Φi (xi)
∏
i ̸=j

Φij (xi, xj) , (2.14)

where Φi (xi) is a function only depending on xi and Φij (xi, xj) is a function depending on xi and
xj .

Following the work in [19], the joint Gaussian pdf can be written as

p(x) ∝
n∏

i=1

fi (xi)

m∏
j=1

gj (Xj) , (2.15)

12

where fi(xi) is a function of xi and gj(Xj) is a function of a set of variables Xj ⊆ {x1, x2, . . . , xn}. If
at least one function gj(Xj) contains more than two variables, it is referred to as a high-order factor-
ization of the joint Gaussian pdf. We can consider a high-order factorization with J = Λ+Ξ⊤ΣΞ
and h = Λξ+Ξ⊤Σu, where Λ ≜ diag(η1, η2, . . . , ηn), Σ ≜ diag(ζ1, ζ2, . . . , ζm) with ηi ≥ 0, ζj > 0,
Ξ ∈ Rm×n, ξ ∈ Rn and u ∈ Rm. Under this factorization, the joint Gaussian pdf can be rewritten
as

p(x) ∝ exp

{
−1

2
x⊤
(
Λ+Ξ⊤ΣΞ

)
x+

(
Λξ +Ξ⊤Σu

)⊤
x

}
∝ exp

{
−1

2
(x− ξ)⊤Λ (x− ξ)

}
exp

{
−1

2
(Ξx− u)⊤Σ (Ξx− u)

}
∝

n∏
i=1

exp

{
−1

2
ηi (xi − ξi)

2

} m∏
j=1

exp

{
−1

2
ζi (Ξj,:x− uj)

2

}
, (2.16)

where Ξj,: denotes the j-th row of Ξ. Based on Equations 2.15 and 2.16, we have

fi(xi) ∝ exp

{
−1

2
ηi(xi − ξi)

2

}
(2.17)

gj(Xj) ∝ exp

−1

2
ζi

∑
k∈Vj

Ξjkxk − uj

2 (2.18)

where Xj ≜ {xk|Ξjk ̸= 0} and Vj ≜ {k|xk ∈ Xj}, which means that Xj is the set of variables that
are connected to factor j and Vj is the set of indices of those variables. We can also define Gi,
which is the set of indices of factors {gj}mj=1 connected directly to variable xi in the factor graph.
Since we examine GBP on factor graphs, where we have only factor-to-variable node connections
and variable-to-factor node connections, the expressions of GBP under high-order factorization

only require factor-to-variable messages, m
(l)
gj→xi(xi), and variable-to-factor messages, m

(l)
xi→gj (xi),

at each iteration (l). The message update rules of the algorithm under synchronous scheduling are

m(l)
gj→xi

(xi) ∝
∫ +∞

−∞
gj(Xj)

∏
k∈Vj\i

m(l−1)
xk→gj (xk) dXj\xi (2.19)

m(l)
xi→gj (xi) ∝ fi(xi)

∏
k∈Gi\j

m(l)
gk→xi

(xi). (2.20)

By inserting the expression of m
(l)
xi→gj (xi) in 2.20 into 2.19, we get

m(l)
gj→xi

(xi) ∝
∫ +∞

−∞
gj(Xj)

∏
k∈Vj\i

fk(xk) ∏
k′∈Gk\j

m(l)
gk′→xi

(xk)

 dXj\xi. (2.21)

Without loss of generality, we assume that the factor-to-variable messages m
(l−1)
gk′→xi(xk) are of

Gaussian form with m
(l−1)
gk′→xi(xk) ∼ N

(
xk;µ

(l−1)
gk′→xi ,

1

ν
(l−1)
gk′→xi

)
, where µ

(l−1)
gk′→xi and ν

(l−1)
gk′→xi their mean

and precision, respectively. Thus, substituting the expressions of fi(xi) and gj(Xj) presented in

13

Eq. 2.17 and 2.18 and the Gaussian form of m
(l−1)
gk′→xi(xk) in Eq. 2.21 we get that the analytical

expression of factor-to-variable node messages

m(l)
gj→xi

(xi) ∝
∫ +∞

−∞
exp

−1

2
ζj

∑
k∈Vj

Ξjkxk − uj

2
∏

k∈Vj\i

exp

−1

2

ηk + ∑
k′∈Gk\k

ν(l−1)
gk′→xk

x2k +

ηkξk + ∑
k′∈Gk\j

ν(l−1)
gk′→xk

µ(l−1)
gk′→xk

xk

 dXj\xi,

(2.22)

which are proved to maintain their Gaussian form [19], withm
(l)
gj→xi(xi) ∼ N

(
xi;µ

(l)
gj→xi , 1/ν

(l)
gj→xi

)
.

Their mean and precision are given by

µ(l)gj→xi
=



Ξ−1
ji uj −

∑
k∈Vj\i

Ξ−1
ji Ξjk

(
ηkξk +

∑
k′∈Gk\j ν

(l−1)
gk′→xkµ

(l−1)
gk′→xk

)
ηk +

∑
k′∈Gk\j ν

(l−1)
gk′→xk

,

if ηk +
∑

k′∈Gk\k

ν(l−1)
gk′→xk

> 0, ∀k ∈ Vk\i

0, otherwise

(2.23)

ν(l)gj→xi
=

Ξ2
ji

ζ−1
j +

∑
k∈Vj\i Ξ

2
jk

(
ηk +

∑
k′∈Gk\j ν

(l−1)
gk′→xk

)−1 , (2.24)

respectively.

From the equations above it can be seen that in order to fully describe each message m
(l)
gj→xi (xi)

at iteration (l) only two values are required: its mean µ
(l)
gj→xi and its precision ν

(l)
gj→xi . Also, it can

be seen that the calculation of each ν
(l)
gj→xi only requires other precision parameters ν

(l)
gk→xp . On

the other hand, in order to compute µ
(l)
gj→xi , both different precisions ν

(l)
gk→xp and means µ

(l)
gk→xp are

required.

Using the updated message m
(l)
gj→xi and fi(xi), the BP belief, b(l)(xi), of xi at iteration (l) can

be computed as

b(l)(xi) ∝ fi(xi)
∏
k∈Gi

m(l)
gk→xi

(xi). (2.25)

By inserting the expressions of fi(xi) (Equation 2.17) andm
(l)
gk→xi(xi) into Equation 2.25, we obtain

b(l)(xi) ∝ exp

−1

2

ηi + ∑
k∈Gi

v(l)gk→xi

x2i +

ηiξi + ∑
k∈Gi

v(l)gk→xi
µ(l)gk→xi

xi

 . (2.26)

14

As it is proven again in [19], the BP beliefs are valid Gaussian pdfs, with b(l)(xi) ∼ N
(
xi; ϵ

(l)
i , σ

(l)
i

)
,

where

ϵ
(l)
i =

ηiξi +
∑

k∈Gi
ν
(l)
gk→xiµ

(l)
gk→xi

ηi +
∑

k∈Gi
ν
(l)
gk→xi

, (2.27)

σ
(l)
i =

1

ηi +
∑

k∈Gi
ν
(l)
gk→xi

. (2.28)

Assuming that ν
(l)
gj→xi are initialized in a way that guarantees convergence we can replace ν

(l−1)
gk′→xk

with ν∗gk′→xk
in Equation 2.23. Then if µ(l) stacks all µ

(l)
gj→xi at iteration (l), GBP can be reduced

to the synchronous affine fixed point problem:

µ(l) = Aµ(l−1) + c, (2.29)

where A is an |E| × |E| matrix such that Aµ(l−1) is a column vector containing elements

αij =

 −
∑

k∈Vj\i
Ξ−1
ji Ξjk

∑
k′∈Gk\j ν

∗
gk′→xk

µ
(l−1)
gk′→xk

ηk+
∑

k′∈Gk\j ν
∗
gk′→xk

, if ηk +
∑

k′∈Gk\j ν
∗
gk′→xk

> 0,∀k ∈ Vj\i
0 , otherwise

(2.30)

and c is a column vector containing elements

βij =

 −
∑

k∈Vj\i
Ξ−1
ji Ξjkηkξk

ηk+
∑

k′∈Gk\j ν
∗
gk′→xk

, if ηk +
∑

k′∈Gk\j ν
∗
gk′→xk

> 0,∀k ∈ Vj\i
0 , otherwise

(2.31)

As we will prove, the elements of matrix A can be found using the following,

A(ij, kk′) =

 −
Ξ−1
ji Ξjkν

∗
gk′→xk

ηk+
∑

k′′∈Gk\j ν
∗
gk′′→xk

, if ηk +
∑

k′∈Gk\j ν
∗
gk′→xk

> 0, ∀k ∈ Vj\i
and k ∈ Vj\i and k′ ∈ Gk\j

0 , otherwise.

(2.32)

That is because,

aij =
∑
k

∑
k′

A(ij, kk′)µ(l−1)
gk′→xk

=
∑

k∈Vj\i

∑
k′∈Gk\j

−
Ξ−1
ji Ξjkν

∗
gk′→xk

ηk +
∑

k′′∈Gk\j ν
∗
gk′′→xk

µ(l−1)
gk′→xk

= −
∑

k∈Vj\i

∑
k′∈Gk\j

Ξ−1
ji Ξjkν

∗
gk′→xk

µ
(l−1)
gk′→xk

ηk +
∑

k′′∈Gk\j ν
∗
gk′′→xk

= −
∑

k∈Vj\i

Ξ−1
ji Ξjk

∑
k′∈Gk\j ν

∗
gk′→xk

µ
(l−1)
gk′→xk

ηk +
∑

k′′∈Gk\j ν
∗
gk′′→xk

.

(2.33)

The expressions of GBP under high-order factorization can be updated utilizing asynchronous
scheduling. The asynchronous updates can become very useful, as we are going to see in Section
2.3, because they can converge even in cases that synchronous ones do not.

15

2.2.2 Solving Systems of Linear Equations

Our goal is to solve systems of linear equations

Mx = s, (2.34)

where x ∈ Rn, M ∈ Rm×n with m ≥ n, a full rank matrix, and s ∈ Rm, for which the least squares
solution is [20]

x =
(
M⊤M

)−1
M⊤s. (2.35)

Setting Λ = 0n×n, Ξ = M, Σ = I, ξ = 0 and u = s, we get

J = Λ+Ξ⊤ΣΞ ⇒ J = M⊤M, (2.36)

h = Λξ +Ξ⊤Σu ⇒ h = M⊤s. (2.37)

We have also that

h = Jµ⇒ M⊤s = M⊤Mµ⇒ µ =
(
M⊤M

)−1
M⊤s. (2.38)

Hence, Gaussian Belief Propagation can be utilized for the following distribution:

p(x) = N (x;µ,Λ)

p(x) = N
(
x;
(
M⊤M

)−1
M⊤s,

(
M⊤M

)−1
)

∝ exp

{
−1

2
x⊤M⊤Mx+ s⊤Mx

}
, (2.39)

whose inference of mean value will yield the desired solution of the problem. Thus, the GBP can
be seen as an algorithm that solves the set of linear equations h = Jµ, as well.

The BP message parameters’ initialization under high-order convex decomposition are set to

ν
(0)
gj→xi = Ξ2

jiζj for all (i, j) ∈ E and µ(0) = 0.

2.2.3 Message Passing Probabilities of GBP in WSNs

As we have seen in GBP, messages from factor node gj to variable node xi depend on the messages
that were sent to the neighboring variable nodes of the factor node gj . This can be formulated as

m(l)
gj→xi

= f
(
m(l−1)

gk′→xk
, ∀k ∈ Vj \ i,∀k′ ∈ Gk \ j

)
. (2.40)

We define cgj and cxi as the WSN terminals that gj and xi belong to, respectively, and

Ci,j = cgj ∪ cxi ∪ {cxk
| ∀k ∈ Vj \ i} (2.41)

16

the set of WSN terminals that gj , xi and variable nodes with indices k ∈ Vj \ i belong to. Then
we have the following equation for the probability of message mgj→xi being updated correctly,

pupdatemgj→xi
=
∏

c∈Ci,j

(
1− poutc

)
· ptranscgj ,c

(2.42)

and for ptransi,j = 1, ∀i, j, we have

pupdatemgj→xi
=
∏

c∈Ci,j

(
1− poutc

)
. (2.43)

Now, we can create the vector p̃ containing elements pupdatemgj→xi
for all (i, j) ∈ E arranged first on i

and then on j, i.e. containing one element for each edge of the graph. If we diagonalize this matrix,
we get the expected value of the matrix Ψ, i.e. diag(p̃) = P ≡ E[Ψ(l)], as it will be defined in
Section 2.3.

For better understanding we provide the following example. Let’s say we have the following
factor graph with the variables {x1, x2, x3} and the factors {g1, g2, g3, g4}

Figure 2.4

There can be many ways to cluster this PGM into 3 WSN terminals. In the next figure we can see
one of them.

Figure 2.5

17

We have that m
(l)
g3→x3 = f

(
m

(l−1)
g1→x1 ,m

(l−1)
g2→x2

)
, hence probability of update of m

(l)
g3→x3 is,

pupdatemg3→x3
= (1− pout1)(1− pout2)ptrans1,2 = (1− pout1)(1− pout2).

2.3 Affine Updates Convergence

In the previous section we saw that GBP can be reduced to the synchronous affine fixed point
problem 2.29, µ(l) = Aµ(l−1) + c. Due to that result, the need of studying the convergence of
the affine fixed point problem arose. We are going to present both synchronous and asynchronous
problems.

2.3.1 Affine Fixed Point (AFP) Problem

Let the real vectors x(0), b ∈ Rn and the real square matrix A ∈ Rn×n. We can from the following
recursion

x(l) = Ax(l−1) + b, l = 1, 2, . . . (2.44)

The solution of this problem is called the fixed point and is denoted by x∗ ≜ liml→∞ x(l−1) =
liml→∞ x(l).

Each element of the Equation 2.44 can be expressed as

x
(l)
k =

n∑
j=1

akjx
(l−1)
j + bk, l = 1, 2, . . . k = 1, 2, . . . , n, (2.45)

where x
(l)
k and bk denote the k-th element of x(l) and b, respectively, and aij the element of the i-th

row and j-th column of A. The update of x
(l)
k requires all variables x

(l−1)
j , with respective akj ̸= 0,

from the previous iteration (l− 1) to be known. This constraint results to synchronous scheduling,
since no output update is possible for any element of the vector x at a specific iteration, before all
necessary input is available for all variables.

This strict constraint can be relaxed. In particular, we can assume that at iteration (l) not all
elements of x(l−1) are readily available for the computation of the corresponding elements of the
update vector x(l). Then, without waiting for all elements to be updated, we keep the corresponding
values of the previous iteration and we update the vector x(l). This results to what we will call
asynchronous scheduling.

The notation from seminal work in [12, 13, 19] is adopted to formally formulate the above. At

each iteration (l), we introduce the functions ψ
(l)
k , ∀k ∈ {1, 2, . . . , n},

ψ
(l)
k =

{
1, if xk is updated at iteration (l),

0, otherwise.
(2.46)

18

Let ψ(l) the binary vector obtained if we stack all
{
ψ
(l)
k

}
, k ∈ {1, 2, . . . , n}, at iteration (l), and

Ψ(l) ≜ diag{ψ(l)} the corresponding diagonal matrix with ψ(l) at its diagonal. This asynchronous
formulation alters the Equation 2.44, which becomes

x(l) = Ψ(l)
(
Ax(l−1) + b

)
+
(
I−Ψ(l)

)
x(l−1)

=
(
Ψ(l)A+ I−Ψ(l)

)
x(l−1) +Ψ(l)b.

(2.47)

Notice that if Ψ(l) = I, ∀l, i.e. ψ(l)
k = 1, ∀l and ∀k, the asynchronous update of Equation 2.47

reduces to the synchronous one of Equation 2.44.

Based on seminal work in [12, 13], we assume that the aforementioned functions ψ
(l)
k are

Bernoulli random variables, independent across the different iterations (l) but possibly depen-
dent and not identically distributed across k, with parameters pk, ∀k ∈ {1, 2, . . . , n}. As a result,
we can define the expected value of matrices Ψ(l), E[Ψ(l)] ≜ P = diag{p}, where p = E[ψ(l)], a
quantity that as we will see plays a major role in the convergence of recursion in Equation 2.47.

2.3.2 Convergence Conditions

2.3.2.1 Convergence of Synchronous AFP Problem

The convergence of the synchronous affine fixed point problem of Equation 2.44 has been studied
thoroughly in the literature. According to [20, 21], the convergence of the aforementioned update
is determined by the spectral radius of matrix A. More specifically, it is shown that a necessary
and sufficient condition in order for Equation 2.44 to converge is

ρ(A) < 1. (2.48)

2.3.2.2 Convergence of Asynchronous AFP Problem

Much research has also been conducted on the convergence properties of the asynchronous affine
update of Equation 2.47. In particular, seminal works in [22, 23, 24], which approach the problem
from a state-space recursions’ perspective, and [19], which studies the convergence of an asyn-
chronous variant of Gaussian Belief Propagation, offer sufficient conditions for mean convergence
which are directly applicable to out model.

It can be shown that a sufficient condition for convergence in a mean sense is [19, 22, 23]

ρ(Ā) < 1 and ρ(S) < 1, (2.49)

where

Ā = P(A− I) + I and S = Ā⊗ Ā+ ((I−P))⊗P)J((A− I)⊗ (A− I)), (2.50)

with J =
∑n

i=1

(
eie

H
i

)
⊗
(
eie

H
i

)
= diag(vec(I)) ∈ Rn2×n2

, ei ∈ Rn the i-th standard vector that has
1 at the i-th index and 0 elsewhere and ⊗ the Kronecker product.

19

A convergent synchronous AFP problem may diverge with aynchronicity, and conversely, a
divergent asynchronous AFP problem may converge simply by the use of asynchronicity. The main
difference lies in the notion of convergence. The asynchronous case considers the average behavior
and focuses on a mean sense of convergence. The notion of convergence is more relaxed in the
asynchronous case and therefore the condition is more relaxed, too [22].

It is also important to note that probabilities of update play an important role in the convergence
of asynchronous AFP problem. Namely, the asynchronous system can converge for some set of
probabilities, and it may diverge for some set of others. In fact, the rate of convergence can also
be increased with the optimal selection of the probabilities similar to other randomized algorithms.
These observations will become more clear in Chapter 4.

20

Chapter 3

Clustering Methods

3.1 k-Means

k-means algorithm was initially introduced by Macqueen in 1967 [25], and is an algorithm that
separates a given set of points in a metric space to k distinct clusters. The goal of k-means is to
cluster a data set into k groups, so that the sum of distances between each data point and the
center of its group is minimized.

In particular, suppose we have the set S ∈ RN and let k ∈ Z+, the number of desired clusters.
Define C = {C1,C2, . . . ,Ck} to be a clustering partition of S, i.e. Ci ⊆ S, with Ci ̸= ∅, ∀i =
{1, 2, . . . , k},

⋃k
i=1Ci = S and

⋂k
i=1Ci = ∅. Formally, the objective is to solve the optimization

problem

argmin
C

f(C,µ) =
k∑

i=1

∑
x∈Ci

d(x,µi)

s.t.

k⋃
i=1

Ci = S,

k⋂
i=1

Ci = ∅,

(3.1)

where µi is the average of all points within Ci and is called centroid.
The Voronoi Region corresponding to a point µi ∈ RN is the set of all points closest to µi, or

V (µi) = {y ∈ RN : d(y,µi) ≤ d(y,µj), ∀i ̸= i}

In Algorithm 1 we describe the steps of k-means that solves Problem 3.1. The k-means algorithm
is based on the following two observations:

• Suppose we have some fixed partition of set S and we want to pick the best points for
minimizing the cost. Clearly, these points are the ones that minimize the distance within
each Ci, i.e. the µi’s.

21

• Suppose we have k fixed points z1, z2, . . . , zk and we want to find the best partition of S into
k parts. Then this partition well be defining each Ci to be all of the points in the Voronoi
Region of zi, or Ci = V (zi) ∩ S.

Algorithm 1: k-Means

Initialize µ
(0)
1 ,µ

(0)
2 , . . . ,µ

(0)
k

while f(C,µ) > ϵ do
for i = 1, 2, . . . , k do

Ci = V (µi) ∩ S
µi =

1
|Ci|

∑
x∈Ci

x

end

end

3.2 Spectral Clustering

Spectral clustering has become a very popular clustering algorithm. It is simple to implement, can
be solved efficiently by standard linear algebra software, and very often outperforms traditional
clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears
slightly mysterious, and it is not obvious to see why it works at all and what it really does. In this
section, we will give some intuition on these questions. We will first focus on the math with respect
to breaking data into two clusters and later we will generalize it for more clusters. We will only be
going through unnormalized spectral clustering. For more information on other spectral clustering
methods, see [26]. There are also normalized spectral clustering algorithms originally proposed by
[27] and [28].

3.2.1 Spectral Clustering with 2 Clusters

3.2.1.1 Definitions

Let G = (V, E) be an undirected, weighted graph, with vertex set V = {v1, . . . , vn}, with |V| = n.
Define the Weight Matrix, W, of G, to be an n×n matrix where wij represents the weight between
vertex vi and vertex vj . We make the assumptions about these weights that wij ≥ 0, wii = 0 and
wij = wji. Given some vi ∈ V, define the weighted degree of vi, as the sum of weights connected
directly to vi,

d(vi) = di =
n∑

j=1

wij . (3.2)

Also, define the Degree Matrix, D, of G, as the following diagonal matrix

D = diag{d1, d2, . . . , dn}. (3.3)

22

Then the Laplacian Matrix, L, of G,

L = D−W ⇒ Lij =


di, if i = j
−wij , if i ̸= j and vi is adjacent to vj
0, otherwise

. (3.4)

Suppose that A,B ⊆ V and define W(A,B) the sum of the weights connecting A and B,

W(A,B) =
∑

i∈A,j∈B
wij . (3.5)

Definition 3.1. Given A ⊆ V, define the cut of A to be,

cut(A) = W(A, Ā), (3.6)

where Ā is the complement of A in V.

Note that cut(A) = cut(Ā).

We are thinking about how to “best” break a graph into k clusters. One strategy is to minimize
the sum of the weights that we cut through between points when separating the graph. Perhaps,
we could try finding the minimum cut(A):

argmin
A⊆V

cut(A). (3.7)

It turns out this is easy to solve computationally, but unfortunately, in practice, this tends to
separate outliers from the rest of the graph, or simply just separats only one node, that is connected
with one edge with the rest of the graph.

We want to try to make cut(A) small but also keep the cardinality of the two components
balanced.

Definition 3.2. We can define the RatioCut of A to be:

RatioCut(A) = cut(A) ·
(

1

|A|
+

1

|Ā|

)
= cut(A) ·

(
1

|A|
+

1

n− |A|

)
(3.8)

Note that
(

1
|A| +

1
|Ā|

)
achieves minimum when |A| ≃ n

2 . This ratio can be changed if other

cluster balance is preferred.

So, we could try to find the

argmin
A⊆V

RatioCut(A). (3.9)

Now we have got something that sounds more reasonable, but unfortunately for us, this problem
is NP-hard. It turns out though that we can work around this issue. With a slight relaxation of
this problem, we’ll be able to take advantage of the eigenvalues and eigenvectors of the Laplacian
to help us. In order to show that, we need to present some more theory.

23

3.2.1.2 Basic Properties

Given a subset of vertices A ⊆ V, we define the indicator vector 1A = (f1, . . . , fn)
⊤ ∈ Rn as the

vector with entries fi = 1 if vi ∈ A and fi = 0 otherwise.

According to [26], the following hold:

Proposition 3.1. The matrix L satisfies the following properties:

1. For every vector f ∈ Rn we have

f⊤Lf =
1

2

n∑
i,j=1

wi,j(fi − fj)
2. (3.10)

2. L is positive semi-definite, thus it is also symmetric.

3. The smallest eigenvalue of L is 0 and the corresponding eigenvector is the constant one
vector, 1.

4. L has n non-negative, real-valued eigenvalues, 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

Proof. See Appendix B.2. ■

Definition 3.3. Let A ∈ Rn×n. The spectrum of A, denoted by σ(A), corresponds to the
set of the distinct eigenvalues of A, namely σ(A) = {λ1, λ2, . . . , λk}.

Definition 3.4. Suppose A ∈ Rn×n and λ ∈ σ(A) is an eigenvalue of A.

• The geometric multiplicity of λ is equal to dimN (A− λI). In other words, it is
the dimension of the span of eigenvectors corresponding to the eigenvalue λ, i.e. the
maximal number of linearly independent eigenvectors associated with λ.

• The algebraic multiplicity of λ is the number of times the eigenvalue λ is repeated as a
root of the characteristic polynomial det(sI−A), i.e. the number of times it appears
in the spectrum of A.

• If the algebraic multiplicity of λ is equal to the geometric multiplicity of λ, then λ is
called a semisimple eigenvalue of A.

Because L is diagonalizable, it turns out that the algebraic multiplicity and the geometric
multiplicity are equal, so in this section we will just use the term multiplicity.

24

Theorem 3.1 (Number of connected components and the spectrum of L). Let G be an
undirected graph with non-negative weights. Then the multiplicity k, of the eigenvalue 0 of
L, equals the number of connected components A1, . . . ,Ak in the graph. The eigenspace of
eigenvalue 0 is spanned by the indicator vectors 1A1 , . . . ,1Ak

of those components.

Proof. See Appendix B.1. ■

Now, we can write the eigenvalues of L as:

0 = λ1 = . . . = λk < λk+1 ≤ λk+2 ≤ . . . ≤ λn,

where k is the number of connected components of G.

Definition 3.5. Given a graph G and its Laplacian Matrix L, we define:

• the Fiedler Value of L, or algebraic connectivity of the graph G, to be the first non-zero
eigenvalue

• and Fiedler Vector its corresponding eigenvector.

Given a subset A ⊆ V, we define the vector fA = ((fA)1, . . . , (fA)n)
⊤ ∈ Rn with entries

(fA)i =

{ √
|Ā|/|A| if vi ∈ A

−
√

|A|/|Ā| if vi ∈ Ā

Proposition 3.2. The vector fA satisfies the following properties:

1. RatioCut(A) = 1
n · f⊤ALfA,

2. fA ⊥ 1n,

3. ∥fA∥2 = n.

Proof. See Appendix B.3. ■

3.2.1.3 As an Optimization Problem

Our goal is to solve the optimization problem (3.9),

argmin
A⊆V

RatioCut(A). (3.11)

25

We can now rephrase the RatioCut problem that can be equivalently rewritten as,

argmin
A⊆V

f⊤ALfA

s.t. fA ⊥ 1n

∥fA∥ =
√
n.

(3.12)

This is a discrete optimization problem as the entries of the solution vector fA are only allowed to
take two particular values, and of course it is still NP-hard. The most obvious relaxation in this
setting is to discard the discreteness condition and instead allow fi to take arbitrary values in R.
This leads to the relaxed optimization problem,

argmin
f∈Rn

f⊤Lf

s.t. f ⊥ 1n

∥f∥ =
√
n.

(3.13)

By the Rayleigh-Ritz theorem [29], it can be seen immediately that the solution of this problem
is given by the vector f which is the eigenvector corresponding to the second smallest eigenvalue
of L (recall that the smallest eigenvalue of L is 0 with eigenvector 1). So we can approximate
a minimizer of RatioCut by the Fiedler vector of L. However, in order to obtain a partition of
the graph we need to retransform the real-valued solution vector f of the relaxed problem into a
discrete indicator vector. The simplest way to do this is to use the sign of f as indicator function,
that is to choose {

vi ∈ A, if fi ≥ 0
vi ∈ Ā, if fi < 0

.

However, in particular in the case of k > 2 treated below, this heuristic is too simple. What most
spectral clustering algorithms do instead is to consider the coordinates fi as points in R and cluster
them into two groups C, C̄ by the k-means clustering algorithm. Then we carry over the resulting
clustering to the underlying data points, that is we choose{

vi ∈ A, if fi ∈ C
vi ∈ Ā, if fi ∈ C̄ .

This is the unnormalized spectral clustering algorithm for the case of k = 2.

3.2.2 Generalized Spectral Clustering

In this section we are going to generalize the Spectral Clustering, for more than 2 clusters.

3.2.2.1 Modified Definitions

The relaxation of the RatioCut minimization problem in the case of a general value k, follows a
similar principle as the one above, but we first have to extend the definition of RatioCut to k
dimensions.

26

Definition 3.6. We can define the RatioCut of A, in k dimensions, to be:

RatioCut(A1, . . . ,Ak) =
k∑

i=1

cut(Ai)

|Ai|
. (3.14)

Given a partition V into k setsA1,A2, . . . ,Ak, we define k indicator vectors hj = (h1,j , . . . , hn,j)
⊤

by,

hi,j =

{
1√
|Aj |

, vi ∈ Aj

0, otherwise
(3.15)

for i = 1, 2, . . . , n, and define the matrix H ∈ Rn×k to be

H = [h1 h2 · · · hk]. (3.16)

Note that H is an orthogonal matrix by construction, that is H⊤H = In.

3.2.2.2 Basic Properties

Proposition 3.3. The vectors hj and the matrix H satisfy the following properties:

1. h⊤
i Lhi =

cut(Ai)
|Ai| ,

2. (H⊤LH)ii = h⊤
i Lhi,

3. RatioCut(A1, . . . ,Ak) = Tr(H⊤LH).

Proof. See Appendix B.4. ■

3.2.2.3 As an Optimization Problem

Our goal is to solve the k-dimension optimization problem,

argmin
A1,...,Ak

RatioCut(A1, . . . ,Ak). (3.17)

We can now rephrase the RatioCut problem that can be equivalently rewritten as,

argmin
A1,...,Ak

Tr(H⊤LH)

s.t. H⊤H = In.
(3.18)

27

Similar to above, we now relax the problem by allowing the entries of the matrix H to take arbitrary
real values. Then the relaxed optimization problem becomes,

argmin
H∈Rn×k

Tr(H⊤LH)

s.t. H⊤H = In.
(3.19)

Again, a version of the Rayleigh-Ritz theorem [29], tells us that the solution is given by choosing H
as the matrix which contains the first k eigenvectors of L as columns. Again we need to reconvert
the real valued solution matrix to a discrete partition. The standard way is to use the k-means
algorithm on the rows of H. This leads to the general unnormalized spectral clustering algorithm
(Algorithm 2).

Algorithm 2: Unnormalized Spectral Clustering

Input: Similarity Matrix, S ∈ Rn×n,
Number of Clusters, k

• Construct a similarity graph, as described below. Let W be its weighted adjacency matrix.

• Compute the unnormalized Laplacian L.

• Compute the first k eigenvectors u1, . . . ,uk of L.

• Let U ∈ Rn×k be the matrix containing the vectors u1, . . . ,uk as columns.

• For i = 1, . . . , n, let yi ∈ Rk be the vector corresponding to the i-th row of U.

• Cluster the vectors (yi)i=1,...,n ∈ Rk with the k-means algorithm into clusters C1, . . . , Ck.

Output: Clusters A1, . . . ,Ak with Ai = {j |yj ∈ Ci}.

The similarity matrix is a symmetric and non-negative matrix, with elements the pairwise
similarities of our data. When we have a graph that we want to cluster, and not data points that
should be used to construct the graph, the similarity matrix is the same with the adjacency matrix
of our graph. Then giving as input to Algorithm 2 the adjacency matrix, we can construct the
similarity graph by adding edges to connect nodes for which the corresponding value of adjacency
matrix is nonzero. For other methods, where we have data points as input, see [26].

3.3 Mapping PGMs to WSN Terminals

A natural question that arises is how to map the PGMs to the different WSN terminals. In this
work we consider two different approaches with one of them being more useful in our setting, as
detailed below.

The two approaches are:

• Edge Clustering: First cluster the edges of the PGM and then cluster its nodes.

• Node Clustering: First cluster the nodes of the PGM and then cluster its edges.

28

3.3.1 Edge Clustering

At first, we tried to cluster different parts of vector µ, as in [12], which has one element for each
edge of the graph.

3.3.1.1 Previous Method

In [12] the method that is being used is the following. Let

S =

s
⊤
1
...
s⊤n

 ∈ Bn×n (3.20)

denote the binary matrix whose entries are 1 when the corresponding element of matrix A (as
defined in Equations 2.29 and 2.32) is nonzero and 0 otherwise, namely

Sij =

{
1, Aij ̸= 0,

0, otherwise,
(3.21)

where s⊤i denotes the i-th row of S. Hence, vectors si are indicative of which elements of x the
update of xi requires.

Considering all the above, in order to find clusters Ci and as a result the appropriate assignment
to the WSN terminals, they utilize k-means algorithm to the rows of S, (s1, s2, . . . , sn), using the
ℓ1-norm as the distance metric d(·, ·), namely

d(x,y) ≜ ∥x− y∥1, x,y ∈ Bn. (3.22)

Since the vectors si are binary, then ℓ1-norm is equivalent to the Hamming distance, namely the
number of different bits of two vectors.

3.3.1.2 Our Method

Our method, based on this approach, is the following. Let’s say that the number of factor nodes
in a factor graph, is m. An m×m matrix F is created,

F =

f
⊤
1
...
f⊤m

 ∈ Rm×m.

Each element Fi,j corresponds to the number of common neighboring variable nodes between factor
nodes i and j. The reason why this matrix is useful is that when a factor node sends a message
to a variable node, it needs the messages that are sent from other factor nodes to its neighboring
variable nodes, except the variable node to which it sends the message.

29

(a) Randomly (b) Previous Method (c) Our Method

(d) Randomly (e) Previous Method (f) Our Method

(g) Randomly (h) Previous Method (i) Our Method

Figure 3.1: Edge Clustering Results for the graph that is created when GBP is used to solve a
linear system of equations Mx = s, for M = M1.

30

(a) Randomly (b) Previous Method (c) Our Method

(d) Randomly (e) Previous Method (f) Our Method

(g) Randomly (h) Previous Method (i) Our Method

Figure 3.2: Edge Clustering Results for the graph that is created when GBP is used to solve a
linear system of equations Mx = s, for M = M2.

31

Considering the above, in order to find clusters Ci and as a result the appropriate assignment
to k WSN terminals, we utilize k-means algorithm, with squared Euclidean distance, to the rows
of F, (f1, . . . , fm). After the clustering of the factor nodes, we cluster the edges of the graph based
on which factor node they are connected to.

3.3.1.3 Comparison of Methods

In Figures 3.1 and 3.2 we can see the results of the different clustering methods, compared also
with results of a randomly performed clustering, for two different matrices M, as they are defined
in Appendix A.

As we can see, k-means as in [12] creates very big clusters with almost all elements of the graph.
That is because A is a matrix that has lots of rows with all their elements equal to 0, which means
that they all have 0 distance from each other, thus they are being clustered together. Also, we
can see some cases that there are clusters that are empty, which is not preferred for our setting,
because we are going to have WSN terminals that are inactive.

Although our method produced more balanced results than the previous one, there is one more
step that needs to be defined to complete the mapping. We have to not only map the edges of the
PGM but also its nodes. For nodes that connect edges that belong to the same cluster, this step is
easy, we just cluster them in the same cluster with the edges. On the other hand, for nodes that
connect edges that belong in different clusters, this procedure becomes more tricky, as we have to
decide the cluster of the node, among all the different clusters its connected edges belong to, and
furthermore to decide which edges are going to be unclustered so that they can send the required
messages between the WSN terminals. Hence, we turned down this approach and we utilized the
second one to our problem.

3.3.2 Node Clustering

To avoid the problems that we faced using the Edge Clustering, we used the Node Clustering. Here,
we used two different clustering algorithms. The k-means algorithm and the spectral clustering.
The two algorithms are used with different types of inputs.

• To use the k-means algorithm, we have to create a data matrix from the given graph, to give
it as input to the algorithm. The procedure is as follows. Using the adjacency matrix of the
factor graph, we can create the distance matrix D, where Di,j is the length of the shortest path
between node i and node j. This matrix has size (n+m)× (n+m) and each row corresponds
to a node of the factor graph. Thus, we can cluster the rows of D, (d1, . . . ,dn+m), to k
clusters, using the k-means algorithm with squared Euclidean distance metric.

• In the case of spectral clustering, we can directly use the adjacency matrix of the graph, as
described in Section 3.2.2.3.

We use the above clustering techniques to cluster the nodes of the graph. Then, the edges which
connect two nodes of the same cluster are also clustered to that cluster and the edges that connect

32

(a) Randomly (b) k-Means (c) Spectral Clustering

(d) Randomly (e) k-Means (f) Spectral Clustering

(g) Randomly (h) k-Means (i) Spectral Clustering

Figure 3.3: Node Clustering Results for the graph that is created when GBP is used to solve a
linear system of equations Mx = s, for M = M1.

33

(a) Randomly (b) k-Means (c) Spectral Clustering

(d) Randomly (e) k-Means (f) Spectral Clustering

(g) Randomly (h) k-Means (i) Spectral Clustering

Figure 3.4: Node Clustering Results for the graph that is created when GBP is used to solve a
linear system of equations Mx = s, for M = M2.

34

(a) Randomly (b) k-Means (c) Spectral Clustering

(d) Randomly (e) k-Means (f) Spectral Clustering

(g) Randomly (h) k-Means (i) Spectral Clustering

Figure 3.5: Node Clustering Results for the graph that is created when GBP is used to solve a
linear system of equations Mx = s, for M = M3.

35

(a) Randomly (b) k-Means (c) Spectral Clustering

(d) Randomly (e) k-Means (f) Spectral Clustering

(g) Randomly (h) k-Means (i) Spectral Clustering

Figure 3.6: Node Clustering Results for the graph that is created when GBP is used to solve a
linear system of equations Mx = s, for M = M4.

36

nodes of different clusters, stay unclustered. Those unclustered edges are the ones that connect the
clusters between them and send the required messages along the WSN terminals.

In Figures 3.3, 3.4, 3.5 and 3.6 we can see the results of clustering the nodes randomly and with
k-means and spectral clustering, for various values of k.

To compare the clustering results, we have to define what we consider as “better”. This com-
parison is going to become more clear in Chapter 4, but for now, we are going to consider better
the clustering which has less edges connecting different clusters. Hence, we can see that k-means
and spectral clustering perform better than random clustering. Also, spectral clustering performs
slightly better than k-means.

3.4 Autonomous Clustering

In this section we will consider the problem of clustering in autonomous (ad-hoc) networks and we
will present an application of asynchronous graph updates, as proposed in [24]. For this purpose
we will combine the well-known spectral clustering [28], with the node clustering method and the
polynomial filtering proposed in the following.

3.4.1 Polynomial Filtering

Given a Laplacian matrix L and an initial vector x(0), we have the following synchronous affine
updates:

x(l) = Lx(l−1). (3.23)

Vectors x(l) ∈ RN , where N is the number of nodes in the graph, have an element for each node.
We will use nbr(i) to denote the neighbors of the ith node. Since L is a local operator, i.e. Li,j = 0
when the nodes i and j are not neighbors, a single update can be performed by message passing
only between neighboring nodes [24]. That is,

x
(l)
k =

∑
j∈nbr(k)

Lk,jx
(l−1)
j , ∀k. (3.24)

Equation 3.23 has a non-zero fixed point if and only if matrix L has an eigenvalue equal to 1, which
is also semisimple and the rest eigenvalues have a magnitude strictly less than 1 [20]. These affine
update can converge only to the eigenspace of the unitary eigenvalues of the Laplacian matrix.
For the reason that algebraic connectivity λ2 of a graph is not equal to 1 in nearly every practical
example, the affine updates of Equation 3.23 are not directly applicable to our problem.

In order to approach this problem, we will use the rth order polynomial of matrix L,

h(L) =
r∑

n=0

hnL
n, (3.25)

37

for some set of coefficients hn’s. Now, we can consider the affine updates on h(L), as follows:

x(l) = h(L)x(l−1). (3.26)

The corresponding asynchronous updates are:

x(l) = Ψ(l)
(
h(L)x(l−1)

)
+
(
I−Ψ(l)

)
x(l−1) =

(
Ψ(l)h(L) + I−Ψ(l)

)
x(l−1), (3.27)

with Ψ, as defined in Section 2.3.

Polynomials of a matrix are very useful because of the following two reasons. Firstly, the
computation of (h(L)x)i requires the i

th node to retrieve information only from its r-hop neighbors,
so if the polynomial is of low order, i.e. r has a small value, then h(L)x can be computed locally.
Secondly, L and h(L) have the same eigenvectors, that is,

h(L) = Vh(Λ)VH. (3.28)

Therefore, a carefully constructed polynomial can manipulate the eigenvalues of L in such a way
that asynchronous iterations on h(L) can be guaranteed to converge to a desired eigenspace of L
even though iterations on L itself fail to do so.

Theorem 3.2. [24] Let λi denote the eigenvalues of a given matrix L. For a specific target
eigenvalue λj , assume that a polynomial h(·) satisfies the following conditions:

h(λj) = 1 and |h(λi)| < 1 ∀λi ̸= λj . (3.29)

Then, asynchronous updates on h(L) as in Equation 3.27 converge to an eigenvector of L
with eigenvalue λj for any amount of asynchronicity 0 ≤ δT ≤ 1a.

aδT = E[T (N−T)]
E[T (N−1)]

=
N−µT−σ2

T /µT

N−1
, where µT and σ2

T denote the mean and the variance of the random
quantity T , which is the number of nodes to be updated at each iteration. δT = 0 if and only if all the nodes
are updated in each iteration, and δT = 1 if and only if exactly one node is updated in each iteration.

Theorem 3.2 tells that an arbitrary eigenvector of the graph can be computed in a decentralized
manner, if a low order polynomial satisfying Equation 3.29 is constructed.

3.4.1.1 The Optimal Polynomial

In this section we consider the construction of the polynomial that has the largest gap between
the unit eigenvalue and the rest [24]. In order to represent the condition 3.29 in the matrix-vector
form we will use a vector of length r + 1 to denote the polynomial in Equation 3.25, that is,
h = [h0 · · ·hr]⊤. Also, let Φ be a Vandermonde matrix constructed with the eigenvalues of L in
the following form:

Φ =


1 λ1 λ21 · · · λr1
1 λ2 λ22 · · · λr2
...

...
...

. . .
...

1 λN λ2N · · · λrN

 ∈ RN×(r+1). (3.30)

38

In the case of repeated eigenvalues, the repeated rows of the matrix Φ are removed. Let ϕj denote
the row of Φ corresponding to the target eigenvalue λj , and let Φ̄j denote the remaining rows of
Φ.

In order to find the optimal rth order polynomial satisfying conditions in Theorem 3.2, we
consider the following optimization problem:

max
c, h

c

s.t. ϕjh = 1,

|Φ̄jh| ≤ (1− c)1

(3.31)

where c is a scalar representing the gap between the unit eigenvalue and the rest.

First of all notice that the constraints in the optimization problem 3.31 are linear due to the
fact that Φ and h are real valued. The objective function is linear as well. Hence, it is a linear
programming problem that can be solved efficiently given the eigenvalue matrix Φ.

The constraints of the problem enforce the polynomial to satisfy the desired condition in The-
orem 3.2, while the objective function maximizes the distance between the unit and non-unit
eigenvalues of h(L). Therefore, the formulation in the problem searches for the polynomial that
yields the fastest rate of convergence among all polynomials of order r satisfying its constraints.
Hence, we will refer to the solution of the optimization problem 3.31 as the optimal polynomial.

3.4.1.2 Spectrum-Blind Construction of Suboptimal Polynomials

The locality of the updates needs only to be compromised marginally [24], as the following theorem
shows that r = 2 is sufficient to satisfy the condition in 3.29.

Theorem 3.3. [24] Assume that the matrix L has real eigenvalues λi ∈ R. For a given target
eigenvalue λj , the condition in 3.29 is satisfied by the following second order polynomial:

h(λ) = 1− 2ϵ(λ− λj)
2/s2j , (3.32)

for any ϵ in 0 < ϵ < 1 and sj satisfying the following:

sj ≥ max
1≤i≤N

|λi − λj |. (3.33)

Notice that in Equation 3.32 there is a free parameter, ϵ, which can be tuned to increase the
gap between the eigenvalues. Thus, the polynomial given in Equation 3.32 is not guaranteed to
be optimal in general. It merely shows that a second order polynomial satisfying condition 3.29
always exists, which also implies the feasibility of 3.31 in the case of r = 2, or larger.

Although the solution of 3.31 provides the optimal polynomial, it requires the knowledge of
all the eigenvalues of L. Such information is not available and difficult to obtain in general. By
compromising the optimality, we can construct second order polynomials satisfying 3.29 without
the knowledge of all eigenvalues of L, except the target eigenvalue λj .

39

First of all notice that a value for the coefficient sj can be found using only the minimum and
the maximum eigenvalues of the operator,

sj = max{λmax − λj , λj − λmin} (3.34)

In fact sj can be satisfied by using an appropriate upper bound for λmax and lower bound for
λmin. We can use the largest degree dmax of the graph, to select sj for the following operators.

• The Laplacian: the eigenvalues are bounded as 0 ≤ λi ≤ 2dmax. Hence,

sj = dmax + |λj + dmax|. (3.35)

• The Adjacency: the eigenvalues are bounded as −dmax ≤ λi ≤ dmax. Hence,

sj = dmax + |λj |. (3.36)

• The Normalized Laplacian: the eigenvalues are bounded as 0 ≤ λi ≤ 2. Hence,

sj = 1 + |λj − 1|. (3.37)

Thus, the polynomial in Equation 3.32 can be constructed using only the target eigenvalue λj .

3.4.2 Implementation

As explained in Section 3.2, given a graph, the second smallest eigenvalue of its graph Laplacian,
λ2, is known as the algebraic connectivity of the graph [30]. Roughly speaking, graphs with larger
λ2 tend to be more “connected” than others. Furthermore, the corresponding eigenvector v2, also
known as the Fiedler vector, can be utilized to cluster the graph into two partitions. The vector y
computed as

y = sign(v2), (3.38)

indicates the corresponding clustering of nodes.

In order to compute the eigenvector v2 of the Laplacian, we utilize the idea of asynchronous
polynomial filtering. For this purpose λ2 will be selected as the target eigenvalue. As a result,
nodes will be able to identify the cluster they belong to in an autonomous manner. In this work
we make the standing assumption that the algebraic connectivity λ2 is known. Such an assumption
is plausible for static networks since it can be inferred in a distributed way by several algorithms
[31, 32, 33, 34].

The implementation that we use is not the same as the communication protocol that is described
in Algorithm 1 in [24]. Our implementation is based on the asynchronous scheduling that is
described in Section 3 and in [12, 13, 19], in the contrary that here x represents node and not edge
values.

At first, we randomly cluster the nodes of the graph to the WSN terminals. Then, we assign
probabilities of update for each node based on the terminal they belong to and its probability of
being in energy outage. Finally, we perform affine updates utilizing synchronous and asynchronous
scheduling, as in Equations 3.26 and 3.27, respectively.

40

3.4.3 Results

For the matrices M in Appendix A, we run the autonomous clustering for 4 different schedulings.

(i) For p1 = p2 = 1, i.e. synchronous scheduling.

(ii) For p1 = 0.4958, p2 = 0.8295, where p1 and p2 are the probabilities of terminals 1 and 2,
respectively, not being in energy outage.

(iii) For p1 = p2 = 0.5.

(iv) For δT = 1, i.e. only one element of x is being updated in each iteration.

Experimental results of convergence rate of the algorithm can be seen in Figure 3.7 and the clustered
graphs in Figure 3.8

10
0

10
2

10
4

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) M = M1

10
0

10
2

10
4

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) M = M2

10
0

10
2

10
4

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c) M = M3

10
0

10
2

10
4

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(d) M = M4

Figure 3.7: Convergence rate of Autonomous Clustering for the graph that is created when GBP
is used to solve a linear system of equations Mx = s, which are obtained by averaging over 10
independent experiments. In the figures we can see the average fraction of incorrect signs of the
computed vector from the Fiedler vector.

41

(a) M = M1 (b) M = M2

(c) M = M3 (d) M = M4

Figure 3.8: Clustering Results of Autonomous Clustering.

42

Chapter 4

Simulations

Following Section 2.2.2, our task is to solve the linear system of equations

Mx = s. (4.1)

In all the experiments we assume that s = 1 (all one vector) and M is one of the matrices that
are provided in Appendix A. As described in the aforementioned Section, it is possible to find the
solution of 4.1,

x =
(
M⊤M

)−1
M⊤s, (4.2)

inferring the expected value of the distribution

p(x) ∝ exp

{
−1

2
x⊤M⊤Mx+ s⊤Mx

}
, (4.3)

using Gaussian Belief Propagation.

4.1 Minimization of Convergence Time

4.1.1 Minimization using Clustering

In this section, we present experimental results of the convergence rate of Gaussian Belief Propa-
gation when it is utilized to solve linear systems of equations. We want to compare its performance
when the produced graph that GBP uses, is clustered using random clustering, k-means, spectral
clustering and autonomous clustering.

We present experimental results for GBP solving a linear system of equations in an asynchronous
manner. In particular, we plot the estimation of the per iteration expected value ∥E[e(l)]∥2 using
20 independent experiments. At iteration (l), the error e is defined as

e(l) ≜ ϵ(l) − x̂, (4.4)

43

where ϵ(l) is the vector that is constructed if we stack all belief means, according to Equation 2.27
and x̂ ≜ (M⊤M)−1M⊤s, the least squares solution of the system.

More specifically, Figures 4.1, 4.2, 4.3 and 4.4 present results for random clustering, k-means,
spectral clustering and autonomous clustering when we have 2, 3 or 4 WSN terminals. In these
figures all the terminals have equal probabilities of update (p = 0.5), in order to have comparable
results.

We see that clustering the nodes of the PGMs with different clustering methods can heavily alter
the behavior of the algorithm. For instance, notice in Figures 4.1, 4.2, 4.3 and 4.4 that k-means,
spectral and autonomous clustering experiments converge much faster than random clustering.
Especially, in most cases, spectral clustering creates a mapping with which GBP has a much faster
convergence. This is something that needs further theoretical examination.

44

0 200 400 600 800 1000

10
-10

10
-5

10
0

(a)
Random ρ(Ā) = 0.922645, ρ(S) = 0.954795
k-Means ρ(Ā) = 0.916226, ρ(S) = 0.933944
Spectral ρ(Ā) = 0.916149, ρ(S) = 0.933944

Autonomous ρ(Ā) = 0.916317, ρ(S) = 0.933944

0 200 400 600 800 1000

10
-10

10
-5

10
0

(b)
Random ρ(Ā) = 0.954052, ρ(S) = 0.979500
k-Means ρ(Ā) = 0.933352, ρ(S) = 0.949142
Spectral ρ(Ā) = 0.930477, ρ(S) = 0.941901

0 200 400 600 800 1000

10
-10

10
-5

10
0

(c)
Random ρ(Ā) = 0.961769, ρ(S) = 0.982364
k-Means ρ(Ā) = 0.953974, ρ(S) = 0.972436
Spectral ρ(Ā) = 0.948451, ρ(S) = 0.966137

Figure 4.1: M1

Convergence of asynchronous Gaussian Belief Propagation for different clustering methods and
different number of clusters. In particular, we present results for WSNs with terminals which have

probabilities of update equal to 0.5.

45

0 200 400 600 800 1000

10
-10

10
-5

10
0

(a)
Random ρ(Ā) = 0.934081, ρ(S) = 0.914558
k-Means ρ(Ā) = 0.927676, ρ(S) = 0.900167
Spectral ρ(Ā) = 0.921910, ρ(S) = 0.888018

Autonomous ρ(Ā) = 0.921893, ρ(S) = 0.888011

0 200 400 600 800 1000

10
-10

10
-5

10
0

(b)
Random ρ(Ā) = 0.951490, ρ(S) = 0.936170
k-Means ρ(Ā) = 0.933742, ρ(S) = 0.905547
Spectral ρ(Ā) = 0.933177, ρ(S) = 0.903274

0 200 400 600 800 1000

10
-10

10
-5

10
0

(c)
Random ρ(Ā) = 0.950980, ρ(S) = 0.937111
k-Means ρ(Ā) = 0.947370, ρ(S) = 0.925713
Spectral ρ(Ā) = 0.933096, ρ(S) = 0.903181

Figure 4.2: M2

Convergence of asynchronous Gaussian Belief Propagation for different clustering methods and
different number of clusters. In particular, we present results for WSNs with terminals which have

probabilities of update equal to 0.5.

46

0 200 400 600 800 1000

10
-10

10
-5

10
0

(a)
Random ρ(Ā) = 0.970077, ρ(S) = 0.943039
k-Means ρ(Ā) = 0.967019, ρ(S) = 0.938158
Spectral ρ(Ā) = 0.958183, ρ(S) = 0.920543

Autonomous ρ(Ā) = 0.966258, ρ(S) = 0.936962

0 200 400 600 800 1000

10
-10

10
-5

10
0

(b)
Random ρ(Ā) = 0.980217, ρ(S) = 0.962883
k-Means ρ(Ā) = 0.972761, ρ(S) = 0.948190
Spectral ρ(Ā) = 0.969092, ρ(S) = 0.941263

0 200 400 600 800 1000

10
-10

10
-5

10
0

(c)
Random ρ(Ā) = 0.984537, ρ(S) = 0.971168
k-Means ρ(Ā) = 0.977670, ρ(S) = 0.957816
Spectral ρ(Ā) = 0.976658, ρ(S) = 0.955791

Figure 4.3: M3

Convergence of asynchronous Gaussian Belief Propagation for different clustering methods and
different number of clusters. In particular, we present results for WSNs with terminals which have

probabilities of update equal to 0.5.

47

0 200 400 600 800 1000

10
-10

10
-5

10
0

(a)
Random ρ(Ā) = 0.954283, ρ(S) = 0.914139
k-Means ρ(Ā) = 0.939044, ρ(S) = 0.885519
Spectral ρ(Ā) = 0.939044, ρ(S) = 0.885519

Autonomous ρ(Ā) = 0.939044, ρ(S) = 0.885519

0 200 400 600 800 1000

10
-10

10
-5

10
0

(b)
Random ρ(Ā) = 0.955807, ρ(S) = 0.917001
k-Means ρ(Ā) = 0.945140, ρ(S) = 0.896967
Spectral ρ(Ā) = 0.939044, ρ(S) = 0.885519

0 200 400 600 800 1000

10
-10

10
-5

10
0

(c)
Random ρ(Ā) = 0.963426, ρ(S) = 0.931312
k-Means ρ(Ā) = 0.957331, ρ(S) = 0.919864
Spectral ρ(Ā) = 0.939044, ρ(S) = 0.885519

Figure 4.4: M4

Convergence of asynchronous Gaussian Belief Propagation for different clustering methods and
different number of clusters. In particular, we present results for WSNs with terminals which have

probabilities of update equal to 0.5.

48

4.1.2 Minimization using Spectral Radius

Intuitively, there should be a link between the spectral radius of the iteration matrices A and Ā
(as defined in Section 2.3), for the synchronous and asynchronous cases, respectively, and the rate
of convergence. In the following, we present proofs for a special case of matrices, those with all
their eigenvectors independent (which is something that holds for most of the matrices). Generally,
for various matrices, we observe the same thing experimentally, which is something that holds for
the matrix S, too. Matrices A, Ā and S are defined in Section 2.3.

4.1.2.1 Theory

Theorem 4.1. (Synchronous Case)
Suppose that the n × n matrix A has n linearly independent eigenvectors, then the Syn-
chronous Affine Updates converge faster to the fixed point, for smaller spectral radius, ρ(A).

Proof. See Appendix B.5. ■

Theorem 4.2. (Asynchronous Case)
Suppose that the n × n matrix A has n linearly independent eigenvectors, then the Asyn-
chronous Affine Updates converge faster to the fixed point, for smaller spectral radius, ρ(Ā).

Proof. See Appendix B.6. ■

In Theorem 4.2 the convergence of the asynchronous case considers the average behavior of
the affine updates, as the norm of the expected value of the error is the quantity that is being ob-
served. The concept of the different notion in convergence, between synchronous and asynchronous
scheduling, is further described in Section 2.3.

4.1.2.2 Numerical Results

The above theoretical results can be shown experimentally, too. For synchronous scheduling, we
can see in Figure 4.5, that the affine updates,

x(l) = Ax(l−1) + b, (4.5)

converge faster to the fixed point, for smaller spectral radius, ρ(A), confirming Theorem 4.1. As
in the synchronous case, in Figure 4.6 we can also see that in the asynchronous case the affine
updates,

x(l) =
(
Ψ(l)A+ I−Ψ(l)

)
x(l−1) +Ψ(l)b, (4.6)

49

where E
[
Ψ(l)

]
≡ P, ∀l, converge faster to the fixed point, for smaller spectral radius, ρ(Ā),

confirming Theorem 4.2. Furthermore, we can see that the same holds for ρ(S), something that we
have not proven theoretically yet.

0 50 100 150 200 250 300 350
10

-15

10
-10

10
-5

10
0

Figure 4.5: Convergence rate of the synchronous affine fixed point problem for different values of
ρ(A), for random matrices A.

0 100 200 300 400 500 600 700
10

-15

10
-10

10
-5

10
0

(a) P = 0.5 · I

0 200 400 600 800 1000 1200 1400
10

-15

10
-10

10
-5

10
0

(b) For P = diag([0.6620, 0.1549, 0.8736, 0.2920])

Figure 4.6: Mean 100 experiments of the convergence rate of asynchronous affine fixed point problem
for different values of ρ(Ā) and for different values of ρ(S), for two different matrices P.

50

4.1.2.3 A Solution to the Problem

The problem we want to solve is that of minimizing the convergence time of the affine updates of
asynchronous scheduling. As we have seen, to do that we can minimize the spectral radius, ρ(Ā).
Thus, we want to find the proper combination of probabilities of update, for each cluster of nodes,
such that we get the minimal ρ(Ā).

We can approximate the solution of this problem experimentally. To do this, we get possible
combinations of probabilities of update, based on the number of clusters we have. After that
we compute ρ(Ā), and find the combination of probabilities that minimizes it. In Figures 4.9,
4.10, we can see the values of ρ(Ā) and ρ(S), for the matrix A that is generated using matrices
M1, M2, M3 and M4, as they are defined in Appendix A, when GBP is used to solve a linear
system of equations. All possible combinations of probabilities of update are examined, using the
values in vector [0.1 : 0.1 : 1], for different values of k. Also, in Figures 4.7, 4.8, we can see similar
results but for terminals that have equal probabilities, to get a clearer result. As we can see the
minima of ρ(Ā) and ρ(S) are different in some cases, but mostly close to each other.

In all of the experiments performed, first we clustered the generated graph using spectral clus-
tering. The clustering is required to compute the probabilities of update for each edge of the graph,
which are used in matrix P.

0.2 0.4 0.6 0.8 1

0.85

0.9

0.95

1

1.05

(a1) k = 2

0.2 0.4 0.6 0.8 1

0.85

0.9

0.95

1

1.05

(a2) k = 3

0.2 0.4 0.6 0.8 1

0.85

0.9

0.95

1

1.05

(a3) k = 4

(a) M1

Figure 4.7: Experimental computation of ρ(Ā) and ρ(S), for the matrix A that is generated using
matrix M1. Here we present the results only for clusters with equal probabilities of update, using
the values in vector [0.1 : 0.1 : 1], for different values of k.

51

0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

(a1) k = 2

0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

(a2) k = 3

0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

(a3) k = 4

(a) M2

0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

1.05

(b1) k = 2

0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

1.05

(b2) k = 3

0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

1.05

(b3) k = 4

(b) M3

0.2 0.4 0.6 0.8 1

0.75

0.8

0.85

0.9

0.95

1

1.05

(c1) k = 2

0.2 0.4 0.6 0.8 1

0.75

0.8

0.85

0.9

0.95

1

1.05

(c2) k = 3

0.2 0.4 0.6 0.8 1

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

(c3) k = 4

(c) M4

Figure 4.8: Experimental computation of ρ(Ā) and ρ(S), for the matrix A that is generated using
matrices M2, M3 and M4. Here we present the results only for clusters with equal probabilities of
update, using the values in vector [0.1 : 0.1 : 1], for different values of k.

52

0.1

0.1

0.3

0.1

0.5

0.1

0.7

0.1

0.9

0.1

0.1

0.2

0.3

0.2

0.5

0.2

0.7

0.2

0.9

0.2

0.1

0.3

0.3

0.3

0.5

0.3

0.7

0.3

0.9

0.3

0.1

0.4

0.3

0.4

0.5

0.4

0.7

0.4

0.9

0.4

0.1

0.5

0.3

0.5

0.5

0.5

0.7

0.5

0.9

0.5

0.1

0.6

0.3

0.6

0.5

0.6

0.7

0.6

0.9

0.6

0.1

0.7

0.3

0.7

0.5

0.7

0.7

0.7

0.9

0.7

0.1

0.8

0.3

0.8

0.5

0.8

0.7

0.8

0.9

0.8

0.1

0.9

0.3

0.9

0.5

0.9

0.7

0.9

0.9

0.9

0.1

1.0

0.3

1.0

0.5

1.0

0.7

1.0

0.9

1.0

0.8

0.85

0.9

0.95

1

1.05

(a) k = 2

0.1

0.1

0.1

0.1

0.3

0.1

0.1

0.5

0.1

0.1

0.7

0.1

0.1

0.9

0.1

0.1

0.1

0.2

0.1

0.3

0.2

0.1

0.5

0.2

0.1

0.7

0.2

0.1

0.9

0.2

0.1

0.1

0.3

0.1

0.3

0.3

0.1

0.5

0.3

0.1

0.7

0.3

0.1

0.9

0.3

0.1

0.1

0.4

0.1

0.3

0.4

0.1

0.5

0.4

0.1

0.7

0.4

0.1

0.9

0.4

0.1

0.1

0.5

0.1

0.3

0.5

0.1

0.5

0.5

0.1

0.7

0.5

0.1

0.9

0.5

0.1

0.1

0.6

0.1

0.3

0.6

0.1

0.5

0.6

0.1

0.7

0.6

0.1

0.9

0.6

0.1

0.1

0.7

0.1

0.3

0.7

0.1

0.5

0.7

0.1

0.7

0.7

0.1

0.9

0.7

0.1

0.1

0.8

0.1

0.3

0.8

0.1

0.5

0.8

0.1

0.7

0.8

0.1

0.9

0.8

0.1

0.1

0.9

0.1

0.3

0.9

0.1

0.5

0.9

0.1

0.7

0.9

0.1

0.9

0.9

0.1

0.1

1.0

0.1

0.3

1.0

0.1

0.5

1.0

0.1

0.7

1.0

0.1

0.9

1.0

0.8

0.85

0.9

0.95

1

1.05

(b) k = 3

0.1

0.1

0.1

0.1

0.4

0.1

0.4

0.1

0.7

0.1

0.7

0.1

1.0

0.1

1.0

0.1

0.2

0.2

0.2

0.2

0.6

0.2

0.6

0.2

0.8

0.2

0.8

0.2

0.1

0.4

0.1

0.4

0.4

0.4

0.4

0.4

0.7

0.4

0.7

0.4

1.0

0.4

1.0

0.4

0.2

0.6

0.2

0.6

0.6

0.6

0.6

0.6

0.8

0.6

0.8

0.6

0.1

0.7

0.1

0.7

0.4

0.7

0.4

0.7

0.7

0.7

0.7

0.7

1.0

0.7

1.0

0.7

0.2

0.8

0.2

0.8

0.6

0.8

0.6

0.8

0.8

0.8

0.8

0.8

0.1

1.0

0.1

1.0

0.4

1.0

0.4

1.0

0.7

1.0

0.7

1.0

1.0

1.0

1.0

1.0

0.8

0.85

0.9

0.95

1

1.05

(c) k = 4

Figure 4.9: Experimental computation of ρ(Ā) and ρ(S), for the matrix A that is generated using
the matrix M1 and possible combinations of probabilities of update. All possible combinations of
probabilities of update are examined, using the values in vector [0.1 : 0.1 : 1], for different values
of k.

53

0.1

0.1

0.3

0.1

0.5

0.1

0.7

0.1

0.9

0.1

0.1

0.2

0.3

0.2

0.5

0.2

0.7

0.2

0.9

0.2

0.1

0.3

0.3

0.3

0.5

0.3

0.7

0.3

0.9

0.3

0.1

0.4

0.3

0.4

0.5

0.4

0.7

0.4

0.9

0.4

0.1

0.5

0.3

0.5

0.5

0.5

0.7

0.5

0.9

0.5

0.1

0.6

0.3

0.6

0.5

0.6

0.7

0.6

0.9

0.6

0.1

0.7

0.3

0.7

0.5

0.7

0.7

0.7

0.9

0.7

0.1

0.8

0.3

0.8

0.5

0.8

0.7

0.8

0.9

0.8

0.1

0.9

0.3

0.9

0.5

0.9

0.7

0.9

0.9

0.9

0.1

1.0

0.3

1.0

0.5

1.0

0.7

1.0

0.9

1.0

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

(a) M2

0.1

0.1

0.3

0.1

0.5

0.1

0.7

0.1

0.9

0.1

0.1

0.2

0.3

0.2

0.5

0.2

0.7

0.2

0.9

0.2

0.1

0.3

0.3

0.3

0.5

0.3

0.7

0.3

0.9

0.3

0.1

0.4

0.3

0.4

0.5

0.4

0.7

0.4

0.9

0.4

0.1

0.5

0.3

0.5

0.5

0.5

0.7

0.5

0.9

0.5

0.1

0.6

0.3

0.6

0.5

0.6

0.7

0.6

0.9

0.6

0.1

0.7

0.3

0.7

0.5

0.7

0.7

0.7

0.9

0.7

0.1

0.8

0.3

0.8

0.5

0.8

0.7

0.8

0.9

0.8

0.1

0.9

0.3

0.9

0.5

0.9

0.7

0.9

0.9

0.9

0.1

1.0

0.3

1.0

0.5

1.0

0.7

1.0

0.9

1.0

0.8

0.85

0.9

0.95

1

(b) M3

0.1

0.1

0.3

0.1

0.5

0.1

0.7

0.1

0.9

0.1

0.1

0.2

0.3

0.2

0.5

0.2

0.7

0.2

0.9

0.2

0.1

0.3

0.3

0.3

0.5

0.3

0.7

0.3

0.9

0.3

0.1

0.4

0.3

0.4

0.5

0.4

0.7

0.4

0.9

0.4

0.1

0.5

0.3

0.5

0.5

0.5

0.7

0.5

0.9

0.5

0.1

0.6

0.3

0.6

0.5

0.6

0.7

0.6

0.9

0.6

0.1

0.7

0.3

0.7

0.5

0.7

0.7

0.7

0.9

0.7

0.1

0.8

0.3

0.8

0.5

0.8

0.7

0.8

0.9

0.8

0.1

0.9

0.3

0.9

0.5

0.9

0.7

0.9

0.9

0.9

0.1

1.0

0.3

1.0

0.5

1.0

0.7

1.0

0.9

1.0

0.75

0.8

0.85

0.9

0.95

1

(c) M4

Figure 4.10: Experimental computation of ρ(Ā) and ρ(S), for the matrix A that is generated using
matrice M2, M3 and M4. Here all possible combinations of probabilities of update are examined,
using the values in vector [0.1 : 0.1 : 1], for k = 2 clusters.

54

4.1.2.4 Simulations with Gaussian Belief Propagation

In this section, we present for one more time experimental results of the convergence rate of Gaussian
Belief Propagation when it is utilized to solve linear systems of equations. We want to compare
its performance when the produced graph that GBP uses, is clustered using random clustering,
k-means, spectral clustering and autonomous clustering.

We present experimental results for GBP solving a linear system of equations in an asynchronous
manner. In particular, we plot the estimation of the per iteration expected value ∥E[e(l)]∥2 using
20 independent experiments, with the error e as defined in Equation 4.4.

In Figures 4.11, 4.12, 4.13 and 4.14 we present results for random clustering, k-means, spectral
clustering and autonomous clustering when we have 2, 3 or 4 WSN terminals. We used as prob-
abilities of update of each WSN terminal, the experimental values of the optimal probabilities as
they can be seen in Figures 4.7 and 4.8, in the previous section. The values that are used in our
experiments are presented in Table 4.1.

k = 2 k = 3 k = 4

M1 0.7 0.7 0.8

M2 0.8 0.8 0.8

M3 0.9 0.9 0.9

M4 1 1 1

Table 4.1: Optimal probabilities of update, as obtained from experimental results in Figures 4.7
and 4.8.

We can see in Figures 4.11, 4.12, 4.13 and 4.14 that for the optimal probabilities of update, we
have faster convergence than we had before with p = 0.5 for all terminals. The amazing result here
is that for those probabilities we have about the same convergence rate even in the case of random
clustering! Again, this is something that needs further theoretical examination.

55

0 200 400 600 800 1000

10
-10

10
-5

10
0

(a)
Random ρ(Ā) = 0.866996, ρ(S) = 0.933406
k-Means ρ(Ā) = 0.854809, ρ(S) = 0.935944
Spectral ρ(Ā) = 0.854809, ρ(S) = 0.935944

Autonomous ρ(Ā) = 0.854809, ρ(S) = 0.935944

0 200 400 600 800 1000

10
-10

10
-5

10
0

(b)
Random ρ(Ā) = 0.870251, ρ(S) = 0.931730
k-Means ρ(Ā) = 0.868430, ρ(S) = 0.934825
Spectral ρ(Ā) = 0.867740, ρ(S) = 0.936418

0 200 400 600 800 1000

10
-10

10
-5

10
0

(c)
Random ρ(Ā) = 0.883246, ρ(S) = 0.932321
k-Means ρ(Ā) = 0.878339, ρ(S) = 0.932046
Spectral ρ(Ā) = 0.861155, ρ(S) = 0.924399

Figure 4.11: M1

Convergence of asynchronous Gaussian Belief Propagation for different clustering methods and
different number of clusters. In particular, we present results for WSNs with terminals which have
probabilities of update equal to the optimal probabilities that can be found in Figures 4.7 and 4.8.

56

0 200 400 600 800 1000

10
-10

10
-5

10
0

(a)
Random ρ(Ā) = 0.842130, ρ(S) = 0.888642
k-Means ρ(Ā) = 0.838606, ρ(S) = 0.903156
Spectral ρ(Ā) = 0.836695, ρ(S) = 0.926447

Autonomous ρ(Ā) = 0.835668, ρ(S) = 0.926408

0 200 400 600 800 1000

10
-10

10
-5

10
0

(b)
Random ρ(Ā) = 0.858757, ρ(S) = 0.873433
k-Means ρ(Ā) = 0.845201, ρ(S) = 0.893528
Spectral ρ(Ā) = 0.844888, ρ(S) = 0.897441

0 200 400 600 800 1000

10
-10

10
-5

10
0

(c)
Random ρ(Ā) = 0.856639, ρ(S) = 0.873246
k-Means ρ(Ā) = 0.853057, ρ(S) = 0.883966
Spectral ρ(Ā) = 0.843889, ρ(S) = 0.897730

Figure 4.12: M2

Convergence of asynchronous Gaussian Belief Propagation for different clustering methods and
different number of clusters. In particular, we present results for WSNs with terminals which have
probabilities of update equal to the optimal probabilities that can be found in Figures 4.7 and 4.8.

57

0 200 400 600 800 1000

10
-10

10
-5

10
0

(a)
Random ρ(Ā) = 0.914313, ρ(S) = 0.836896
k-Means ρ(Ā) = 0.912199, ρ(S) = 0.832988
Spectral ρ(Ā) = 0.908991, ρ(S) = 0.826900

Autonomous ρ(Ā) = 0.911839, ρ(S) = 0.832308

0 200 400 600 800 1000

10
-10

10
-5

10
0

(b)
Random ρ(Ā) = 0.917722, ρ(S) = 0.843326
k-Means ρ(Ā) = 0.914735, ρ(S) = 0.837693
Spectral ρ(Ā) = 0.913003, ρ(S) = 0.834404

0 200 400 600 800 1000

10
-10

10
-5

10
0

(c)
Random ρ(Ā) = 0.920076, ρ(S) = 0.847838
k-Means ρ(Ā) = 0.916755, ρ(S) = 0.841499
Spectral ρ(Ā) = 0.917227, ρ(S) = 0.842327

Figure 4.13: M3

Convergence of asynchronous Gaussian Belief Propagation for different clustering methods and
different number of clusters. In particular, we present results for WSNs with terminals which have
probabilities of update equal to the optimal probabilities that can be found in Figures 4.7 and 4.8.

58

0 200 400 600 800 1000

10
-10

10
-5

10
0

(a)
Random ρ(Ā) = 0.878088, ρ(S) = 0.771039
k-Means ρ(Ā) = 0.878088, ρ(S) = 0.771039
Spectral ρ(Ā) = 0.878088, ρ(S) = 0.771039

Autonomous ρ(Ā) = 0.878088, ρ(S) = 0.771039

0 200 400 600 800 1000

10
-10

10
-5

10
0

(b)
Random ρ(Ā) = 0.878088, ρ(S) = 0.771039
k-Means ρ(Ā) = 0.878088, ρ(S) = 0.771039
Spectral ρ(Ā) = 0.878088, ρ(S) = 0.771039

0 200 400 600 800 1000

10
-10

10
-5

10
0

(c)
Random ρ(Ā) = 0.878088, ρ(S) = 0.771039
k-Means ρ(Ā) = 0.878088, ρ(S) = 0.771039
Spectral ρ(Ā) = 0.878088, ρ(S) = 0.771039

Figure 4.14: M4

Convergence of asynchronous Gaussian Belief Propagation for different clustering methods and
different number of clusters. In particular, we present results for WSNs with terminals which have
probabilities of update equal to the optimal probabilities that can be found in Figures 4.7 and 4.8.

59

4.2 Minimization of Energy Consumption

We can define the following optimization problem

min Energy Consumption

s.t. ρ(Ā) < 1 and ρ(S) < 1
(4.7)

Each WSN terminal consists of a Silab’s Thunderboard Sense 2 (EFR32MG12 IC) embedded
module, and according to previous work of our group [35], the cost of each operation (sum/product)
is much smaller than the communication cost:

• Operation Cost ≈ 1nJoule,

• Communication Cost ≈ 6.5mJoule.

The number of operations that are being done are almost the same for every run of the algorithm
(almost, because they depend on the random quantity Ψ) and independent of the clustering. On
the other hand, the number of messages that are being sent between WSN terminals are different
for each clustering and depend on the number of edges that connect the WSN terminals. Thus, we
should minimize the Communication Energy Consumption, i.e. the number of edges that connect
the WSN terminals, which is minimized by minimizing the RatioCut.

Hence, problem 4.7 is equivalent to

min Communication Energy Consumption

s.t. ρ(Ā) < 1 and ρ(S) < 1
, (4.8)

which is equivalent to
min Connecting Edges

s.t. ρ(Ā) < 1 and ρ(S) < 1
, (4.9)

which is equivalent to
min RatioCut

s.t. ρ(Ā) < 1 and ρ(S) < 1
. (4.10)

As we saw in Section 3.2, the minimization of RatioCut is a problem that can be solved using
spectral clustering. In our problem we have also the constraint of ρ(Ā) < 1 and ρ(S) < 1. Thus,
to use spectral clustering, we can relax our problem by removing the constraints. Then, we have
two possible cases for the probabilities of update of each WSN terminal.

• We can have fixed probabilities for each terminal. In that case, after the clustering is per-
formed, we can just check if the constraints ρ(Ā) < 1 and ρ(S) < 1, are fulfilled.

• We might not have fixed probabilities for each terminal. Then we have to set their values.
In that case, after the clustering is performed, we can select a set of probabilities which suits
our constraints, as we are going to see in Section 4.1.

60

We want to see the total energy that is consumed by GBP in solving linear systems of equations,
until we reach a certain threshold in the error between the least squares solution of the system
and the computed solution. We run 20 experiments, with equal probabilities of update for all
terminals (p = 0.5), to make it comparable for the different number of clusters, k = 2, 3, 4, and
threshold = 10−5. In Figure 4.15 we can see the mean value of energy consumption for random
clustering, k-means, spectral clustering and autonomous clustering.

2 3 4

0

10

20

30

40

(a) M = M1

2 3 4

0

10

20

30

40

50

60

70

(b) M = M2

2 3 4

0

50

100

150

(c) M = M3

2 3 4

0

10

20

30

40

50

(d) M = M4

Figure 4.15: Experimental computation of energy that is consumed by GBP in solving a linear
system of equations Mx = s. Specifically, we run 20 experiments, with equal probabilities of
update for all terminals (p = 0.5), for k = 2, 3, 4, threshold = 10−5 and for 4 different matrices M.

Afterwards, we used the probabilities that minimize ρ(Ā), which can be found from Figures 4.7
and 4.8. Again, we run 20 experiments, for k = 2, 3, 4 and threshold = 10−5. In Figure 4.16 we can
see the mean value of energy consumption for random clustering, k-means, spectral clustering and
autonomous clustering.

As we can see in Figures 4.15 and 4.16, in most cases, when the number of clusters gets bigger,
the energy consumption also increases. We can see that for spectral clustering, for M2 and M4

energy consumption is almost equal between k = 3 and k = 4. Also, in most experiments spectral
clustering performs better than the others, and autonomous clustering has a performance close to
both k-means and spectral clustering.

61

2 3 4

0

10

20

30

40

50

(a) M = M1

2 3 4

0

10

20

30

40

50

60

(b) M = M2

2 3 4

0

20

40

60

80

100

120

140

(c) M = M3

2 3 4

0

10

20

30

40

50

(d) M = M4

Figure 4.16: Experimental computation of energy that is consumed by GBP in solving a linear
system of equations Mx = s. Specifically, we run 20 experiments, with the optimal probabilities of
update, as they can be found from Figures 4.7 and 4.8, for k = 2, 3, 4, threshold = 10−5 and for 4
different matrices M.

62

Chapter 5

Conclusions and Future Work

In this work our goal is to map the Probabilistic Graphical Models (PGM) to Wireless Sensor
Networks’ (WSN) terminals, in order to solve the affine fixed point problem

x(l) = Ax(l−1) + b (5.1)

in a distributed manner, without any cloud/edge computing support. Since WSNs may not have
sufficient power for the computations and some nodes may fail to operate, asynchronous scheduling
needs to be utilized.

We considered a famous inference algorithm, Gaussian Belief Propagation (GBP), which can
be modeled using Equation 5.1. We used this algorithm to solve linear systems of equations. To
do so in an asynchronous manner and in form of an actual WSN, we had to map the produced
graph to the nodes of the network. Thus, we presented two different approaches of clustering; the
edge clustering and the node clustering, with the latter prevailing. Afterwards, we presented an
autonomous, in-network clustering that reaches the performance of k-means and spectral clustering.
Furthermore, we showed that non-random mappings achieve better performance in terms of energy
consumption, especially when the PGM is clustered by the spectral clustering algorithm. Finally,
we provided a strong relation between spectral radius and convergence rate and showed that when
we choose the right set of probabilities of update, for the WSN terminals, we achieve the fastest
convergence to the fixed point, independently of the clustering!

One interesting future direction of this work is to generalize the autonomous clustering algorithm
to more than 2 clusters and also to find a way to compute the algebraic connectivity λ2 in an
asynchronous manner. Another direction could be to integrate the matrix A in the clustering
procedure, as the affine updates are based on this matrix and its non-zero elements. In addition,
more inference algorithms could be studied such as Kalman filtering, which can be viewed as a
special case of GBP in Hidden Markov Networks (HMNs), or the Viterbi algorithm for sequence
detection in communication problems, which can be viewed as a special case of max-product in
HMNs, or Expectation-Maximization and many more.

63

Appendix A

Matrix M

In this Appendix we present the matrices M that were used in our experiments, in order to solve
the linear system of equations Mx = s, with s = 1 (all one vector). Also, in Figures A.1, A.2, A.3
and A.4 we can see the graph that is being generated from each matrix.

M1 =



3.63 −6.12 0 0 0 −2.61 0 0
0 −10.65 7.59 0 0 0 0 0
0 0 −1.92 7.05 0 0 −10.46 0
0 0 0 0.18 3.27 0 0 0

−2.01 0 0 0 −0.97 0 0 0
0 0 0 0 0 0 8.01 0.37

5.18 −1.86 0 4.63 0 0 0 0
0 0 0.91 0 0 0 0 0.13


(A.1)

M2 =



−1.7641 −0.1624 0 0 0 0 0 1.5053
0.7257 −0.5360 0 0 0 0 0 0

0 0 1.1374 0.6552 1.3097 0 0 0
0.8566 0 1.7936 −0.5378 0 0 0 0

0 0 −1.3709 0 −0.9888 0.0055 0 0
0 0 0 0 0 0.2486 0 −0.4413
0 0 0 0 0 −1.1012 −1.9016 −0.7928
0 0 0 0 0 0.0034 0 −0.8377


(A.2)

M3 =



0.8305 −1.0524 0 0 0 0 0 0
−0.5982 −0.5424 0 0 0 0 0 0

0 1.4126 −1.7550 0 0 0 −0.5872 0
0 0 1.7936 −0.5378 0 0 0 0
0 −0.8435 −0.7876 0.2653 0 0 0.2715 0
0 0 0 1.1617 0 −0.3724 0 0
0 0 0 0 0.7369 0.2165 −1.4714 0.1944
0 0 0 0 0 −0.6676 0 0.9759


(A.3)

64

M4 =



0 0 0.7895 0 0 −0.7525 0 −0.2518
0 0 0 −1.3945 1.4289 0 0 0

−0.6963 0 0 0 0 0 0 1.8027
0 1.8073 1.3534 0 0 −1.3617 −1.6536 0

0.6424 0 0 0 0 0 0 −1.6058
0 0 0 0 0 −1.1537 −0.2274 −0.2837
0 0 0.2340 0.8620 0 0 0 0
0 0 0 0.2491 −1.2132 0 0 0


(A.4)

Figure A.1: M1

Figure A.2: M2

65

Figure A.3: M3

Figure A.4: M4

66

Appendix B

Proofs

B.1 Proof of Theorem 3.1

(The proof is based on [26].)
We start with the case of k = 1, that is the graph is connected. Assume that f is an eigenvector
with eigenvalue 0. Then we know that,

0 = f⊤Lf =
n∑

i,j=1

wi,j(fi − fj)
2.

As the weights wij are non-negative, this sum can only vanish if all terms wij(fi−fj)2 are equal
to zero. Thus, if two vertices vi and vj are connected (i.e., wij > 0), then fi needs to equal to fj .
With this argument we can see that f needs to be constant for all vertices which can be connected
by a path in the graph. Moreover, as all vertices of a connected component in an undirected graph
can be connected by a path, f needs to be constant on the whole connected component. In a graph
consisting of only one connected component, we only have the constant one vector 1 as eigenvector
with eigenvalue 0, which obviously is the indicator vector of the connected component.

Now consider the case of k connected components. Without loss of generality we assume that
the vertices are ordered according to the connected components they belong to. In this case, the
weight matrix W has a block diagonal form, and the same is true for the matrix L:

L =


L1 0 · · · 0

0 L2
. . .

...
...

. . .
. . . 0

0 · · · 0 Lk

 .

Note that each of the blocks Li is a proper graph Laplacian on its own, namely the Laplacian
corresponding to the subgraph of the i-th connected component. As it is the case for all block
diagonal matrices, we know that the spectrum of L is given by the union of the spectra of Li, and

67

that the corresponding eigenvectors of L are the eigenvectors of Li, filled with 0 at the positions
of the other blocks. As each Li is a graph Laplacian of a connected graph, we know that every
Li has eigenvalue 0 with multiplicity 1, and the corresponding eigenvector is the constant one
vector on the i-th connected component. Thus, the matrix L has as many eigenvalues 0 as there
are connected components, and the corresponding eigenvectors are the indicator vectors of the
connected components.

B.2 Proof of Proposition 3.1

(The proof is based on [26].)

(1) By the definition of di,

f⊤Lf = f⊤Df − f⊤Wf =
n∑

i=1

dif
2
i −

n∑
i,j=1

fifjwij

=
1

2

 n∑
i=1

dif
2
i − 2

n∑
i,j=1

fifjwij +

n∑
i=1

dif
2
i

 =
1

2

n∑
i,j=1

wij(fi − fj)
2.

(2) L is symmetric as the sum of 2 symmetric matrices and positive semi-definite as we shown,
for Property (1), that f⊤Lf ≥ 0, ∀f ∈ Rn.

(3) If L has an eigendecomposition LV = VΛ, columns in V are eigenvectors, and Λ is a diagonal
matrix with the eigenvalues. We can easily rewrite the eigendecomposition as V⊤LV = Λ,
with each element of Λ, λi = v⊤i Lvi ⇒ λi = v⊤i Lvi ≥ 0, because L is positive semi-definite.

Because the sum of all rows of L is 0 (Equation 3.2), the rows are linearly dependent, thus
the matrix is not full rank. So, there should be at least one eigenvalue that is 0. Also, from
Equation 3.2, it follows that the corresponding eigenvector is the constant one vector, 1.

(4) A direct consequence of Properties (1) - (3).

B.3 Proof of Proposition 3.2

(The proof is based on [36].)

(1) We proved that

f⊤Lf =
1

2

n∑
i,j=1

wi,j(fi − fj)
2,

thus,

f⊤ALfA =
1

2

n∑
i,j=1

wi,j((fA)i − (fA)j)
2,

68

It is clear that, when vi, vj ∈ A or vi, vj ∈ Ā, it holds that (fA)i − (fA)j = 0.

So we can write,

f⊤ALfA =
1

2

n∑
i,j : vi∈A,vj∈Ā

wi,j((fA)i − (fA)j)
2 +

1

2

n∑
i,j : vi∈Ā,vj∈A

wi,j((fA)i − (fA)j)
2

=
1

2

n∑
i,j : vi∈A,vj∈Ā

wi,j

(√
|Ā|
|A|

+

√
|A|
|Ā|

)2

+
1

2

n∑
i,j : vi∈Ā,vj∈A

wi,j

(
−

√
|A|
|Ā|

−

√
|Ā|
|A|

)2

=
1

2

(√
|Ā|
|A|

+

√
|A|
|Ā|

)2

· cut(A) +
1

2

(
−

√
|A|
|Ā|

−

√
|Ā|
|A|

)2

· (Ā)

= cut(A) ·

(√
|Ā|
|A|

+

√
|A|
|Ā|

)2

,
[
cut(A) = cut(Ā)

]
= cut(A) ·

√ |Ā|
|A|

2

+ 2 ·

√
|Ā|
|A|

·

√
|A|
|Ā|

+

√
|A|
|Ā|

2


= cut(A) ·
(
|Ā|
|A|

+ 2 +
|A|
|Ā|

)
= cut(A) ·

(
n− |A|
|A|

+
|A|+ n− |A|

|Ā|
+ 1

)
= cut(A) ·

(
n

|A|
− 1 +

n

|Ā|
+ 1

)
= n · cut(A)

(
1

|A|
+

1

|Ā|

)
= n ·RatioCut(A)

⇒ RatioCut(A) =
1

n
· f⊤ALfA.

(2)

fA · 1n = |A|

√
|Ā|
|A|

− |Ā|

√
|A|
|Ā|

=

√
|Ā| · |A|2

|A|
−

√
|A| · |Ā|2

|Ā|
=
√
|Ā| · |A| −

√
|A| · |Ā|

fA · 1n = 0 ⇔ fA ⊥ 1n.

(3)

∥fA∥2 =
n∑

i=1

(fA)
2
i = |A| |Ā|

|A|
+ |Ā| |A|

|Ā|
= |A|+ |Ā| = n.

B.4 Proof of Proposition 3.3

(The proof is based on [36].)

(1) We have proved that f⊤Lf = 1
2

∑
i,j wij(fi − fj)

2 for any f . Thus we know that h⊤
l Lhl =

1
2

∑
i,j wij(hi,l − hj,l)

2. By construction of hl, if i, j ∈ Al or i, j ∈ Āl, then hi,l − hj,l = 0.

69

Hence,

h⊤
l Lhl =

1

2

∑
i∈Al,j∈Āl

wij(hi,l − 0)2 +
1

2

∑
i∈Āl,j∈Al

wij(0− hj,l)
2

=
1

2

∑
i∈Al,j∈Āl

wij

(
1√
|Al|

)2

+
1

2

∑
i∈Āl,j∈Al

wij

(
− 1√

|Al|

)2

=
1

2

(
1

|Al|

)
· cut(Al) +

1

2

(
1

|Al|

)
· cut(Āl)

⇒ h⊤
i Lhi =

cut(Ai)

|Ai|
.

(2) Obvious.

(3) RatioCut(A1, . . . ,Ak) =
∑k

i=1
cut(Ai)
|Ai| =

∑k
i=1 h

⊤
i Lhi =

∑k
i=1(H

⊤LG)ii = Tr(H⊤LG).

B.5 Proof of Theorem 4.1

(The proof is based on [36].)
Suppose that A is an n× n matrix with n linearly independent eigenvectors, and the synchronous
affine updates,

x(k) = Ax(k−1) + b. (B.1)

If x(k) → x∗ for k → ∞, then x∗ satisfies x∗ = Ax∗ + b, hence,

x(k) − x∗ = A
(
x(k−1) − x∗

)
. (B.2)

We define the error e(k) ≜ x(k) − x∗ and we have,

e(k) = Ae(k−1). (B.3)

Since eigenvectors are linearly independent, they form a basis and thus we can write e(0) =∑n
i=1 aizi, where zi are the eigenvectors with associated eigenvalues λi of A. Then

e(1) = A

(
n∑

i=1

aizi

)
=

n∑
i=1

aiAzi =
n∑

i=1

aiλizi,

e(2) = A2

(
n∑

i=1

aizi

)
= A

(
n∑

i=1

aiAzi

)
=

n∑
i=1

aiλiAzi =
n∑

i=1

aiλ
2
i zi,

...

e(k) = Ak

(
n∑

i=1

aizi

)
=

n∑
i=1

aiA
kzi =

n∑
i=1

aiλ
k
i zi. (B.4)

70

Suppose that ρ(A) = |λn| > |λi|, ∀i = 1, . . . , n− 1, then

e(k) = anλ
k
nzn +

n−1∑
i=1

aiλ
k
i zi = λkn

(
anzn +

n−1∑
i=1

ai

(
λi
λn

)k

zi

)
. (B.5)

Given that
∣∣∣ λi
λn

∣∣∣ < 1, for large k we have that
(

λi
λn

)k
≃ 0, hence

e(k) ≃ λknanzn. (B.6)

Now for the norm of the error, for large k, we have that

∥e(k)∥ = ∥λknanzn∥ ≤ |λknan|∥zn∥, (B.7)

zn is an eigenvector of A, so ∥zn∥ = 1. Hence,

∥e(k)∥ ≤ |λknan| ≤ |λn|k|an| ⇒ ∥e(k)∥ ≤ ρ(A)k|an|. (B.8)

Thus, for smaller spectral radius, ρ(A), we have faster convergence.

B.6 Proof of Theorem 4.2

Suppose that A is an n×n matrix with n linearly independent eigenvectors, and the asynchronous
affine updates,

x(k) = Ψ(k)
(
Ax(k−1) + b

)
+ (I−Ψ(l))x(k−1)

=
(
Ψ(k)A+ I−Ψ(k)

)
x(k−1) +Ψ(k)b

= B(k)x(k−1) +Ψ(k)b, for B(k) = Ψ(k)A+ I−Ψ(k). (B.9)

If x(k) → x∗ for k → ∞, then x∗ satisfies x∗ = B(k)x∗ +Ψ(k)b, hence,

x(k) − x∗ = B(k)
(
x(k−1) − x∗

)
(B.10)

We define the error e(k) ≜ x(k) − x∗ and we have,

e(k) = B(k)e(k−1)

⇒ E[e(k)] = E[B(k)e(k−1)] = E[B(k)]E[e(k−1)], (B(k), e(k−1) independent)

⇒ E[e(k)] = (P(A− I) + I) · E[e(k−1)], (E[B(k)] = P(A− I) + I)

⇒ E[e(k)] = Ā · E[e(k−1)], (Ā = P(A− I) + I)) (B.11)

We can write e(0) =
∑n

i=1 aizi, where zi are the eigenvectors with associated eigenvalues λi of Ā.
Then

E[e(1)] = Ā · E[e(0)] = Ā · E

[
n∑

i=1

aizi

]
= E

[
n∑

i=1

aiĀzi

]
= E

[
n∑

i=1

aiλizi

]
,

71

E[e(2)] = Ā2 · E[e(0)] = Ā2 · E

[
n∑

i=1

aizi

]
= E

[
n∑

i=1

aiĀ
2zi

]
= E

[
n∑

i=1

aiλ
2
i zi

]
,

...

E[e(k)] = Āk · E[e(0)] = Āk · E

[
n∑

i=1

aizi

]
= E

[
n∑

i=1

aiĀ
kzi

]
= E

[
n∑

i=1

aiλ
k
i zi

]
. (B.12)

Suppose that ρ(Ā) = |λn| > |λi|, ∀i = 1, . . . , n− 1, then

E[e(k)] = E

[
anλ

k
nzn +

n−1∑
i=1

aiλ
k
i zi

]
= E

[
λkn

(
anzn +

n−1∑
i=1

ai

(
λi
λn

)k

zi

)]
. (B.13)

Given that
∣∣∣ λi
λn

∣∣∣ < 1, for large k we have that
(

λi
λn

)k
≃ 0, hence

E[e(k)] ≃ E
[
λknanzn

]
= λknanzn. (B.14)

Now for the norm of the error, for large k, we have that∥∥∥E [e(k)]∥∥∥ = ∥λknanzn∥ ≤ |λknan|∥zn∥, (B.15)

zn is an eigenvector of Ā, so ∥zn∥ = 1. Hence,∥∥∥E [e(k)]∥∥∥ ≤ |λknan| ≤ |λn|k|an| ⇒
∥∥∥E [e(k)]∥∥∥ ≤ ρ(Ā)k|an|. (B.16)

Thus, for smaller spectral radius, ρ(Ā), we have faster convergence.

72

Bibliography

[1] J. S. Yedidia, “Message-passing algorithms for inference and optimization,” Journal of Statis-
tical Physics, vol. 145, no. 4, pp. 860–890, 2011.

[2] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan
kaufmann, 1988.

[3] R. Gallager, “Low-density parity-check codes,” IRE Transactions on information theory, vol. 8,
no. 1, pp. 21–28, 1962.

[4] G. Vannucci, A. Bletsas, and D. Leigh, “A software-defined radio system for backscatter sensor
networks,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2170–2179, Jun. 2008.

[5] C. Konstantopoulos, E. Kampianakis, E. Koutroulis, and A. Bletsas, “Wireless sensor node for
backscattering electrical signals generated by plants,” in Proc. IEEE Sensors Conf. (Sensors),
Baltimore, MD, USA, Nov. 2013.

[6] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith, “Ambient backscatter:
Wireless communication out of thin air,” in Proc. ACM SIGCOMM, Hong Kong, China, 2013,
pp. 39–50.

[7] J. Kimionis, A. Bletsas, and J. N. Sahalos, “Increased range bistatic scatter radio,” IEEE
Trans. Commun., vol. 62, no. 3, pp. 1091–1104, Mar. 2014.

[8] E. Kampianakis, J. Kimionis, K. Tountas, C. Konstantopoulos, E. Koutroulis, and A. Bletsas,
“Wireless environmental sensor networking with analog scatter radio & timer principles,” IEEE
Sensors J., vol. 14, no. 10, pp. 3365––3376, Oct. 2014.

[9] S. N. Daskalakis, S. D. Assimonis, E. Kampianakis, and A. Bletsas, “Soil moisture wireless
sensing with analog scatter radio, low power, ultra-low cost and extended communication
ranges,” in Proc. IEEE Sensors Conf. (Sensors), Valencia, Spain, Nov. 2014, pp. 122–125.

[10] N. Fasarakis-Hilliard, P. N. Alevizos, and A. Bletsas, “Coherent detection and channel coding
for bistatic scatter radio sensor networking,” in Proc. IEEE Int. Conf. Communications, Jun.
2015, pp. 4895–4900.

[11] S. N. Daskalakis, S. D. Assimonis, E. Kampianakis, and A. Bletsas, “Soil moisture scatter
radio networking with low power,” IEEE Trans. Microwave Theory Tech., vol. 64, no. 7, pp.
2338–2346, Jul. 2016.

73

[12] V. Papageorgiou, A. Nichoritis, P. Vasilakopoulos, G. Vougioukas, and A. Bletsas, “Towards
ambiently powered internet-of-things-that-think with asynchronous principles,” School of Elec-
trical and Computer Engineering, Technical University of Crete, Tech. Rep., 2022.

[13] ——, “Towards ambiently powered inference on wireless sensor networks: Asynchrony is the
key!” in 2021 17th International Conference on Distributed Computing in Sensor Systems
(DCOSS), 2021, pp. 458–465.

[14] D. Bickson, “Gaussian belief propagation: Theory and aplication,” arXiv preprint
arXiv:0811.2518, 2008.

[15] D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques. MIT
press, 2009.

[16] D. Shah, “Algorithms for inference—mit course no. 6.438,” Cambridge MA,
2014, MIT OpenCourseWare. [Online]. Available: https://ocw.mit.edu/courses/
6-438-algorithms-for-inference-fall-2014/

[17] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algo-
rithm,” IEEE Transactions on information theory, vol. 47, no. 2, pp. 498–519, 2001.

[18] B. J. Frey, F. R. Kschischang, H.-A. Loeliger, and N. Wiberg, “Factor graphs and algorithms,”
in Proceedings of the Annual Allerton Conference on Communication Control and Computing,
vol. 35. Citeseer, 1997, pp. 666–680.

[19] B. Li and Y.-C. Wu, “Convergence analysis of gaussian belief propagation under high-order
factorization and asynchronous scheduling,” IEEE Transactions on Signal Processing, vol. 67,
no. 11, pp. 2884–2897, 2019.

[20] C. D. Meyer, Matrix analysis and applied linear algebra. Siam, 2000, vol. 71.

[21] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods.
USA: Prentice-Hall, Inc., 1989.

[22] O. Teke and P. P. Vaidyanathan, “Random node-asynchronous graph computations: Novel op-
portunities for discrete-time state-space recursions,” IEEE Signal Processing Magazine, vol. 37,
no. 6, pp. 64–73, 2020.

[23] ——, “Randomized asynchronous recursions with a sinusoidal input,” in 2019 53rd Asilomar
Conference on Signals, Systems, and Computers. IEEE, 2019, pp. 1491–1495.

[24] ——, “Random node-asynchronous updates on graphs,” IEEE Transactions on Signal Pro-
cessing, vol. 67, no. 11, pp. 2794–2809, 2019.

[25] J. MacQueen, “Classification and analysis of multivariate observations,” in 5th Berkeley Symp.
Math. Statist. Probability, 1967, pp. 281–297.

[26] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17, no. 4,
pp. 395–416, 2007.

74

https://ocw.mit.edu/courses/6-438-algorithms-for-inference-fall-2014/
https://ocw.mit.edu/courses/6-438-algorithms-for-inference-fall-2014/

[27] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on pattern
analysis and machine intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[28] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” Ad-
vances in neural information processing systems, vol. 14, 2001.

[29] L. Helmut, Handbook of Matrices. Wiley, 1997.

[30] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathematical journal, vol. 23,
no. 2, pp. 298–305, 1973.

[31] M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu, “Decentralized estimation of laplacian
eigenvalues in multi-agent systems,” Automatica, vol. 49, no. 4, pp. 1031–1036, 2013.

[32] A. Y. Kibangou and C. Commault, “Decentralized laplacian eigenvalues estimation and col-
laborative network topology identification,” IFAC Proceedings Volumes, vol. 45, no. 26, pp.
7–12, 2012.

[33] T.-M.-D. Tran and A. Y. Kibangou, “Distributed estimation of laplacian eigenvalues via con-
strained consensus optimization problems,” Systems & Control Letters, vol. 80, pp. 56–62,
2015.

[34] M. Yang and C. Y. Tang, “Distributed estimation of graph spectrum,” in 2015 American
Control Conference (ACC). IEEE, 2015, pp. 2703–2708.

[35] A. Nichoritis, “Design and implementation of a solar powered wireless sensor network for
autonomous inference,” Diploma Thesis, Technical University of Crete, 2021.

[36] W. Ford, Numerical linear algebra with applications: Using MATLAB. Academic Press, 2014.

75

	Introduction
	WSN as an Inference Platform

	Algorithms
	Inference Algorithms and Probabilistic Graphical Models
	Inference Algorithms
	Probabilistic Graphical Models

	Gaussian Belief Propagation (GBP)
	Gaussian Belief Propagation under High-Order Factorization and Asynchronous Scheduling
	Solving Systems of Linear Equations
	Message Passing Probabilities of GBP in WSNs

	Affine Updates Convergence
	Affine Fixed Point (AFP) Problem
	Convergence Conditions

	Clustering Methods
	k-Means
	Spectral Clustering
	Spectral Clustering with 2 Clusters
	Generalized Spectral Clustering

	Mapping PGMs to WSN Terminals
	Edge Clustering
	Node Clustering

	Autonomous Clustering
	Polynomial Filtering
	Implementation
	Results

	Simulations
	Minimization of Convergence Time
	Minimization using Clustering
	Minimization using Spectral Radius

	Minimization of Energy Consumption

	Conclusions and Future Work
	Matrix M
	Proofs
	Proof of Theorem 3.1
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.3
	Proof of Theorem 4.1
	Proof of Theorem 4.2

