
Implementation of Lightweight
Cryptography Algorithms in

FPGAs

Oikonomou Asterios

Thesis Committee:

Associate Professor Sotirios Ioannidis (supervisor)
Professor Apostolos Dollas

Professor George N. Karystinos

School of Electrical and Computer Engineering

Technical University of Crete

October 11, 2022

Abstract

IoT applications typically involve a tree-like structure of devices, with the top levels
occupied by a small number of highly complex powerful machines and a plethora of
more restricted in computational and energy resources devices as one moves to the bot-
tom levels. While cost and physical size restrictions mandate that those limited devices
employ simplistic computing resources with small capacity batteries, the penetration of
IoT applications in all forms of activities has multiplied the computational tasks (both
in number and complexity) that have to be executed, increasing the pressure to use
highly computationally and energy efficient devices and implementations of algorithms
to be executed on their hardware. One of those tasks is data encryption, employed as
one of the fundamental means to secure the exchange and storage of sensitive informa-
tion. Lightweight encryption algorithms have been proposed as a good balance between
data protection and computational complexity, enabling simple devices to handle those
tasks. In this diploma thesis, three such algorithms are examined (Clefia, Simon and
Present) focusing on devices that are placed at the edge of the IoT infrastructure. These
devices communicate with a significant number of leaf-nodes and concentrate the traffic
between the leaves and the higher levels of infrastructure. While they retain much of the
limitations of the lower-levels of the IoT architecture (low cost, small size and limited
energy resources), they have to provide significant computational performance and this
work aims to explore the implementation of the encryption algorithm in custom recon-
figurable hardware in order to achieve higher performance than common CPU-based
systems and even higher energy efficiency. A comparison is therefore made between im-
plementations of the three algorithms in software and hardware Specifically, the three
algorithms were tested in software on four different processors(ARM Cortex-A9, ARM
Cortex-A53, Intel Core I5-4200U and Intel Xeon E5-2630) and for the hardware at
Xilinx KRIA KV260 FPGA. The results of the measurements show that Present block
cipher is 1,473 times faster when applied on hardware compared to the Intel Xeon E5-
2630. The same comparison is made with the others algorithms where Simon cipher
appears to 29 times faster when applied to the hardware while Clefia block cipher is
252 times faster when applied to the hardware compared to the Intel Xeon processor
E5-2630 .

i

Περίληψη

Οι εφαρμογές IoT περιλαμβάνουν συνήθως μια δομή συσκευών που μοιάζει με δέντρο,
όπου τα υψηλότερα επίπεδα καταλαμβάνονται από ενα μικρό αριθμό εξαιρετικά πολύπλοκων

ισχυρών μηχανών και απο πληθώρα συσκευών με περιορισμένους πόρους ως προς την

κατανάλωση ενέργεια και την πολυπλεξία των υπολογισμών καθώς κινούμαστε στα χαμηλότερα

επίπεδα. Ενώ το κόστος και οι περιορισμοί φυσικού μεγέθους απαιτούν αυτές οι συσκευές
να χρησιμοποιούν απλούς υπολογιστικούς πόρους με μπαταρίες χαμηλής χωρητικότητας.
Η διείσδυση των εφαρμογών του Διαδικτύου σε κάθε μορφή δραστηριότητας έχει πολ-

λαπλασιάσει τις υπολογιστικές εργασίες(τόσο σε αριθμό όσο και σε πολυπλοκότητα) που
πρέπει να εκτελεστούν, αυξάνοντας την πίεση για χρήση συσκευών με υψηλή ενεργειακή
και υπολογιστική απόδοση αλλά και εφαρμογών, αλγορίθμων που πρέπει να εκτελεστούν
στο δικό τους υλικό. Μία από αυτές τις εργασίες είναι η κρυπτογράφηση δεδομένων, που
χρησιμοποιείται ως ένα από τα θεμελιώδη μέσα για την εξασφάλιση της ανταλλαγής και

αποθήκευσης ευαίσθητων πληροφοριών. Οι αλγόριθμοι ελαφριάς κρυπτογράφησης έχουν
προταθεί καθώς εξασφαλίζουν μια ισορροπία μεταξύ προστασίας δεδομένων και υπολο-

γιστικής πολυπλοκότητας, επιτρέποντας απλές συσκευές για να χειριστούν τις εργασίες
αυτές. Στην παρούσα διπλωματική εργασία τρεις τέτοιοι αλγόριθμοι εξετάζονται(Present,
Simon και Clefia) εστιάζοντας σε συσκευές που βρίσκονται στην άκρη της υποδομής του
IoT. Αυτές οι συσκευές επικοινωνούν με έναν σημαντικό αριθμό κόμβων φύλλων και
συγκεντρώνουν την πληροφορία μεταξύ των φύλλων και των υψηλότερων επιπέδων υπ-

οδομής. Ενώ διατηρούν μεγάλο μέρος των περιορισμών που έχουν τα κατώτερα επίπεδα
της αρχιτεκτονικής του IoT (χαμηλό κόστος μικρό μέγεθος και περιορισμένοι ενεργειακοί
πόροι) παρέχουν σημαντική υπολογιστική απόδοση και αυτή η εργασία στοχεύει στην
υλοποίηση των αλγορίθμων κρυπτογράφησης σε αναδιατασόμενη λογική με σκόπό την

επίτευξη υψηλότερης απόδοσης σε σχέση με ένα σύστημα που βασίζεται σε CPU καθώς
και ακόμη υψηλότερη ενεργειακή απόδοση. Γίνετε σύγκριση μεταξύ των υλοποιήσεων
των τριών αλγορίθμων σε λογισμικό και σε υλικό. Συγκεκριμένα οι τρεις αλγόριθμοι
εξετάστηκαν στο λογισμικό σε τέσσερις διαφορετικούς επεξεργαστές (ARM Cortex-A9,
ARMCortex-A53, Intel Core I5-4200U και Intel Xeon E5-2630) και για το υλικό υλοποιήθηκαν
στην Xilinx KRIA KV260. Τα αποτελέσματα των μετρήσεων δείχνουν ότι ο αλγόριθμος
Present είναι 1.473 φορές πιο γρήγορος όταν εφαρμόζεται στο υλικό από όταν εφαρμόζεται
στον επεξεργαστή Intel Xeon E5-2630. Η ίδια σύγκριση γίνεται και με τους άλλους
αλγόριθμους όπου ο Clefia εμφανίζεται να είναι 252 φορές πιο γρήγορος όταν εφαρμόζεται
στο υλικό ενώ ο Simon είναι 29 φορές πιο γρήγορος όταν εφαρμόζεται στο υλικό σε
σύγκριση με τον επεξεργαστή Intel Xeon E5-2630.

ii

Acknowledgements

At this point I would like to express my gratitude and appreciation to Prof. Sotirios
Ioannidis for being my supervisor and for giving me the opportunity to do my Research
and to know so many knew things on the field of hardware. I would like to thank Andreas
Brokalakis for his guidance and for all his support during my thesis. I would like also
to thank Prof. Apostolos Dollas and Prof. George N. Karystinos for being members of
the committee and for assessing my thesis. Finally, I am grateful for my family and my
friends for trusting and supporting me over the years.

iii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 About Cryptography . 3
1.2 Symmetric Key Cryptography . 4
1.3 Asymmetric Key Cryptography . 5
1.4 Hash Functions . 7
1.5 Lightweight Cryptography . 9
1.6 Block and Stream Cipher . 11
1.7 Thesis Outline . 13

2 Algorithms Description 14
2.1 Present algorithm . 14

2.1.1 Introduction of Present . 14
2.1.2 Present Encryption Block Cipher 15
2.1.3 addRoundKey . 16
2.1.4 sBoxLayer . 16
2.1.5 pLayer . 17
2.1.6 Key Schedule . 17

2.2 Simon algorithm . 18
2.2.1 Introduction of Simon . 18
2.2.2 Simon Round Function . 19
2.2.3 Simon Key Schedule . 21

2.3 Clefia algorithm . 22
2.3.1 Introduction of Clefia . 22
2.3.2 Clefia Encryption Block Cipher 23
2.3.3 Key Scheduling . 24
2.3.4 Functions F0, F1 . 25
2.3.5 Tables M0,M1 . 26
2.3.6 Clefia Sboxes . 27
2.3.7 DoubleSwap Function . 27

3 Platforms 28
3.1 The structure of FPGAs . 28
3.2 Platforms . 30

3.2.1 Kria KV260 Vision AI Starter Kit 30

4 FPGA Implementation 33

iv

Contents

4.1 Architecture Analysis . 33
4.1.1 System Architecture . 33
4.1.2 Data transfer with DMA and configuration 36
4.1.3 Custom Blocks . 37

4.2 Architecture of Present Encryption . 38
4.2.1 Top Module . 38
4.2.2 Module sBoxLayer . 39
4.2.3 Module pLayer . 39
4.2.4 Module Key Schedule . 40
4.2.5 Module State Machine . 40

4.3 Architecture of Simon Encryption . 41
4.3.1 Top Level Module . 41
4.3.2 Module Key Schedule . 42
4.3.3 Round Function . 44

4.4 Architecture of Clefia Encryption . 44
4.4.1 Top Module . 45
4.4.2 Modules S0,S1 . 46
4.4.3 Module M0 . 46
4.4.4 Module M1 . 47
4.4.5 Module F0 . 48
4.4.6 Module F1 . 49
4.4.7 Module GF4N . 50
4.4.8 Module Key Schedule . 51
4.4.9 Module Control . 52

4.5 Tools . 53
4.5.1 Communication between Software and Hardware 53
4.5.2 AXI Protocol . 54
4.5.3 How AXI Works . 55

5 Results 60
5.1 Software Implementations and Performance/Power Comparison Method-

ology . 61
5.1.1 Software Platforms . 61
5.1.2 Software Implementations . 61
5.1.3 Performance and Power Comparison Methodology 62

5.2 Results of Present Algorithm . 64
5.2.1 Area, Latency and Power performance 64
5.2.2 Present Software and Hardware comparison 68
5.2.3 Results of Simon Algorithm . 70
5.2.4 Area, Latency and Power performance 70
5.2.5 Simon Software and Hardware comparison 73
5.2.6 Results of Clefia Algorithm . 75
5.2.7 Area, Latency and Power performance 75
5.2.8 Clefia Software and Hardware comparison 78
5.2.9 Related Work . 80

6 Conclusions 85

Bibliography 87

v

Contents

Appendices 92

A Appendix 93
A.1 Present Algorithm runs on Software . 93
A.2 Clefia Algorithm runs on Software . 94
A.3 Simon Algorithm runs on Software . 95

vi

List of Figures

Figure 1.1 Applications of Internet-of-Things[1] 2
Figure 1.2 Cryptography Primitives . 4
Figure 1.3 Symmetric Key Cryptography [2]. 5
Figure 1.4 Asymmetric Key Cryptography [2]. 6
Figure 1.5 A cryptographic hash function at work [3]. 8
Figure 1.6 Lightweight Cryptography Performance [4] 10

Figure 2.1 A top-level algorithmic description of present 16
Figure 2.2 The S/P network of present . 18
Figure 2.3 The Simon Round Function . 20
Figure 2.4 For m = 2,3 and 4 key words . 21
Figure 2.5 Structures of Data Processing Part 23
Figure 2.6 F0 Function . 26
Figure 2.7 F1 Function . 26
Figure 2.8 Tables M0,M1 . 26
Figure 2.9 Tables S0, S1 . 27
Figure 2.10 DoubleSwap Function . 27

Figure 3.1 Overview of FPGA architecture [5]. 29
Figure 3.2 Kria Platform . 31
Figure 3.3 Interfaces and Connectors . 32

Figure 4.1 A condensed representation of the hardware accelerator system,
including all significant components. 35

Figure 4.2 Present Top Module. 38
Figure 4.3 State Machine Diagram. 41
Figure 4.4 Top Level Diagram. 42
Figure 4.5 Simon FSM. 43
Figure 4.6 Simon 4-word key expansion. 43
Figure 4.7 Simon Round Function. 44
Figure 4.8 Clefia Top Level . 45
Figure 4.9 Tables S0, S1 . 46
Figure 4.10 Matrix M0. 46
Figure 4.11 Matrix M1. 47
Figure 4.12 Function F0 of Clefia. 49
Figure 4.13 Function F1. 49
Figure 4.14 GF4N Diagram. 50
Figure 4.15 Generating Keys. 51
Figure 4.16 Module key schedule . 52
Figure 4.17 State Machine . 53

vii

List of Figures

Figure 4.18 Communication between PS and PL 54
Figure 4.19 AXI interconnection flowchart. 55
Figure 4.20 Channel Architecture of Reads 56
Figure 4.21 Channel Architecture of Writes 56
Figure 4.22 AXI4-Stream Handshake . 57
Figure 4.23 Communication between software and hardware using AXI-stream

interface. 58
Figure 4.24 DMA Core. 59

Figure 5.1 Present System. 65
Figure 5.2 Present64/80 mapped on FPGA. 66
Figure 5.3 Power on chip of present 64/80 algorithm on the fpga. 67
Figure 5.4 Power of kria platform on PS. 67
Figure 5.5 Power of zedboard platform on PS. 67
Figure 5.6 Present block cipher software performance. 68
Figure 5.7 Comparison of power consumption of Present algorithm. 69
Figure 5.8 Energy efficiency of Present algorithm. 70
Figure 5.9 Simon System. 71
Figure 5.10 Simon64/128 mapped on FPGA 72
Figure 5.11 Power on chip of simon64/128 algorithm on the fpga. 72
Figure 5.12 Simon64/128 Software Performance. 73
Figure 5.13 Comparison of power consumption of Simon algorithm. 74
Figure 5.14 Energy efficiency of Simon algorithm. 75
Figure 5.15 Clefia System. 76
Figure 5.16 Clefia128/128 mapped on FPGA. 77
Figure 5.17 Power on chip of clefia128/128 on the fpga. 77
Figure 5.18 Clefia128/128 Software Performance. 78
Figure 5.19 Comparison of power consumption of Clefia algorithm. 79
Figure 5.20 Energy efficiency of Clefia algorithm. 80

viii

List of Tables

Table 1.1 Comparison between asymmetric key cryptography and symmetric
key cryptography [2] . 7

Table 1.2 LWC Characteristics . 11

Table 2.1 Present block cipher operating parameters 14
Table 2.2 4-bit S-Box Mapping. 17
Table 2.3 Present Permutate . 17
Table 2.4 Simon block cipher operating parameters 19
Table 2.5 The zj vectors used in the SIMON key schedule 22
Table 2.6 Clefia block cipher operating parameters 22

Table 3.1 KRIA KV260 Specifications . 31

Table 4.1 4-bit S-Box Mapping. 39
Table 4.2 Present Permutate . 39

Table 5.1 Description of the platforms . 61
Table 5.2 Utilization of Present core Post-Synthesis stage. 65
Table 5.3 Utilization of System Post-Synthesis stage. 65
Table 5.4 System Present Utilization Post-Implementation stage. 66
Table 5.5 Comparison between different platforms of Present algorithm . . . 69
Table 5.6 Utilization of Simon core Post-Synthesis stage. 71
Table 5.7 Utilization of System Post-Synthesis stage. 71
Table 5.8 System Simon Utilization Post-Implementation stage. 71
Table 5.9 Comparison between different platforms of Simon algorithm . . . 74
Table 5.10 Utilization of Clefia core Post-Synthesis stage. 76
Table 5.11 Utilization of System Post-Synthesis stage. 76
Table 5.12 System Clefia Utilization Post-Implementation stage. 76
Table 5.13 Comparison between different platforms of Clefia algorithm 79
Table 5.14 Compare implementations of PRESENT, CLEFIA and SIMON

block ciphers. 83

Table A.1 Present64/80 runs on Zedboard 93
Table A.2 Present64/80 runs on Kria KV260 93
Table A.3 Present 64/80 runs on Intel(R) Core(TM) I5-4200U 94
Table A.4 Present64/80 runs on Intel(R) Xeon(R) E5-2630 94
Table A.5 Clefia128/128 runs on Zedboard 94
Table A.6 Clefia128/128 runs on Kria KV260 94
Table A.7 Clefia128/128 runs on Intel(R) Core(TM) I5-4200U 95
Table A.8 Clefia128/128 runs on Intel(R) Xeon(R) E5-2630 95
Table A.9 Sion64/128 runs on Zedboard . 95

ix

List of Tables

Table A.10 Simon64/128 runs on Kria KV260 95
Table A.11 Simon64/128 runs on Intel(R) Core(TM) I5-4200U 96
Table A.12 Simon64/128 runs on Intel(R) Xeon(R) E5-2630 96

x

Chapter 1

Introduction

Internet-of-Things (IoT) is a paradigm that connects various physical devices to the

Internet through various wireless technologies. In recent decades, the IoT(smart envi-

ronment) has taken a large share in the development of the technology. An attempt

to transform machine-to-machine communication into the IoT has brought about the

greatest revolution in the current human era. The vision of IoT is to create a hetero-

geneous network of millions of connected objects that communicate securely over the

Internet. IoT has become an integral part of socioeconomically growth as it has various

domain-specific applications in different fields. These include healthcare, surveillance,

transportation, security, manufacturing, environmental monitoring, food processing as

shown in Fig 1.1.

In IoT applications, the computing and power resources are limited especially at

the edge where the sensors and other very simple devices are generally deployed. At the

same time, as IoT applications are increasingly involved in areas where sensitive infor-

mation is gathered, stored and exchanged, a higher level of security and data protection

must be provided. Typical methods of securing data transmissions and distributed stor-

age is to encrypt all sensitive data. There are a number of different cryptographic al-

gorithms that serve different purposes: low-complexity algorithms for weak computing

devices, low-latency, high-throughput solutions for performance-critical applications,

enhanced attack-resistance algorithms and features for critical data, etc [6].

1

Chapter 1. Introduction

Figure 1.1: Applications of Internet-of-Things[1]

Considering the very broad scope of applications and devices used in IoT environ-

ments it is hard to select a ”one-size-fits-all” solution. Additionally, having the ability

to switch between different algorithms is beneficial for both security (commonly refer-

eed to as Moving Target Defense or MTD) and efficiency. Two solutions are currently

available. The first one sacrifices flexibility and adaptability by choosing to support a

single algorithm (or family algorithms with common computational characteristics) in

hardware in order to gain performance and achieve low energy consumption. The sec-

ond retains all flexibility and security resilience by implementing all required algorithms

in software with significant impact in performance and efficiency.

For this thesis, we adopt a middle ground solution that aims to retain the advan-

tages of the aforementioned solutions (high performance, low energy consumption and

flexibility) without their drawbacks by opting for an accelerated implementation of the

cryptographic algorithms in re-configurable hardware. This way, the performance and

low energy consumption of a hardwired implementation may be mostly retained, while

the reconfigurability of the hardware allows for easy and fast adaptation to different

algorithms and implementations. Three lightweight cryptographic algorithms are se-

lected with different characteristics. More specifically, we focus on Clefia, Simon and

Present ciphers. All ciphers are well-established and recognised and cover generally

2

Chapter 1. Introduction

distinct fields of application. We plan to create a common API and interface to com-

municate between the software and the hardware components and a software library

that exposes these accelerators to the software application and manages beyond the

software/hardware communication, all hardware reconfiguration tasks of the FPGA re-

sources (abstracting them from the user). We intent to use also a creation of interface

at the hardware level will be employed.

1.1 About Cryptography

The enormous advances in network technology have resulted in an amazing potential

for changing the way we communicate and do business over the Internet. However,

the cost effectiveness and globalism that the Internet offers for the transmission of

confidential data is offset by the main disadvantage of public networks: security risks.

The rapidly increasing growth in confidential data traffic over the Internet makes the

issue of security a fundamental problem. As a result, applications such as electronic

banking, electronic commerce, and Virtual Private Networks (VPNs) require an efficient

and cost-effective way to address security threats over public networks [7].

Cryptography is a security technique that encode messages in an unreadable form.

In simple terms, it is nothing but a technique used to protect data during transmis-

sion from sender to receiver and denies unauthorized access. Therefore, security and

confidentiality is very required in this aspect.[7] Cryptography is also the fundamental

component to secure Internet traffic. However, cryptographic algorithms place enor-

mous demands on processing power, which can be a bottleneck in high-speed networks.

In general there are three types of cryptography:

• Symmetric Key Cryptography.

• Asymmetric Key Cryptography.

• Hash Functions.

The implementation of a cryptographic algorithm must achieve a high processing

rate in order to fully utilize the available network bandwidth. To keep up with the

diversity and rapid changes in algorithms and standards, a cryptographic implementa-

tion must also support different algorithms and be up gradable in the field. Otherwise,

interoperability between different systems is prohibited and any upgrade will result in

3

Chapter 1. Introduction

excessive costs. The ultimate solution to the problem would be an adaptive processor

that can offer software-like flexibility with hardware-like performance.[8]

Figure 1.2: Cryptography Primitives

1.2 Symmetric Key Cryptography

Symmetric key cryptography is also known as secret key or shared key cryptogra-

phy Fig 1.3. In this process, a sender and a receiver both share a common key through

secret communication for both encryption and decryption. Symmetric cryptography is

better suited for IoT applications due to its fast operations which are mainly XOR

and permutations. The processing speed is faster and they don’t consume many re-

sources. Table 1.1 shows direct comparison between Asymmetric Key Cryptography

and Symmetric Key Cryptography [2]. Mathematically, symmetric encryption may be

considered as follows:

Definition 1. A symmetric-key encryption scheme consists of a map

E : K ∗M → C

such that for each k ∈ K, the map

Ek : M → C,m→ E(k,m)

4

Chapter 1. Introduction

is inevitable. The elements m ∈ M are the plain-texts (also called messages). C is

the set of cipher-texts or cryptograms, the elements k ∈ K are the keys. Ek is called

the encryption function with respect to the key k. The inverse function Dk := E`1
k is

called the decryption function. It is assumed that efficient algorithms to compute Ek

and Dk exist.

Figure 1.3: Symmetric Key Cryptography [2].

The key k is shared between the communication partners and kept secret. A basic

security requirement for the encryption map E is that, without knowing the key k,

it should be impossible to successfully perform the decryption function Dk. Among

all encryption algorithms, symmetric-key encryption algorithms have the fastest hard-

ware and software implementations. They are therefore very well-suited for encrypting

large amounts of data. Public-key encryption methods are less efficient and therefore

not suitable for large amounts of data. Thus, symmetric-key encryption and public-key

encryption complement each other to provide practical cryptosystems [9]. A very im-

portant distinction in Symmetric Algorithms is among Stream and Block ciphers where

analyzed at 1.6 subsection.

1.3 Asymmetric Key Cryptography

Asymmetric key cryptography is known as public key cryptography, because in this

technique, a pair of public key and private key are needed Fig1.4. Recently the focus has

shifted from lightweight cryptography to asymmetric key cryptography, but the results

are not yet stable and fruitful like symmetric key cryptography. Lightweight asymmetric

algorithms are complex to operate and not time efficient. The size of the operands and

the relentless advance of attack models also make these algorithms vulnerable [10].

Some of the very important asymmetric algorithms are as follows:

5

Chapter 1. Introduction

Figure 1.4: Asymmetric Key Cryptography [2].

Rivest-Shamir-Adleman (RSA), Diffie-Hellman, Digital Signature Algorithm (DSA),

Elliptical Curve Cryptography (ECC).

• Rivest-Shamir Adleman (RSA) – The reverse procedure is very difficult for an

attacker and it is also difficult to produce the private key from the public key.

So, this method is highly secure, but key generation is complex, and the process

is very slow.

• Diffie-Hellman – The private key is very short, as a result, the process is faster.

Due to a short private key, it faces more attacks and the process is also vulnerable

to man in the middle attacks.

• Digital Signature Algorithm (DSA) – This process is faster and more beneficial

than other Asymmetric algorithms, but the digital signatures have short life span

and the sharing is complicated [11].

• Elliptical Curve Cryptography (ECC) – Though it is more complex and difficult

to implement, it consumes less power. Amongst the different types of Asymmetric

algorithms ECC is most favorable for implementation in restricted devices [10].

ECC approach for IoT has become an important research topic, but mostly from

software perspective. An implementation and evaluation of an open source ECC for

the Contici OS for IoT has done by [12]. Their implementation is released under BSD

license. ECC approach was applied by [13] and the paper presented an implementation

of Zero Knowledge Protocol in an open source and generic programming library called

Wiselib. A hardware approach was taken by [14] and they showed that an ECC com-

putation can be efficiently protected against Side Channel Attacks. Their approach is

well suited for lightweight implementations with a minimal security level and with a

6

Chapter 1. Introduction

limited hardware overhead. A comparative study was done by [15] among RSA, Diffie-

Hellman and Elliptical Curve Cryptography with Diffie- Hellman (ECDH) and they

have found ECDH is better than other algorithms in terms of power and area [2].

Cryptography Methods

Asymmetric Key

Cryptography

Symmetric Key

Cryptography

Keys
A unique pair of private

and public key
One shared private key

Number of keys
Linearly proportional to the

number of users

Exponentially proportional to

the number of users

Speed and Complexity

Because of different keys used,

it requires more time

to get the transmission done

Faster than asymmetric key

cryptography

Hardware Complexity

More complex hardware

implementation as it

implements computational

heavy algorithms which need

more powerful hardware

Less complex hardware

implementation as it

implements algorithms with

simple operations

which need relatively

inexpensive hardware

Use
Key Encryption and distributing

keys, it provides Confidentiality

Bulk data encryption,

encrypting files and

communication paths,

it provides

Confidentiality and

Authentication

Table 1.1: Comparison between asymmetric key cryptography and symmetric key cryp-
tography [2]

1.4 Hash Functions

The term hash function has been used in computer science for a long time and refers

to a function that compresses a string of any input into a fixed length string. However,

if it meets some additional requirements, it can be used for cryptographic applications

7

Chapter 1. Introduction

and then called cryptographic hash functions. A cryptographic hash function (CHF) is a

mathematical algorithm that maps data of an arbitrary size (often called the ”message”)

to a bit array of a fixed size (the ”hash value”, ”hash”, or ”message digest”). It is a

one-way function, that is, a function for which it is practically infeasible to invert or

reverse the computation [16]. Ideally, the only way to find a message that produces a

given hash is to attempt a brute-force search of possible inputs to see if they produce

a match, or use a rainbow table of matched hashes. Cryptography hash functions are

a basic tool of modern cryptography.

Figure 1.5: A cryptographic hash function at work [3].

A cryptographic hash function must be deterministic, meaning that the same mes-

sage always results in the same hash. Ideally it should also have the following properties:

• It is quick to compute the hash value for any given message.

• It is infeasible to generate a message that yields a given hash value(i.e to reverse

the process that generated the given hash value).

• It is infeasible to find two different messages with the same hash value.

• A small change to a message should change the hash value so extensively that a

new hash value appears uncorrelated with the old hash value.

Cryptography hash functions have many information security applications, notably

in digital signatures, message authentication codes, and other forms of authentication.

They can also be used as ordinary hash functions, to index data in hash tables, for

8

Chapter 1. Introduction

fingerprinting, to detect duplicate data or uniquely identify files, and as check sums

to detect accidental data corruption. Indeed, in information-security contexts, cryp-

tographic hash values are sometimes called (digital) fingerprints, check sums, or just

hash values, even though all these terms stand for more general functions with rather

different properties and purposes [17].

1.5 Lightweight Cryptography

Lightweight cryptography refers to cryptographic algorithms that are tailored for

implementation in constrained devices (e.g. sensors, RFID cards, implantable devices

etc). Lightweight cryptography contributes to the security of smart object networks

and it is practical to use in these environments, offering a good balance between data

protection and computational complexity (and subsequently low energy consumption).

Furthermore, their implementation can be realised with few resources contributing to

an overall reduction in cost compared to traditional cryptographic algorithms [18].

Lightweight cryptography can offer:

• Smaller block sizes(64-bit or less).

• Smaller key size(80-bit or less).

• Simple round logic based on simple computations.

• Simple key scheduling.

• Strong Structure(like SPN or FN)

9

Chapter 1. Introduction

Figure 1.6: Lightweight Cryptography Performance [4]

When designing lightweight cryptography algorithms, a balance between cost, se-

curity and performance is sought. For example, in block encryption, the key length

indicates the balance between security and cost, while in hardware implementation,

number of rounds determines the balance between cost and performance. This problem

is shown in Fig 1.6. Usually, any two of these three goals, such as security and cost,

security and performance, or cost and performance can be easily achieved; however,it

is very difficult to achieve all three goals at the same time. In order to fulfill the objec-

tives mentioned in a lightweight cryptography algorithm, various methods have been

proposed.[19].

Lightweight cryptography targets a wide variety of devices that can be implemented

on a wide range of hardware and software. At the top end of the device spectrum

are servers and desktop computers followed by tablets and smartphones. Traditional

cryptographic algorithms can work well in these devices; therefore, these platforms

may not require lightweight algorithms. Finally, at the lower end of the spectrum are

devices such as embedded systems, RFID devices and sensor networks. Lightweight

cryptography focuses primarily on the highly constrained devices found at the lower

10

Chapter 1. Introduction

end of this spectrum.[20]

The three main characteristics of lightweight cryptographic algorithms and their

offerings are listed in Table 1.2.

Characteristics What LWC can offer?

Physical Area(GEs, logic blocks)

Memory (registers, RAM, ROM)Physical(Cost)

Battery power (energy consumption)

Performance Computing Power (latency, throughput)

Smaller block sizes (64-bit or less)

Smaller key size (80-bit or less)

Simple round logic based on simple

computations

Simple key schedulingMinimum security strength (bits)

Attack models (related key, multi- keys)Security

Side channel attack

Strong Structure (like SPN or FNS)

Table 1.2: LWC Characteristics

1.6 Block and Stream Cipher

Block cipher performs both encryption and decryption on a fixed-size block (64 bits

or more) at the same time, while stream cipher processes the entire message byte by

byte (8 bits at a time). Furthermore, the stream cipher uses only the confusion property

(to make the relationship as complex as possible by using a substitution between the

ciphertext and the key) while the block cipher uses both confusion and diffusion (to

dissipate statistical structure of plaintext over bulk of ciphertext using permutation),

two fundamental properties of cryptography introduced by Claude Shannon[21],[22], to

strengthen the simple design cipher compared to the stream cipher. Reversing cipher-

text is difficult in the block cipher while the stream cipher uses XOR for encryption

which is easily into the plaintext.

For the above reasons, block cipher is preferred in resource-constrained IoT devices

over stream cipher. A symmetric lightweight block cipher uses one of the following

structure:

• Substitution-Permutation Network (SPN).

• Feistel Network (FN).

• General Feistel Network (GFN).

11

Chapter 1. Introduction

• Add-Rotate-XOR (ARX).

• NonLinear-Feedback Shift Register (NLFSR).

• Hybrid.

Substitution-Permutation network (SPN) processes data through a series of

substitution (S-box) and permutation (table) by altering the data and finally formu-

lating them for the next round. A Feistel network (FN) is a multi-round cipher that

divides the input block into two parts and operates only on a half (diffusion) in each

round of encryption or decryption. Between rounds, the left and right halves of the block

are swapped. The generalized Feistel network (GFN) is a generalized form of the

classical Feistel cipher. In GFN, input block is split into two or more sub-blocks and ap-

plies a (classical) Feistel transformation for every two sub blocks, and then performs a

cyclic shift relevant to number of sub blocks [23]. ARX performs encryption-decryption

using addition, rotation and XOR functions without making any use of S-box. Imple-

mentation of ARX is fast and compact but limits in security properties compared to

SPN and Feistel ciphers. Nonlinear feedback shift register (NLFSR) can be ap-

plied in both stream cipher and block cipher designs. It utilizes the building blocks

of stream ciphers whose current state is a nonlinear feedback function of its previous

state. Hybrid cipher combine the any three types (SPN, FN, GFN, ARX, NLFSR) to

improve specific characteristic (for example, throughput, energy, GE, etc.) based on its

application requirements or even could mix of block and stream cipher.

Out of these structures, SPN and FN are the most popular choice due to their flexi-

bility to implement the structure based on application requirements . Feistel structures

can be implemented in low average power hardware, as a round function is applied to

only one half of the state . On contrary, Feistel structures apply non-linearity in just

one half of the state in each round, maintaining safety margins usually requires more

round function compared to SPN structures. When there is choice between fewer SPN

function rounds and higher Feistel function rounds with the same level of security and

similar energy costs, SPN function could be a smarter choice [24].

12

Chapter 1. Introduction

1.7 Thesis Outline

• Chapter 2 - Algorithms Description : The three algorithms that are exam-

ined (Clefia, Present and Simon) are presented along with the main aspects of

the computations involved in each one.

• Chapter 3 - Platforms : The platforms that have been used to implement these

algorithms are presented.

• Chapter 4 - FPGA Implementation : Describes the hardware architectures

that have been designed and their respective implementations.

• Chapter 5 - Results : In this chapter presents the results of our work and

provide also existing works.

• Chapter 6 - Conclusions : The last chapter concludes the outcomes of this

thesis.

13

Chapter 2

Algorithms Description

Several researches on performance and security of algorithm implementations of

lightweight encryption in hardware and software are currently being published. For

this work three encryption lightweight algorithms were implemented in hardware and

software. More specifically, Present, Simon and Clefia were selected because these al-

gorithms offer different characteristics as for the security, throughput and latency. All

ciphers are well-established and recognised and cover generally distinct fields of appli-

cation. This section, provides a description of the algorithms.

2.1 Present algorithm

2.1.1 Introduction of Present

Present is a lightweight cipher based on SP-network consisting of 31 rounds. The

block length is 64 bits and there are two key lengths(one 80 bits and the second 128 bits).

Each round passes through an S-box(Substitution Box)Layer and a P-Layer(Permutation

Layer). The current block cipher is one of the most popular and leanest lightweight al-

gorithms. The algorithm was proposed in 2007 and is now approved by the ISO/IEC

standard for security reasons along with accepted performance and cost [25]. At the

Table 2.1 we can see the characteristics of present block cipher.

block size key size rounds T

64 bit 80 bit 31

64 bit 128 bit 31

Table 2.1: Present block cipher operating parameters

When designing a block cipher suitable for extremely constrained environments, it

14

Chapter 2. Algorithms Description

is important to realize that the PRESENT block cipher was not designed to be suitable

for wide-spread use; we already have AES for that. Instead PRESENT targets some

very specific applications for which AES is unsuitable. These generally correspond to

the following properties[25].

• The cipher is to implemented in hardware.

• Applications will only require moderate security levels. Consequently, 80-bit se-

curity will be adequate.

• Applications are unlikely to require the encryption of large amounts of data.Implementations

might therefore be optimised for performance or for space without too much prac-

tical impact.

• In some applications it is possible that the key will be fixed at the time of device

manufacture. In such cases there would be no need to re-key a device (which

would incidentally rule out a range of key manipulation attacks).

• – After security, the physical space required for an implementation will be the

primary consideration. This is closely followed by peak and average power con-

sumption, with the timing requirements being a third important metric.

• In applications that demand the most efficient use of space, the block cipher will

often only be implemented as encryption-only. In this way it can be used within

challenge-response authentication protocols and, with some careful state manage-

ment, it could be used for both encryption and decryption of communications to

and from the device by using the counter mode

Hardware implementation of PRESENT has much higher throughput and requires a

half of gates compared to the implementation of the AES with similar key size[26],[25].

2.1.2 Present Encryption Block Cipher

PRESENT algorithm has 2 inputs: the plaintext(64-bits) and the key(80 or 128-bits)

and one output the ciphertext as shown at Fig 2.1.

15

Chapter 2. Algorithms Description

Figure 2.1: A top-level algorithmic description of present

Also the algorithm has 31 regular rounds and a final round that only consists of the

key mixing step.One regular round consists of 3 basic processes:

• Key Scheduling

• AddRoundKey

• SPN

First, the encryption process applies AddRoundKey to the input block be encrypted.

Plaintext values are xored with 64 MSB of the key.Then sBoxLayer is applied and each

value of AddRoundKey is replaced with S-Box value. Then pLayer(Permutation Layer)

to permutate the data. The output of this process is fed into the next round and the key

values are calculated from the Key Scheduling part. The reverse process is performed

for decryption of the data.

2.1.3 addRoundKey

Given round key Ki = ki63...k
i
0 for 1 ≤ i ≤ 32 and current STATE b63...b0 ad-

dRoundKey consists of the operation for 0 ≤ j ≤ 63

bj → bj ⊕ kkj

2.1.4 sBoxLayer

The S-box used in PRESENT is a 4-bit to 4-bit S-box S : F 4
2 → F 4

2 . The action of

this box is hexadecimal notation is given by the following Table 2.2.

16

Chapter 2. Algorithms Description

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 2.2: 4-bit S-Box Mapping.

For sBoxLayer the current STATE b63...b0 is considered as sixteen 4-bit words

w15...w0 where wi = b4∗i+3||b4∗i+2||b4∗i+1||b4∗i for 0 ≤ i ≤ 15 and the output nibble

S[wi] provides the updated state values in the obvious way.

2.1.5 pLayer

The bit permutation used in PRESENT is given in the Table 2.3.

Bit i of STATE is moved to bit position P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Table 2.3: Present Permutate

2.1.6 Key Schedule

Present’s key schedule consists of a 61-bit left rotation, an S-Box and an XOR with

round counter. Note that PRESENT uses the same S-Box for the datapath and the key

schedule, allowing for resource sharing. The user-supplied key is stored in a key register

and its 64 most significant bits serve as the round key. The key register is rotated left

by 61 bit positions, the leftmost four bits are passed through the PRESENT S-Box,

and the round counter value i is exclusive-ored with bits k19k18k17k16k15 of K with the

least significant bit of round counter on the right. After extracting the round key Ki,

the key register K = k79k78...k0 is updated as follows 2.2.

17

Chapter 2. Algorithms Description

Figure 2.2: The S/P network of present

1.[k79k78....k0] = [k18k17....k20k19]

2.[k79k78k77k76] = S[k79k78k77k76]

3.[k19k18k17k16k15] = [k19k18k17k16k15]⊕ roundcounter

Thus, the key register is rotated by 61 bit positions to the left, the left-most four

bits are passed through the present S-box, and the round counter value i is exclusive-

ored with bits k19k18k17k16k15 of K with the least significant bit of round counter on

the right[25].

2.2 Simon algorithm

2.2.1 Introduction of Simon

SIMON is a family of lightweight block ciphers developed by the NSA with the

goal of providing a cipher with optimal hardware performance. The Simon block cipher

with an n-bit word(and therefore a 2n-bit block) is denoted Simon2n, where n must be

16,24,32,48, or 64.The 32-bit block size versions are intended for the most restricted

applications, where a minimal level of security is required. The 48 and 96 bit variants

are primarily intended for EPC applications. The 64-bit versions are intended for a

variety of lightweight applications, and the 128-bit instantiations are for applications

where the highest security is required but where AES is unsuitable due to hardware

18

Chapter 2. Algorithms Description

or software constraints. Simon2n with an m-word (mn-bit) key will be referred to as

Simon2n/mn. The algorithm is engineered to be extremely small in hardware and easy

to serialize at various levels. The characteristics of the SIMON block cipher are given

at Table 2.4.

block size 2n key size mn word size n key words m const seq. rounds T

32 bit 64 bit 16 4 z0 32

48 bit 72 bit 24 3 z0 36

48 bit 96 bit 24 4 z1 36

64 bit 96 bit 32 3 z2 42

64 bit 128 bit 32 4 z3 44

96 bit 96 bit 48 2 z2 52

96 bit 144 bit 48 3 z3 54

128 bit 128 bit 64 2 z2 68

128 bit 192 bit 64 3 z3 69

128 bit 256 bit 64 4 z4 72

Table 2.4: Simon block cipher operating parameters

The aim of Simon was to fill the need for secure, flexible, and analysable lightweight

block ciphers. The algorithm offers excellent performance on hardware and software

platforms, is flexible enough to admit a variety of implementations on a given platform,

and is amenable to analysis using existing techniques. Perform very well across the full

spectrum of lightweight applications . The reason why the algorithm work so well on

each platform is because of very simple constructed. So it is very easy to find efficient

implementations. For algorithms such as AES it required longer time of research to find

near-optimal implementations [27],[28].

2.2.2 Simon Round Function

The Simon2n encryption maps make use of the following operations on n-bit words:

• bitwise XOR, ⊕

• bitwise AND, &

• left circular shift. Sj ,by j bits

19

Chapter 2. Algorithms Description

Figure 2.3: The Simon Round Function

Simon is a Feistel network with two branches using the following Fig 2.3 round function:

At the stage of encryption we have the data input (plaintext) where splits into two

same size words. We can see the encryption progress in the following function which is

the Feistel network. We denote as x the MSB digits of the data with y the LSB digits

and with k the key of the algorithm. At the end of each round output reversed with

input. So in the next round as MSB digits input of the function R will be the output of

the previous round and as input of LSB digits will be the input of the previous round

[29].

Rk(x, y) = (y ⊕ f(x)⊕ k, x)

where f(x) = (Sx&S8X) ⊕ S2x and k is the round key.The inverse of the round

function, used for decryption, is:

R−1
k (x, y) = (y, x⊕ f(y)⊕ k)

As for the decryption progress the only changes have to do with input data, output

data and the keys. More specific at the decryption progress MSB digits change with

LSB digits before become input in the first round. At the last round we make the same

20

Chapter 2. Algorithms Description

change with MSB and LSB digits. One more difference is that keys are reading from

the opposite for the entire decryption progress from the last to the first. For that reason

need to end first the key production and then to begin the decryption progress.

The round functions for Simon2n take as input an n-bit round key k, together with

two n-bit intermediate ciphertext words. The round function is the 2-stage Feistel map.

Fig 2.3 shows the effect of the round function Rki on the two words of sub-cipher

(xi+1, xi) at the ith step of this process.

2.2.3 Simon Key Schedule

The key schedule of SIMON is described as a function that will operate on two,

three or four n-bit word registers, depending on the size of the master key. It performs

two rotations to the right by x ≫ 3 and x ≫ 1 and XOR the results together with

a fixed constant c and five constant. The value c is a constant equal to (2n − 4). For

Simon2n with m key words km−1, ..., k1, k0 and constant sequence zj , round keys are

generated by:

Ki+m =


c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+1, ifm = 2

c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+2, ifm = 3

c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+3 ⊕ ki+1, ifm = 4

At this Fig 2.4 we see the Simon key schedule for mϵ{2, 3, 4}. The computation of

round key ki depends on ki−1 and ki−m and also ki−m+ 1 in the case of m=4.

Figure 2.4: For m = 2,3 and 4 key words

Because the key schedule is needed to turn a key into a sequence of round keys

the Simon algorithm for the key schedules employ a sequence of 1-bit round constants

specifically for the purpose of eliminating slide properties and circular shift symme-

tries. The designers provide some cryptographic separation between different versions

of Simon having the same block size by defining five such sequences: z0, z1, z2, z3, z4. At

Table 2.5 we can see the values of zj vectors [30],[31],[32].

21

Chapter 2. Algorithms Description

j zj
0 11111010001001010110000111001101111101000100101011000011100110

1 10001110111110010011000010110101000111011111001001100001011010

2 10101111011100000011010010011000101000010001111110010110110011

3 11011011101011000110010111100000010010001010011100110100001111

4 11010001111001101011011000100000010111000011001010010011101111

Table 2.5: The zj vectors used in the SIMON key schedule

2.3 Clefia algorithm

2.3.1 Introduction of Clefia

CLEFIA cipher is a 128-bit symmetrical block ciphering algorithm supports 128,

192, and 256-bit keys as we can see at Table 2.6 and provides improved cryptographic

security through the use of Diffusion Switch Mechanisms and whitening keys among

others, in order to ensure immunity against differential and linear attacks. This algo-

rithm is based on the well known and commonly used Feistel network structure. As in

most block ciphers, the input data is processed over several rounds, adding confusion

and diffusion with the input key. In this particular algorithm the data and key are

processed over 18, 22, or 26 rounds depending on the key sizes. The round computation

is exactly the same for each iteration [33].

block size key size rounds T

128 bit 128 bit 18

128 bit 192 bit 22

128 bit 256 bit 26

Table 2.6: Clefia block cipher operating parameters

Also clefia has good performance profile both in hardware and software, also can

provide a high security level along with good hardware and software implementation

capabilities, such as high-speed performance on a wide range of processors. We can see

that CLEFIA is an well studied algorithm about the security and implementation is

ready to use in practical system, we can use the algorithm for time sensitive applications,

smartcards, RFID tags sensor networks, medical devices[33],[34].

22

Chapter 2. Algorithms Description

2.3.2 Clefia Encryption Block Cipher

The encryption process takes a 128-bit input data block P = P0|P1|P2|P3, four

32-bit whitening keys WK = WK0|WK1|WK2|WK3, and several 32-bit round keys

RKi as data inputs. The resulting outputted ciphertext is a 128-bit cryptogram. At

Fig 2.5 we see the data processing part of clefia block cipher.

Figure 2.5: Structures of Data Processing Part

The first step of the encryption process is to XOR the second and fourth words of

the plaintext (P1 and P3) with the first and second 32-bits of the original key (WK0

and WK1), performing the first key whitening procedure. After this operation the

rounds are executed. Each round is computed by a 4-branch Feistel structure, defined

by GFN4,n, where n is the number of rounds to be computed. The round computation

23

Chapter 2. Algorithms Description

contains two parallel non-linear F functions per round, where a copy of the first and

third words, and two round keys, are their respective inputs[35].

In the final round the second and fourth final words are XORed with the last two

whitening keys. Besides the round keys addition, the F0 and F1 functions employ two

different types of 8-bit S-Boxes (S0 and S1) and two distinct diffusion matrices (M0

and M1)[36].

For the input 128-bit plaintext (P = P0|P1|P2|P3 the output ciphertext (C =

C0|C1|C2|C3 calculated as follows:

1. C0
0 = P0, C

0
1 = P1 ⊕WK0, C

0
2 = P2, C

0
3 = P3 ⊕WK1.

2. For i = 1 to r − 1

Ci
0 = Ci−1

1 ⊕ F0(C
i−1
0 , RK2i−2), C

i
1 = Ci−1

2 ,

Ci
2 = Ci−1

3 ⊕ F1(C
i−1
2 , RK2i−1), C

i
3 = Ci−1

0 .

3. Cr
0 = Cr−1

0 , Cr
1 = Cr−1

1 ⊕ F0(C
r−1
0 , RK2r−2)⊕WK2,

Cr
2 = Cr−1

2 , Cr
3 = Cr−1

3 ⊕ F1(C
r−1
2 , RK2r−1)⊕WK3.

The structure of F0, F1 functions are shown in Figs ??, ??.

2.3.3 Key Scheduling

Since each round uses two 32-bit round keys a total of 36, 44, or 52 round keys

(depending on the number of rounds) are needed, plus 4 additional whitening keys.

These round keys are obtained using the specified key schedule algorithm.The whitening

key (WK) generation is accomplished according to the key size [37]. For a 128-bit input

key, the four 32-bit whitening keys are obtained directly from the input key, by:

WK0|WK1|WK2|WK3 ← K.

For the 192 or 256-bit input keys, the value is divided into two 128-bit blocks, KL and

KR, as shown by:

KL||KR← K0|K1|K2|K3 || K4|K5|K0|K1 : K
192

24

Chapter 2. Algorithms Description

KL||KR← K0|K1|K2|K3 || K4|K5|K6|K7 : K
256

The corresponding whitening key is then computed by:

WK = KL⊕KR

The key expansion of a 128-bit key uses the same 4- branched GFN network used for

the CLEFIA main encryption process. The differences in the 128-bit key expansion is

that the input data of the GFN structure is now the input key itself, and the round keys

are replaced with predefined constants.When considering the key schedule for the 192

and 256- bit keys, the GFN network becomes an 8-branch structure (GFN8,n). In this

case, the input value is a combination of K = KL||KR. The 8-branch Feistel structure

uses the same two non-linear F functions, twice per round and processes eight input

words on each round.Instead of a ciphered text, the output of the GFN structure, in

the key expansion process, is either a 128- bit block (L), for 128-bit input keys, or two

128-bit blocks (LL and LR) for the remaining key sizes. After the GFN computation is

completed, the result (L or LL and LR) is expanded in an iterative way using a double

swap (Σ) function, as:

L = Σ(L)

LL = Σ(LL)

LR = Σ(LR)

The Σ function swaps several bits of its 128-bit input and returns another equally

sized output, specified by:

Σ(X) = X[7− 63]|X[121− 127]|X[0− 6]|X[64− 120]

With this, the 32-bit round keys are obtained by adding alternately the L, K, and

Σ(X) values with another predefined set of constants.

2.3.4 Functions F0, F1

The functions uses two different S-box with 8-bit input and output and two different

tables M0,M1 Figures 2.6, 2.7.

25

Chapter 2. Algorithms Description

Figure 2.6: F0 Function

Figure 2.7: F1 Function

The 32-bit output (Ti, Ti ∃ {0, 1}32) calculated as follows:

1. Ti = Ci−1
0 ⊕RK2i−2

2. Let Ti = Ti,0|Ti,1|Ti,2|Ti,3, Ti,j ∃ {0, 1}8 (j = 0, 1, 2, 3),

Ti,0 = S0(Ti,0), Ti,1 = S1(Ti,1), Ti,2 = S0(Ti,2), Ti,3 = S1(Ti,3).

(Ti,0, Ti,1, Ti,2, Ti,3)
T = M0(Ti,0, Ti,1, Ti,2, Ti,3)

T

2.3.5 Tables M0,M1

The multiplications of a matrix and a vector are performed in GF (28) defined by

the lexicographically first primitive polynomial z8+z4+z3+z2+z1+1. Tables M0,M1

are defined at Figure 2.8.

Figure 2.8: Tables M0,M1

26

Chapter 2. Algorithms Description

2.3.6 Clefia Sboxes

Tables S0, S1 are defined at Fig 2.9

Figure 2.9: Tables S0, S1

2.3.7 DoubleSwap Function

The DoubleSwap function Σ : {0, 1}128 → {0, 1}128 is defined as follows:

X128 → Y128

Y = X[7− 63]|X[121− 127]|X[0− 6]|X[64− 120]

Where X[a− b] denotes a bit string cut from the a-th bit to the b-th bit of X.

Figure 2.10: DoubleSwap Function

27

Chapter 3

Platforms

3.1 The structure of FPGAs

FPGA (Field programmable Gate Array) provide programmable logic resources

that enable users to implement custom functions at the hardware level. These logic

resources can be programmed at the ”field” several times (they can be ”reconfigured”)

to realise different functions over time as opposed to fixed hardware. They are built

around an array of programmable logic blocks embedded in a sea of programmable

interconnects. This array is often referred to as the programmable logic fabric or just

the fabric . At the edges are programmable I/O blocks designed to interface the fabric

signals to the external world. It was this set of innovations that sparked the FPGA

industry. Fig 3.1 shows a basic architecture of an FPGA [38].

Interestingly, nearly all the other special FPGA features such as carry chains, block

RAM, or DSP blocks can also be implemented in programmable logic. This is in fact the

approach the initial FPGAs took and users did implement these functions in LUTs.

However, as the FPGA markets developed, it became clear that these special func-

tions would be more cost effective as dedicated functions built from hard gates and

later FPGA families such as the Xilinx 4 K series and Virtex began to harden these

special functions. This hardening improved not only cost but also improved frequency

substantially [38].

28

Chapter 3. Platforms

Figure 3.1: Overview of FPGA architecture [5].

Within any FPGA family, all devices will share a common fabric architecture, but

each device will contain a different amount of programmable logic. This enables the

user to match their logic requirements to the right-sized FPGA device. FPGAs are also

available in two or more package sizes which allow the user to match the application

I/O requirements to the device package. FPGA devices are also available in multiple

speed grades and multiple temperature grades as well as multiple voltage levels. The

highest speed devices are typically 25 the lower speed devices. By designing to the

lowest speed devices, users can save on cost, but the higher performance of the faster

devices may minimize system level cost [38].

Modern FPGAs commonly operate at 100–500 MHz. In general, most logic designs

which are not targeted at FPGA architectures will run at the lower frequency range, and

designs targeted at FPGAs will run in the mid-frequency range. The highest frequency

designs are typically DSP designs constructed specifically to take advantage of FPGA

DSP and BRAM blocks [38].

Also for varying requirements, a portion of an FPGA can be partially reconfigured

while the rest of an FPGA is still running. Any future updates in the final product

can be easily upgraded by simply downloading a new application bit-stream. However,

the main advantage of FPGAs i.e. flexibility is also the major cause of its drawback.

Flexible nature of FPGAs makes them significantly larger, slower, and more power

consuming than their ASIC counterparts. These disadvantages arise largely because of

29

Chapter 3. Platforms

the programmable routing interconnect of FPGAs which comprises of almost 90% of

total area of FPGAs. But despite these disadvantages, FPGAs present a compelling

alternative for digital system implementation due to their less time to market and low

volume cost [38].

3.2 Platforms

During this thesis experiments on software and on hardware were made. The equip-

ment used for the software tests was a generic Laptop CPU(Intel Core I5-4200U) a

server(Intel Xeon E5-2630 v4) and also a CPU from Zedboard(ARM Cortex-A9) and

a CPU from Kria Kv260(ARM Cortex-A53). For the hardware implementation, tests

were made on Kria Kv260 FPGA.

3.2.1 Kria KV260 Vision AI Starter Kit

The Xilinx Kria KV260 Vision AI Starter Kit is comprised of a non-production

version of the K26 system-on- module (SOM), carrier card, and thermal solution. The

SOM is very compact and only includes key components such as a Zynq UltraScale+

MPSoC based silicon device, memory, boot, and security module. The carrier card

allows various interfacing options and includes a power solution and network connectors

for camera, display, and microSD card. The thermal solution has a heat sink, heat sink

cover, and fan. The Kria KV260 Vision AI Starter Kit is designed to provide customers

a platform to evaluate their target applications and ultimately design their own carrier

card with Xilinx K26 SOMs. While the SOM itself has broad AI/ML applicability

across markets and applications, target applications for the Kria KV260 Vision AI

Starter Kit include smart city and machine vision, security cameras, retail analytic,

and other industrial applications.

30

Chapter 3. Platforms

Figure 3.2: Kria Platform

The Kria KV260 Vision AI Starter Kit is an evaluation platform for the K26 SOM

focused on machine learning acceleration in vision applications. The kit brings together

a Zynq UltraScale+ MPSoC based SOM with user selectable, vision focused peripherals

and a set of pre-built accelerated applications. It offers flexibility in both hardware and

software applications. The following table shows the most important PL features.

Parameter KV260

System logic cells 256,000

Block Ram blocks 144

DSP slices 1,200

Ethernet interface One 10/100/1000 Mb/s

DDR memory 4GB(4*512Mb*16 bit)

UltraRAM blocks 64

Table 3.1: KRIA KV260 Specifications

31

Chapter 3. Platforms

Figure 3.3: Interfaces and Connectors

32

Chapter 4

FPGA Implementation

4.1 Architecture Analysis

This section explains the actual hardware accelerator developed in this work. As

described previously, the design is made on a Xilinx Kria kv260 FPGA. Next subsection

first shows the general architecture of the accelerator. Each algorithm is divided into

several logic parts and that will be explained at the next sections in more details.

4.1.1 System Architecture

The entire hardware accelerator is divided into multiple separate blocks, each of

which has its own control and can do the tasks for which it was created. It is simpler

to build a large system and ensure that every block completes its own mission without

errors when a system is divided into smaller units. Figure 4.1 the main building blocks

and connections of the acceleration system. The Zynq Ultrascale+ MPSoC core is the

first block in the left. This core serves as the Zynq Processing system CPU, making it

the block in charge of managing the entire system. Direct signals or data can be sent

to the FPGA hardware accelerator by a C program running on an ARM core of the

Zynq Programmable System with bare metal method. With bare metal programming

we meant the programming without various abstraction layers, or as some experts put

it without an operating system backing it. When interacting with a system, bare-metal

programming takes into account the hardware’s unique construction.

33

Chapter 4. FPGA Implementation

In many cases, bare-metal programming concentrates on the operation of the CPU

and other system components, interacting with the BIOS and boot sequence, and writ-

ing straightforward code modules to produce particular outputs based on the hard-

ware configuration. Instead than relying on tools like complicated compilers, with that

method we can work directly with the hardware by using languages like C and C++.

The Vitis Bare-Metal app runs on the board’s processing system. The purpose is to

enable and control UART communication between the user and the design. The serial

connection allows the user to send instructions to the PS and receive output. Users

can perform a encryption with one of the three lightweight algorithms(Simon, Present,

Clefia) by entering the data they want to encrypt.

34

Chapter 4. FPGA Implementation

Figure 4.1: A condensed representation of the hardware accelerator system, including
all significant components.

The custom blocks that implement each of the three algorithms receive the input

data for the encryption process from the Zynq Processing Core via a Direct Memory

Access (DMA) block. Without using the CPU, a DMA block moves data from one area

to another(Processing System to Programmable Logic and vice versa). The DMA only

needs to be configured once, at the beginning of the transfer, after which the CPU can

carry on with other tasks while the DMA sends the data. Data stored at a specified

position in the memory is to be sent directly to the custom blocks, as instructed by the

Zynq core to the DMA block. The DMA block then transfers the data after waiting for

the other blocks to finish processing it. The data transfer between Processing System

and Programmable Logic is done with the AXI4 Stream protocol, the details about

this protocol are provided in subsection 4.5.2. The first block on custom blocks (Stream

interface input) is the initial block that receives the data from the DMA block. This

block is in charge of obtaining the streaming data from DMA block, rearranging it, and

then transmitting it over a 64-bit connection to the encryption process block. After the

encryption process is done the encrypted data goes back to the DMA block as a stream

data.

35

Chapter 4. FPGA Implementation

4.1.2 Data transfer with DMA and configuration

An AXI DMA core (provided by Xilinx) is utilized to transmit data from the Zynq

Processing Core to the lightweight algorithm block and back to the Processing Core.

This section will describe the connections between the DMA block and the other blocks

as well as the controls and configuration of the DMA will be covered in further detail.

The Advanced eXtensible Interface (AXI) is used by the DMA to connect with other

blocks. This protocol is a component of the advanced microcontroller bus architecture

(AMBA) standard. AMBA bus architecture is very useful for DMA operations also for

connecting blocks in System on Chip (SoC). As we can see in figure 4.1 the DMA has

five channels for transferring data. The AXI4 Read Master to AXI4 memory-mapped to

stream (MM2S) Master and AXI stream to memory-mapped (S2MM) Slave to AXI4

Write Master are the primary high-speed DMA data transfer components between

system memory and the stream target.

The MM2S channel and S2MM channel operate independently. The AXI DMA

offers automatic burst mapping, 4 KB address boundary protection (when configured

in non-Micro DMA), the ability to queue multiple transfer requests, and practically the

whole bandwidth of the AXI4-Stream buses. To communicate user application data to

the target IP, the MM2S channel provides an AXI Control stream. An AXI Status

stream is made available for the S2MM channel to receive user application data from

the target IP.

The Vivado Design Suite settings can be used to adapt the DMA block for a par-

ticular application. First the required connections are established and both MM2S and

S2MM channels are enabled. Another setting is width of buffer length register of 20

bits and the address width is set to 32 bits. Also for the channels where DMA reads

and writes from and to the stream interface (S2MM and MM2S) is set to 64 bits be-

cause the AXI Stream interface designed to be 64-bit. After finish the implementation

and the synthesis in the Vivado we export the hardware for having access on Vitis

where a program will run for controlling the PS side. After exporting the hardware

Xilinx provide some standard functions and libraries that we need to configure and

initialize(XAxiDma LookupConfigBaseAddr,AxiDma CfgInitialize) the DMA for

the data transfer. As previously mentioned, the Zynq Processing System manages the

DMA using a memory-mapped AXI Lite interface. This indicates that a fixed address

36

Chapter 4. FPGA Implementation

in the system’s memory is directly mapped to the status and control registers. The

mapping for the various DMA status and control register is contained in a single, con-

tinuous block of memory, and it can be accessed using a fixed base address as offset.

The DMA’s data-sheet [39] contains the offset value of each register. Every channel

uses five 32-bit registers so they can run independently of one other. At the program

that we run on PS the data that is to be processed first is written to a specific position

in the PS memory by the software. Secondly, a signal that resets the DMA control

registers is transmitted. The address is then written to the lower address register as

the source for the MM2S or the destination for S2MM channels. After we decide the

length of the transfer packet that we want to sent, bytes is written to the appropriate

register. Data is then sent through the AXI Stream interface by the DMA which has

now begun reading data from the memory. In the opposite direction in order to write

data back to memory, DMA waiting for the respective lightweight algorithm to finish

the encryption process to load the results into the memory and display them back to

Processing System.

4.1.3 Custom Blocks

Data from the DMA is sent to the lightweight cryptography algorithm block through

an AXI Stream connection. In this connection the DMA’s port is the master and the

algorithm’ s block port is the slave because data is flowing from the DMA to the

algorithm block. The DMA master informs the slave that is prepared to begin data

transfer after receiving the data to be processed from the PS. The slave responds by

letting the master know that is prepared to begin receiving the data. Every cycle a

new 64-bit word is sent from the master to slave as long as both sides are available.

The slave only needs to deassert the ready signal if it is unable to follow the master for

some reason. When the master recognizes this, it will stop transmitting new data until

the slave is once more prepared. For controlling the signals when the DMA is ready

or when the Stream interface is ready to take or sent some data a State Machine is

made. From the opposite side when the Stream interface sent data to DMA, the AXI

Stream port is the master and the Dma port is the slave. The 64-bit word where is the

result of the processing process is placed on the Dma after this packet has been read

and the ready signal is asserted. Every cycle a new word is transferred once the slave

is prepared as well. The lightweight algorithm is looking for new data after the the last

37

Chapter 4. FPGA Implementation

word of the packet is sending.

4.2 Architecture of Present Encryption

In this work, the cryptographic hardware of the present algorithm was based on

the model from its developers, Bogdanov rt al. (2007) for the version with block size

of 64 bit and 80 bit key. Present’s architecture is modular with each specific operation

performed by a module or component managed by the control module, which is properly

connected to the Present top encryption module. The functions of each module that

make up the architecture are described below.

4.2.1 Top Module

Figure 4.2 presents the main diagram of the algorithm. All the components are

described below.

Figure 4.2: Present Top Module.

The add on modules of top level described below:

• Register for text:Register for the Plaintext and the encrypted at each round of

the algorithm text(64 bits).

• Register for key:Register for the original key and the generated keys at each

round of the algorithm with size(80 bits).

• MUX(1):This mux is responsible for the selection of the Plaintext or the Ci-

phertext at each round of encryption process.

38

Chapter 4. FPGA Implementation

• MUX(2):This mux is responsible for the selection of the Original Key or the

generated round Keys at every round of encryption process.

4.2.2 Module sBoxLayer

This module aims to perform substitution operations based on the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 4.1: 4-bit S-Box Mapping.

For sBoxLayer the current STATE b63....b0 is consider as sixteen 4-bit words w15...w0

where wi = b4∗i+3||b4∗i+2||b4∗i+1||b4∗i for 0 ≤ i ≤ 15 and the output nibble S[wi]

provides the updated state values in the obvious way.

The VHDL algorithm for the substitution uses CASE and WHEN operations. Part of

the sBoxLayer operation algorithm is displayed in the table 4.1, where in order to meet

the need to display the 64-bit vector of text for encryption round, 16 modules where

instantiated to perform the substitution operation.

4.2.3 Module pLayer

This module performs simple (bitwise) permutation operations of an array of 64-

bits with the data coming from sBoxLayer.

The bit permutation used in PRESENT is given by the following table.

Bit i of STATE is moved to bit position P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Table 4.2: Present Permutate

It is worth mentioning that for the permutate layer operation, the most significant

bit ordering (MSB) to the least significant bit (LSB) of the 64-bit vector, occurs from

39

Chapter 4. FPGA Implementation

left to right. on the right, as shown in table 4.2.

4.2.4 Module Key Schedule

PRESENT can take keys of either 80 or 128 bits. However we focus on the version

with 80-bit keys. The user-supplied key is stored in a key register K and represented

as k79k78...k0. At round i the 64-bit round key Ki = k63k62...k0 consists of the 64

leftmost bits of the current contents of register K.This module performs original key

update operations, aiming to attend the operation of adding the round key, which is

performed along with the text at each round of encryption. The key schedule updated

every round according to the following steps:

1.[k79k78....k0] = [k18k17....k20k19]

2.[k79k78k77k76] = S[k79k78k77k76]

3.[k19k18k17k16k15] = [k19k18k17k16k15]⊕ roundcounter

In vhdl code, first the 19 LSB of the key are permuted and become the MSB of the key.

Then the leftmost 4 bits goes into sBoxLayer operation and finally the bits from 19

to 15 of the key that is being updated are xored with the bits of the round counter

variable that represent in which round the algorithm is.Need to say also that for the

operation of the key schedule the round key is performed through an xor operation of

the bits of the text block (64 bits), with the 64 bits of the key from key schedule that

updated each round of encryption.

4.2.5 Module State Machine

This module manages modules and circuits aiming at enabling and correct selection

of data at each round of encryption, as well as proper signaling at the end of the

plaintext encryption process(64 bits).This control module has 4 stages:

40

Chapter 4. FPGA Implementation

Figure 4.3: State Machine Diagram.

• STOP:Stop the process or initial the parameters.

• LOAD:Load the register with Plaintext(64 bits) and Key register(80 bits) and

perform the round key addition operation.

• ENC:Run the necessary rounds of encryption. In this implementation are per-

formed 31 rounds of encryption.

• READY:Signals for reading the ciphertext after the encryption process.

4.3 Architecture of Simon Encryption

The cryptographic hardware of the simon algorithm was based on the model from

the paper [28] for the version with 64 bit block size and 128 bit key. The simon block

cipher implemented in VHDL language for the FPGA usage.

4.3.1 Top Level Module

Simon block cipher implemented as a full-loop unrolling architecture. The number

of clock cycles required to encrypt a block of data or decrypt a block of data is reduced

by a factor of K (K - rounds), and the minimum clock period is reduced by a factor

slightly smaller than K giving an overall increase in throughput and decrease in latency

while simultaneously resulting in an increase the area more or less proportional to K

due to unrolling of combinational logic of round and key expansion functionality as well

41

Chapter 4. FPGA Implementation

as the number of simultaneously stored round keys. A simple diagram with inputs and

outputs from simon block cipher are shown in figure 4.4.

Figure 4.4: Top Level Diagram.

In that top level module an FSM machine have been created at VHDL language.

The machine is responsible for taking the data from outside and send the data out

when it’s ready. The FSM include 4 states:

• IDLE

• STABILIZE

• WRITE CIPHERTEXT

• LAST STATE

Firstly, the algorithm can accept data from the DMA controller when the state

is idle. In that state 64 bit of plaintext data are written. After that fsm wait for the

algorithm for the encryption process of the data. At write ciphertext state the simon

algorithm has finished with the data encryption and is ready to send the data back to

dma. Figure 4.5 shows the diagram of the fsm.

4.3.2 Module Key Schedule

Key schedule for SIMON block cipher provides key expansion capabilities by subse-

quently generating all round keys from the master. For the implementation of SIMON

with 64 bit block and 128 bit key size the key schedule generates 44 round keys with

32 bit size where they provided from master key with size 128 bit. For the key sched-

ule round i and constant c is needed to generate the round keys. The key expansion

function utilizes the following operations:

42

Chapter 4. FPGA Implementation

Figure 4.5: Simon FSM.

• Bitwise XOR, denoted as x⊕ y.

• Right bitwise rotation ROR, denoted as Sy(x) where y is the rotation count.

Figure 4.6: Simon 4-word key expansion.

The key expansion is expressed as:

Ki(k, c, zi) = F (ki+3, ki+1)⊕ S−1(F (ki+3, ki+1))⊕ ki ⊕ c⊕ (zj)i

Where:

F (x, y) = S−3(x)⊕ y.

After the expansion operation, the cached round keys are rotated to the right,

discarding the first and replacing the last with the newly generated round key. ki = ki+j

for j = 0, 1, 2 and ki+3 = Ki(k, c, zj)

The Key Schedule is implemented as a combinational circuit were the round keys

are generated from master key, also two constants c and z3 are combined into a single

constant C = c⊕ z3 for efficiency purposes.

43

Chapter 4. FPGA Implementation

4.3.3 Round Function

The round function module for simon block cipher is implemented in vhdl language

as combinational circuit as expressed at chapter 2.2.2. For that purpose shift right, left

operations and logic gates xor, and are used to help the implementation of that module.

To implement full unrolling we repeated the round K = 44 times, interconnecting

each round with the following one and connecting each round to the appropriate signal

supplying the round key from the unrolled key scheduling circuit. In this way, 44 round

function operates are performed inside a single clock cycle to encrypt the plaintext,

converting it into ciphertext. The architecture of round function module is shown in

figure 4.7.

Figure 4.7: Simon Round Function.

For the Encryption process of simon block cipher no RAM is required.

4.4 Architecture of Clefia Encryption

For use with FPGAs, the Clefia block cipher has also been implemented with VHDL

language. The algorithm used in this work was created using the original specs and a

verilog version made available by Sony Corporation (2010). The version of this method

that was put into into practice has a block size of 128 bits and a key size of 128 bits. As

already mentioned in the section 2.3.1, clefia employs a four-branch Generalized Feistel

structure (GF4N) with two functions F(f 0 and f 1). Below is a description of each

module that makes up the architecture.

44

Chapter 4. FPGA Implementation

4.4.1 Top Module

At previous sections described the modules for key scheduling and encryption pro-

cess of the algorithm, here the top level block diagram of the algorithm is shown at Fig

4.8.

Figure 4.8: Clefia Top Level

The add on modules of top level described below:

• MUX1:This mux has 2 inputs, the plaintext and the encrypted text of each

round of encryption process, so the mux is responsible to choose the plaintext or

the ciphertext at each round.

• Register for text: Register for Plaintext and encrypted text for every rounds

of encryption process.

• Register for key:Register for the original key and the round keys that generated

at each round of the algorithm.

• Counter: A 5-bit counter that counts the rounds for key generation and encryp-

tion process of the algorithm.

• MUX2:This mux has 3 inputs, the original key, the data derived from key sched-

45

Chapter 4. FPGA Implementation

ule module for generating the intermediate key L and the text derived from reg-

ister text for the encryption process of the algorithm.

4.4.2 Modules S0,S1

S0 and S1 are nonlinear 8-bit S-boxes. In these tables all values are expressed in

hexadecimal form, suffixes ’0x’ are omitted. For an 8-bit input of an S-box the upper

4-bit indicates a row and the lower 4-bit indicates a column. The S0 and S1 modules,

described in VHDL and use operations like with, select, when, for its construction.

Figure 4.9: Tables S0, S1

4.4.3 Module M0

These two modules M0 and M1 performs two matrices with multiplication opera-

tions on GF (28) (Galois Field) which is defined by the primitive polynomial z8 + z4 +

z2+1 to ensure an adequate level of security and resistance to attacks. Modules M0 and

M1 takes the data from S0 and S1 respectively. At next figure we can see the matrix

M0.

Figure 4.10: Matrix M0.

The VHDL algorithm implementation of matrix M0 uses the following steps. M0 ma-

46

Chapter 4. FPGA Implementation

trix decomposed into three matrices.The result is the sum of multiplication in GF (28)

where the variables X0, X1, X2, X3 represent the inputs and the variables Y0, Y1, Y2, Y3

represent the output of the multiplication process. Module M0 implemented as follow.


Y0

Y1

Y2

Y3

 =


01 02 04 06

02 01 06 04

04 06 01 02

06 04 02 01




X0

X1

X2

X3

+


01 00 00 00

00 01 00 00

00 00 01 00

00 00 00 01




X0

X1

X2

X3

+


00 02 00 02

02 00 02 00

00 02 00 02

02 00 02 00




X0

X1

X2

X3



+


00 00 04 04

00 00 04 04

04 04 00 00

04 04 00 00




X0

X1

X2

X3


After that step, some variables that help the multiplication process are shown.

For the multiplication with 0x02 and 0x04 two functions (F2 and F4) were con-

structed.

4.4.4 Module M1

For that module same logic with module M0 were. Here there is two functions (F2

and F8) that represent the multiplication by 0x02 and 0x08.

Figure 4.11: Matrix M1.

M1 matrix decomposed into three matrices.The result is the sum of multiplication

47

Chapter 4. FPGA Implementation

in GF (28) where the variables X0, X1, X2, X3 represent the inputs and the variables

Z0, Z1, Z2, Z3 represent the output of the multiplication process. Module M1 imple-

mented as follow.


Z0

Z1

Z2

Z3

 =


01 08 02 0a

08 01 0a 02

02 0a 01 08

0a 02 08 01




X0

X1

X2

X3

+


01 00 00 00

00 01 00 00

00 00 01 00

00 00 00 01




X0

X1

X2

X3

+


00 00 02 02

00 00 02 02

02 02 00 00

02 02 00 00




X0

X1

X2

X3



+


00 08 00 08

08 00 08 00

00 08 00 08

08 00 08 00




X0

X1

X2

X3


After that some variables that helps the multiplication process are shown similarly with

MO construction.

4.4.5 Module F0

F0 module has structural implementation with components of M0, S0 and S1 mod-

ules.This module has as input 32-bit with text and 32-bit with round keys. The text

input of 32-bit is divided into 4 inputs of 8-bit(x0, x1, x2, x3) which are xored first with

8-bit round keys inputs(k0, k1, k2, k3). The result of that operations comes as input in

4 S-boxes (two S0 and two S1) and the output of that modules being connected to the

M0 module, ultimately generating 32-bit output Y from the module F0.

48

Chapter 4. FPGA Implementation

Figure 4.12: Function F0 of Clefia.

For VHDL implementation of F0 module the input is 64-bit (32-bit text and 32-bit

key) and the output is 32-bit. The inputs are subdivided into 8 bytes (4 text bytes

and 4 key bytes) in order to perform F0-specific calculations.

4.4.6 Module F1

The F1 module has a similar structure with F0 module were the 8 bytes input

are being 4 bytes for the text (X0, X1, X2, X3) and xor operations with 4 bytes key

(k0, k1, k2, k3), the outputs are connected to the inputs of the S modules (two S0 modules

and two S1), and also M1 matrix exist instead of M0 from function F0.

Figure 4.13: Function F1.

For VHDL implementation of F1 module the input is 64-bit (32-bit text and 32-bit

key) and the output is 32-bit. The inputs are subdivided into 8 bytes (4 text bytes

and 4 key bytes) in order to perform F1-specific calculations.

49

Chapter 4. FPGA Implementation

4.4.7 Module GF4N

This module includes the so-called Generalized Feistel Network which is composed

of modules such as F0 and F1 and a few more modules and circuits aiming to meet the

specifies of the algorithm, such as:

• Module WK: PerformWhitening Key operations in which two original keywords

are added through an xor operation with two words of text, at the initial and the

final round of encryption process.

• Module Shift: Perform permutation (shift the data lines to the left) before the

next round except the last.

• MUX1: This mux is responsible for the selection of data from the input of GF4N

or the WK module that will be submitted to modules F0,F1 and shift.

• MUX2: This mux is responsible for selecting the data to be submitted to the

WK module. Either input plaintext, either the output from functions F0,F1

• MUX3: This mux is responsible to select at the last round the data which are

not shifted.

• MUX4: This mux is responsible for the selections of the output data in which,

in the last round of encryption the selected data is derived from WK module.

The GF4N module described in VHDL is formed by the instances of modules

F0,F1,WK,SHIFT and multiplexer circuits.

Figure 4.14: GF4N Diagram.

50

Chapter 4. FPGA Implementation

4.4.8 Module Key Schedule

This module aims to meet the key generation operations Round Keys, which are

used each round during the encryption process.The version of CLEFIA implemented

at this thesis uses an original key with a size of 128 bits and for this architecture a

total of 36 32-bit keys are generated, two for each round of encryption, of a total of 18

rounds of encryption.

For generation of Round Keys an intermediate key of 128 bits is first required. This

intermediate key is generated from the original key, which is subjected to GF4N for 12

rounds (without WKs) and for the L generation process the round keys are predefined

constants which in this implementation comes from a ROM memory module. At the

end of 12 rounds the K is stored in a register and will be used to generate the round

keys for the encryption process.

During the encryption process, round keys are generated from xor operations and

permutations that used from the intermediate key L, the original key and predefined

constants.WK which is used in the first and the last round of encryption, is generated

by splitting the original key of 128 bits in four words(32 bits each).

Figure 4.15: Generating Keys.

The Key schedule module is composed of the following modules and circuits:

• Module Constant: A memory module that stores the predefined constants de-

fined by the CLEFIA developers being 60 constants of 32 bits, which are used in

the generation of L and round keys.

• Register L key: Register for intermediate key L.

51

Chapter 4. FPGA Implementation

• Module T key: This module performs xor operations at each encryption round

with part of the intermediate key L (64-bit), part of the original key K (64 bit)

and two constants (64 bit).

• Double Swap: This module performs permutation operations with the data of

the output of the L key register.

• MUX1: This mux is responsible for selecting the input of the L register, and

during the process of generating the intermediate key L(12 rounds), the selection

is provided from the output of the GF4N module or the selected input comes

from the output of the Double Swap permutation module during the generation

process of the Round Keys.

• MUX2: This mux is responsible for selecting the output of the round keys,

which during the generation of L comes from the constant module and during the

generation of Round Keys output comes from the T key module.

Figure 4.16: Module key schedule

4.4.9 Module Control

The control of modules and selectors for multiplexers for taking the correct signals

for data lines at each round either for key generation or for encryption process is

performed by this control module.

This module is a state machine module with 5 States with the description below:

52

Chapter 4. FPGA Implementation

• SM STOP: Stop the process or initial parameters.

• SM LOAD: Load the register with Plaintext(128 bit) and Key register(128 bit).

• SM L KEY:At this state the intermediate key L is generated, which is used in

the process of generating keys for the rounds. 12 rounds (iterations) are executed

in this state (counter 1 to 12).

• SM ENC:Run the necessary rounds of encryption. In this implementation are

18 rounds of encryption performed (counter 13 to 30).

• SM READY:At this state signals for reading the ciphertext after the encryption

process are implemented.

Figure 4.17: State Machine

4.5 Tools

For this thesis, the Vivado design tool version 2021.1 was used to implement the

algorithms in the hardware and the Vitis tool version 2021.1 to test the algorithms in

the software.

4.5.1 Communication between Software and Hardware

The use of FPGA and and a processor combines the benefits of a programmable

logic (PL) component and microprocessor. This solution is actually adopted to validate

the functionality of such hardware applications that require important complexity and

large data to deal with. Furthermore, heterogeneous on-chip designs consume less power

and have lower cost and higher reliability than multi chip systems. Inside the Zynq

53

Chapter 4. FPGA Implementation

architecture, the software is programmed into the processing system (PS) and hardware

implementation is located in the PL. Xilinx adopted the Advanced extensible Interface

AXI4 of the Advanced Micro controller Bus Architecture (AMBA) protocols it is used

to exchange data between PS and PL in an efficient and flexible way.

Figure 4.18: Communication between PS and PL

4.5.2 AXI Protocol

AXI is part of ARM AMBA, a family of micro controller buses first introduced in

1996. The first version of AXI was first included in AMBA 3.0, released in 2003. AMBA

4.0, released in 2010, includes the second major version of AXI, AXI4.

There are three types of AXI4 interfaces:

• AXI4: For high-performance memory-mapped requirements.

• AXI4-Lite: For simple, low throughput memory-mapped communication (for

example, to and from control and status registers).

54

Chapter 4. FPGA Implementation

• AXI4-Stream: For high-speed streaming data.

Figure 4.19: AXI interconnection flowchart.

4.5.3 How AXI Works

The AXI specifications describe an interface between a single AXI master and

AXI slave, representing IP cores that exchange information with each other. Multiple

memory-mapped AXI masters and slaves can be connected together using AXI infras-

tructure IP blocks. The Xilinx AXI Interconnect IP and the newer AXI Smart Connect

IP contain a configurable number of AXI-compliant master and slave interfaces, and

can be used to route transactions between one or more AXI masters and slaves. The

AXI Interconnect architecture use a traditional, monolithic crossbar approach;

Both AXI4 and AXI4-Lite interfaces consist of five different channels:

• Read Address Channel.

• Write Address Channel.

• Read Data Channel.

• Write Data Channel.

55

Chapter 4. FPGA Implementation

• Write Response Channel.

Data can move in both directions between the master and slave simultaneously, and

data transfer sizes can vary. The limit in AXI4 is a burst transaction of up to 256 data

transfers. AXI4-Lite allows only one data transfer per transaction.

The following Fig 4.20 shows how an AXI4 read transaction uses the read address

and read data channels.

Figure 4.20: Channel Architecture of Reads

Fig 4.21 shows how a write transaction uses the write address, write data, and write

response channels.

Figure 4.21: Channel Architecture of Writes

56

Chapter 4. FPGA Implementation

Fig 4.22 shows a transaction for AXI4 Stream interface.

Figure 4.22: AXI4-Stream Handshake

As shown in the preceding figures, AXI4:

• Provides separate data and address connections for reads and writes, which allows

simultaneous, bidirectional data transfer.

• Requires a single address and then bursts up to 256 words of data.

The AXI4 protocol describes options that allow AXI4-compliant systems to achieve

very high data throughput. Some of these features, in addition to bursting, are: data

upsizing and downsizing, multiple outstanding addresses, and out-of-order transaction

processing.

Data must typically transit through the processor’s DDR before being sent over PL

in one of three methods (AXI Lite, AXI Memory Mapped, AXI4 Stream).

• Memory-Mapped Protocol: In memory-mapped protocols (AXI3, AXI4, and

AXI4-Lite), all transactions involve the concept of transferring a target address

within a system memory space and data.

• AXI4-Stream Protocol: The AXI4-Stream protocol is used as a standard in-

terface to connect components that wish to exchange data. The interface can be

used to connect a single master, that generates data, to a single slave, that re-

ceives data. The protocol can also be used when connecting larger numbers of

master and slave components.The protocol supports multiple data streams using

the same set of shared wires, allowing a generic interconnect to be constructed

that can perform upsizing, downsizing and routing operations.

57

Chapter 4. FPGA Implementation

Figure 4.23: Communication between software and hardware using AXI-stream inter-
face.

• AXI Direct Memory Access (AXI DMA): The AXI DMA provides high-

bandwidth direct memory access between the AXI4 memory mapped and AXI4

memory stream interfaces. Its optional scatter gather capabilities also of load data

movement tasks from Central Processing Unit (CPU) in processor-based systems.

Initialization, status, and management registers are accessed through AXI4-Lite

slave interface. Figure 4.24 illustrates the functional composition of the core.

58

Chapter 4. FPGA Implementation

Figure 4.24: DMA Core.

59

Chapter 5

Results

This section presents the design results of the hardware accelerators for the CLE-

FIA, PRESENT and SIMON algorithms focusing on the performance (in terms of

throughput), power and area (FPGA resource usage). The power and performance re-

sults are compared with purely software implementations of the algorithms in different

platforms.

The first subsection presents the four different software platforms that have been

used to deploy the algorithms. These platforms represent a wide range of systems

varying from small footprint, low-power ARM-based systems up to high performance

data-center servers. As such, the proposed hardware accelerated solution can be eval-

uated against a wide range of systems that may be considered to be used at the edge

environment.

As mentioned both performance and power consumption (and efficiency) results

are presented. For the former, the time required to encrypt a block of data at the unit

of time (throughput) is used in order to determine the performance of each platform.

For the latter, power consumption estimations are used in order to measure the power

required during the encryption of data in each case. More details about the estimation

will be provided in the next subsection.

The results demonstrate that the proposed hardware accelerated solution man-

ages to outperform the software-based deployments by significant margins. In terms of

throughput, the FPGA-based solution provides at least one order of magnitude higher

throughput than the highest performance offered by a software solution. This is achieved

for significantly less power consumption (ranging from 3 to 10 times lower), resulting

in a very favourable performance per watt performance.

60

Chapter 5. Results

5.1 Software Implementations and Performance/Power Com-

parison Methodology

Before proceeding with the presentation of the results of the proposed hardware-

accelerated solutions, it is important to present the baseline against which they will

be evaluated, as well as the methodology that has been followed in order to measure

performance and power and perform comparisons.

5.1.1 Software Platforms

As mentioned in the beginning of this thesis, the proposed hardware accelerated

solution aims to enhance the performance and power efficiency of CPU-based solutions.

A number of platforms with different characteristics in terms of cost, performance,

power consumption and physical size has been chosen to execute reference software

implementations of the three encryption algorithms. The following table describes these

platforms ordering them from the simplest ones to the most complex.

Platform Processor Memory
Form
Factor

Cost Reference

Digilent/AVNET
ZedBoard

ARM Cortex
A9 (32-bit) on
Zynq 7020
SoC running
@667MHz

512 MB
DDR3

Development
Board

∼$500 [40]

Xilinx Kria KV260
AI Starter Kit

ARM Cortex
A53 (64-bit) on
Zynq UltraScale+ MPSoC
running
@1.5GHz

4 GB
DDR4

SOM + Carrier Card
(similar to
RPi / nVIdia Jetson
Nano
form factor)

∼$199 [41]

Generic Laptop
Intel Core i5-4200U
(64-bit) running
@1.6GHz

16 GB
DDR3L

Laptop ∼$1000 [42]

Dell PowerEdge R530
(kronos.mhl.tuc.gr)

2x
IntelXeon E5-2630
v4 CPUs running
@2.2GHz
(up to 3.1 GHz Turbo)

256 GB
DDR4

Rack
Server

∼$8000 [43],[44]

Table 5.1: Description of the platforms

5.1.2 Software Implementations

For each of the three encryption algorithms, reference software implementations

have been chosen. These codes are publicly available, well-documented and broadly

accepted in relevant literature. It cannot be claimed that they represent the highest

61

Chapter 5. Results

performance software implementations for the three algorithms, however to the best of

our knowledge they represent the best openly available solutions that can be accessed

by anyone and the results presented in this thesis can be verified by any third party.

In particular, the following open-source codes have been used:

1. Reference CLEFIA implementation published by Sony Corporation [45].

2. D. Klose’s (University of Bochum) reference implementation of PRESENT cipher

[46].

3. Crypto Library’s implementation of the SIMON algorithm available in [47].

For all three ciphers, their source code has been compiled and executed on the

four available platforms. For the Zynq-based platforms (Zedboard and Kria), the gcc

compiler included with the Vitis tools (v2021.1) has been employed and the software

was compiled targeting bare metal execution on the ARM Cortex processors (no OS).

For the laptop platform, the OS used was Ubuntu Linux 20.04 and the gcc compiler

(v9.4.0) has been employed. Lastly, the server system was running CentOS Linux v.7.6

and the compiler employed was gcc v4.8.5.

5.1.3 Performance and Power Comparison Methodology

In order to measure performance on all platforms, the effective throughput defined

as number of encrypted bits per second has been calculated. It should be noted that

the time required to encrypt a single plaintext block even in the simplest platforms is

quite small. As such, to have statistically important information and in order to reduce

the effect of random variations from execution to execution (e.g. from an interrupt

or a system call), a plaintext in the order of several megabytes has been randomly

created and this same plaintext has been used as input for the encryption processes.

The encryption process for each algorithm has been repeated several times and the

average throughput of all executions is reported.

A special note has to be made concerning the hardware accelerated solutions. The

reported performance numbers cover the entire process and not only the execution time

of the hardware kernel. This means that the times used include also the data transfers

between the processor (software components) and the hardware kernel and therefore

the comparisons between the software platforms and the hardware accelerated solution

are equivalent.

62

Chapter 5. Results

To perform power measurements and consequently examine the efficiency (perfor-

mance per watt) of each platform when executing each encryption algorithm, we relied

on power estimations.

To compare the power consumption of the 5.3, 5.17, 5.11 . These results present

the power consumption estimation on the Zynq / Zynq US+ chips covering both the

Programmable System (ARM processors and hardwired blocks) and the Programmable

Logic (FPGA resources) parts. As such, the estimations cover both the power consump-

tion of the software components as well as the power consumption of the hardware

kernels.

To estimate the power consumption in the laptop and server platforms when the

encryption algorithms are executed, the powerstat [48] tool has been employed. Pow-

erstat measures the power consumption of a machine using the battery stats (ACPI)

or the Intel RAPL interface (Running Average Power Limit). The output of the tool

is like vmstat [49] but also shows power consumption statistics. At the end of a run,

powerstat will calculate the average, standard deviation and min/max of the gathered

data, covering the processor and direct attached memory power domains.

The Powerstat tool was executed in parallel with the execution of the encryption

algorithms to monitor system behavior during the runs. The specific flags used during

execution were the ”-R -c -z” ones, specifying a readout from the RAPL interface and

a monitoring of the processor’s C-states (for more information about these flags, please

refer in the tool’s documentation: [48]. Each execution of powerstat runs for 60 seconds

and then displays the average power consumption value. At least 15 minutes of the

encryption processes were used and therefore multiple readouts from the powerstat

tool were gathered. At the end of this process, the average value was calculated and

this value was used in the comparisons with the power estimations from the vivado tool

presented in Figures 5.7, 5.13, 5.19.

It should be noted that the powerstat tool nor any other similar tool could be used

in the case of the Zedboard and Kria ARM platforms when executing only software

versions of the encryption algorithms. This was due to the fact that no OS was used

(bare metal execution) and not any RAPL or similar interfaces were provided by these

platforms and associated development tools. As a result, in order to have an estimation

of the power consumption of the the programmable system in these platforms (that is

the ARM processor complex), a dummy hardware kernel was created that performed

63

Chapter 5. Results

practically no computation (inverse of a small number of bits) and the overall soft-

ware/hardware application was passed through the vivado tools Figures 5.4, 5.5. . This

way a power consumption estimation was provided by the tools, according to what is

described in the beginning of this section.

To calculate the performance per watts on a specific platform for each of the three

algorithms we use the following method. Given the platform and an algorithm: running

the algorithm on the platform takes T seconds while consuming W watts. The formula

that links energy and power is:

Energy = Power×Time

The unit of energy is the joule, the unit of power is the watt, and the unit of time is

the second. So the performance per watt value is calculated as follow:

PPW =
1

Energy

Tables 5.5, 5.13, 5.9 present the results of the 3 algorithms about performance,

energy efficiency and power consumption while they are implemented on different plat-

forms.

5.2 Results of Present Algorithm

In this subsection the results of cryptography algorithm implemented on the FPGA

and the software are presented and discussed.

5.2.1 Area, Latency and Power performance

The Present algorithm implemented in this work performs the encryption process

with 64-bit plaintext size and 80 bit key size. For the encryption process this algorithm

needs 32 rounds. Figure 5.1 demonstrates the entire hardware-accelerated solution for

the Present algorithm (see section 4 for a description of the different parts of their

system and their function). Αmong the system components the custom IP is displayed

with the name axi stream wrapper 0.

64

Chapter 5. Results

Figure 5.1: Present System.

The following table shows the utilization of the present core when the synthesis

process is done.

CLB LUTs CLB Reg CARRY8 F7MUXES Block Ram Freq.Max(MHz) Latency

Present64/80 179 151 0 0 0 300 32

Table 5.2: Utilization of Present core Post-Synthesis stage.

The utilization of the entire system when the synthesis process is done is shown on

the table below.

CLB LUTs CLB Reg CARRY8 F7MUXES Block Ram Freq.Max(MHz) Latency

System 5887 8188 31 7 9 300 32

Table 5.3: Utilization of System Post-Synthesis stage.

After the placement and the routing table 5.4 shows the results in terms of area of

the final system including, the present core, the DMA core, the axi stream interface,

axi interconnect and axi smart connect in the post-implementation stage.

65

Chapter 5. Results

Resource Utilization Available Utilization %

LUT 5017 117120 4.28

LUTRAM 816 57600 1.42

FF 7611 234240 3.25

BRAM 9 144 6.25

BUFG 1 352 0.28

Table 5.4: System Present Utilization Post-Implementation stage.

This figure 5.2 shows the PRESENT algorithm mapped to the FPGA.

Figure 5.2: Present64/80 mapped on FPGA.

The On-Chip power consumption in the Static and Dynamic scenarios of the algo-

rithm PRESENT is displayed in Figure 5.3.

66

Chapter 5. Results

Figure 5.3: Power on chip of present 64/80 algorithm on the fpga.

Figure 5.3 shows the power consumption of present algorithm on different parts of

the FPGA. It is observed that in Static state there is almost 0.301 W in the other hand

at Dynamic state the power is 2.578 W.

Figure 5.4: Power of kria platform on PS.

Figure 5.5: Power of zedboard platform on PS.

At figures 5.4 and 5.5 we see the power consumption on zedboard and kria platforms

when a simple program is running. About kria the PS part consumes 2.432 W while

on zedboard platform PS part consumes 1.556 W.

67

Chapter 5. Results

5.2.2 Present Software and Hardware comparison

In this subsection the results of the lightweight cryptography algorithm Present will

be presented and discussed. These results simply comes from executing the Present

algorithm numerous times. Due to Vivado AXI DMA IP restrictions, a straightforward

transaction can only be completed with transfers of up to 64MB each. As a result, our

design can return up to one million results at once with each initialization (1,000,000

* 64 = 61.0352MB).

Figure 5.6: Present block cipher software performance.

Figure 5.6 shows the throughput measurements for the software implementation

of the Present block cipher in the four available platforms as well as in the proposed

hardware accelerated implementation on the KRIA KV260 system. A log scale is used

for the Y axis of the graph. The best throughput at software design was achieved when

the algorithm ran on the server kronos(Intel Xeon E5-2630) as expected. This approach

gives an average throughput value of 1425Kbits/sec. On the other hand the zedboard

platform (ARM Cortex-A9) which perform an average throughput of 91.095Kbits/sec

shows the lowest performance. The hardware implementation on Kria KV260 FPGA

achieves the best performance compared to all software implementations with an aver-

age throughput value of 2104Mbits/sec. An average throughput Speedup of 1.473x is

obtained when comparing the the hardware accelerated implementation on Kria with

the one on CPU Intel Xeon E5-2630.

68

Chapter 5. Results

Figure 5.7: Comparison of power consumption of Present algorithm.

Making a comparison between the hardware and the software implementations of

the algorithm regarding to the power consumption we notice that the hardware im-

plementation of Present algorithm requires 2.942W on chip power while the software

implementations on Intel Core I5-4200 and Intel Xeon E5-2630 require 11W and 39.17W

respectively.

Platform
Performance

(1/Exec Time)

Power Consumption

(Watts)

Energy efficiency

(Performance per

Watts)

Kria KV260 (Software

only)
0.0084 2.432 0,0034

ZedBoard (Software

only)
0.0034 1.556 0,0022

Generic Laptop 0.045 11 0,0040

Server IntelXeon E5-2630

(kronos.mhl.tuc.gr)
0.053 39.17 0,0014

Kria KV260 (Hardware) 232.56 2.942 47,30

Table 5.5: Comparison between different platforms of Present algorithm

About the energy efficiency and performance as we can see in table 5.5 the imple-

mentation of the algorithm on hardware in both cases shows better results. After the

calculation of performance per watt ratio we observe that FPGA implementation is

69

Chapter 5. Results

11825x more energy efficient from CPU implementation on generic laptop. The results

of the energy efficiency are also depicted at the following graph. A log scale is used for

the Y axis of the graph.

Figure 5.8: Energy efficiency of Present algorithm.

5.2.3 Results of Simon Algorithm

In this subsection the results of lightweight cryptography algorithm Simon for the

implementations on FPGA and software are presented and discussed.

5.2.4 Area, Latency and Power performance

The Simon algorithm implemented in this work performs the encryption process

with 64-bit plaintext size and 128 bit key size. For the encryption process this algorithm

needs 44 rounds. Figure 5.9 demonstrates the entire hardware-accelerated solution for

the Present algorithm (see section 4 for a description of the different parts of their

system and their function). Αmong the system components the custom IP is displayed

with the name (axi stream wrapper 0).

70

Chapter 5. Results

Figure 5.9: Simon System.

The following table shows the utilization of the Simon core when the synthesis

process is done.

CLB LUTs CLB Reg CARRY8 F7MUXES Block Ram Freq.Max(MHz) Latency

Simon64/128 1410 132 0 0 0 50 1

Table 5.6: Utilization of Simon core Post-Synthesis stage.

The utilization of the entire system when the synthesis process is done is shown on

the table below.

CLB LUTs CLB Reg CARRY8 F7MUXES Block Ram Freq.Max(MHz) Latency

System 7087 7967 31 7 9 50 1

Table 5.7: Utilization of System Post-Synthesis stage.

After the placement and the routing table 5.8 shows the results in terms of area of

the final system including, the SIMON core, the DMA core, the axi stream interface,

axi interconnect and axi smart connect in the post-implementation stage.

Resource Utilization Available Utilization%

LUT 6227 117120 5.32

LUTRAM 816 57600 1.42

FF 7390 234240 3.15

BRAM 9 144 6.25

BUFG 1 352 0.28

Table 5.8: System Simon Utilization Post-Implementation stage.

• Total On-Chip Power: Total on-chip power is the power consumed internally

71

Chapter 5. Results

within the device, equal to the sum of device static power and design power. Its

is also known as thermal power.

Figure 5.10 shows the Simon algorithm mapped on the FPGA.

Figure 5.10: Simon64/128 mapped on FPGA .

The On-Chip power consumption in the Static and Dynamic scenarios of the algo-

rithm Simon is displayed in Figure 5.11

Figure 5.11: Power on chip of simon64/128 algorithm on the fpga. .

72

Chapter 5. Results

Figure 5.11 shows the power consumption of Simon algorithm on different parts of

the FPGA. It is observed that in Static state there is almost 0.301 W, in the other

hand at Dynamic state the power is 2.531 W.

5.2.5 Simon Software and Hardware comparison

Figure 5.12: Simon64/128 Software Performance.

Figure 5.12 shows the throughput measurements for the software implementation

of the Present block cipher in the four available platforms as well as in the proposed

hardware-accelerated implementation on the Kria KV260 system. A log scale is used for

the Y axis of the graph. The best software result was achieved when the algorithm was

executed on the server kronos(Intel Xeon E5-2630) as expected. This approach gives an

average throughput value of 36098Kbits/sec. On the other hand the zedboard platform

(ARM Cortex-A9) which perform an average throughput of 1208Kbits/sec shows the

lowest performance. The hardware implementation on Kria KV260 FPGA achieves the

best performance compared to all software implementations with an average throughput

value of 1057Mbits/sec. An average throughput Speedup of 29.36x is obtained when

comparing the hardware accelerated implementation on Kria with the one on CPU

Intel Xeon E5-2630.

73

Chapter 5. Results

Figure 5.13: Comparison of power consumption of Simon algorithm.

Making a comparison between the hardware and the software implementations of

the algorithm regarding to the power consumption as we can see on figure 5.13 we

notice that the hardware implementation of Simon algorithm require 2.832W on chip

power while the software implementations on Intel Core I5-4200 and Intel Xeon E5-2630

require 11W and 38.69W respectively.

Platform
Performance

(1/Exec Time)

Power Consumption

(Watts)

Energy efficiency

(Performance per

Watts)

Kria KV260 (Software

only)
0.1197 2.432 0,0392

ZedBoard (Software

only)
0.0302 1.556 0,0194

Generic Laptop 0.4975 11 0,0452

Server IntelXeon E5-2630

(kronos.mhl.tuc.gr)
0.9090 38.69 0,0142

Kria KV260 (Hardware) 86.967 2.828 30,850

Table 5.9: Comparison between different platforms of Simon algorithm

About the energy efficiency and performance as we can see in table 5.9 the imple-

mentation of the algorithm on hardware in both cases shows better results. After the

calculation of performance per watt ratio we observe that FPGA implementation is

74

Chapter 5. Results

682.5x more energy efficient from CPU implementation on generic laptop. The results

of the energy efficiency are also depicted at the following graph. A log scale is used for

the Y axis of the graph.

Figure 5.14: Energy efficiency of Simon algorithm.

5.2.6 Results of Clefia Algorithm

In this subsection the results of lightweight cryptography algorithm Clefia for the

implementation on FPGA and software are presented and discussed.

5.2.7 Area, Latency and Power performance

The Clefia algorithm implemented in this work performs the encryption process with

128-bit plaintext size and 128 bit key size. For the encryption process this algorithm

needs 18 rounds. Figure 5.15 demonstrates the entire hardware-accelerated solution for

the Present algorithm (see section 4 for a description of the different parts of their

system and their function). Αmong the system components the custom IP is displayed

with the name (axi stream wrapper 0).

75

Chapter 5. Results

Figure 5.15: Clefia System.

The following table shows the utilization of the Clefia core when the synthesis

process is done.

CLB LUTs CLB Reg CARRY8 F7MUXES Block Ram Freq.Max(MHz) Latency

Clefia128/128 1055 323 0 0 0 300 31

Table 5.10: Utilization of Clefia core Post-Synthesis stage.

The utilization of the entire system when the synthesis process is done is shown on

the table below.

CLB LUTs CLB Reg CARRY8 F7MUXES Block Ram Freq.Max(MHz) Latency

System 6872 8580 36 7 9 300 31

Table 5.11: Utilization of System Post-Synthesis stage.

After the placement and the routing table 5.12 shows the results in terms of area

of the final system including the clefia core, the DMA core, the axi stream interface,

axi interconnect and axi smart connect in the post-implementation stage.

Resource Utilization Available Utilization%

LUT 6080 117120 5.19

LUTRAM 834 57600 1.45

FF 8002 234240 3.42

BRAM 9 144 6.25

BUFG 1 352 0.28

Table 5.12: System Clefia Utilization Post-Implementation stage.

Figure 5.16 shows the Clefia algorithm mapped on FPGA.

76

Chapter 5. Results

Figure 5.16: Clefia128/128 mapped on FPGA.

The On-Chip power consumption in the Static and Dynamic scenarios of the algo-

rithm Clefia is displayed in the next Figure

Figure 5.17: Power on chip of clefia128/128 on the fpga.

Figure 5.17 shows the power consumption of clefia algorithm on different parts of

the FPGA. It is observed that in Static state there is almost 0.302 W, in the other

hand at Dynamic state the power is 2.628 W.

77

Chapter 5. Results

5.2.8 Clefia Software and Hardware comparison

Figure 5.18: Clefia128/128 Software Performance.

Figure 5.18 shows the throughput measurements for the software implementation

of the Present block cipher in the four available platforms as well as in the proposed

hardware-accelerated implementation on the Kria KV260 system. A log scale is used for

the Y axis of the graph. The best software result was achieved when the algorithm was

executed on the server kronos(Intel Xeon E5-2630) as expected. This approach gives an

average throughput value of 6939Kbits/sec. On the other hand the zedboard platform

(ARM Cortex-A9) which perform an average throughput of 419Kbits/sec shows the

lowest performance. The hardware implementation on Kria KV260 FPGA achieves the

best performance compared to all software implementations with an average throughput

value of 1742Mbits/sec. An average throughput Speedup of 252.46x is obtained when

comparing the implementation on Kria with the one on CPU Intel Xeon E5-2630.

78

Chapter 5. Results

Figure 5.19: Comparison of power consumption of Clefia algorithm.

Making a comparison between the hardware and the software implementations of

the algorithm regarding to the power consumption as we can see on figure 5.19 we

notice that the hardware implementation of Clefia algorithm require 2.991W on chip

power while the software implementations on Intel Core I5-4200 and Intel Xeon E5-2630

require 12W and 39.2W respectively.

Platform
Performance

(1/Exec Time)

Power Consumption

(Watts)

Energy efficiency

(Performance per

Watts)

Kria KV260 (Software

only)
0.0176 2.432 0,0150

ZedBoard (Software

only)
0.036 1.556 0,0113

Generic Laptop 0.2127 12 0,0177

Server IntelXeon E5-2630

(kronos.mhl.tuc.gr)
0.5617 39.2 0,0142

Kria KV260 (Hardware) 187.76 2.991 62,776

Table 5.13: Comparison between different platforms of Clefia algorithm

About the energy efficiency and performance as we can see in table 5.13 the im-

plementation of the algorithm on hardware in both cases shows better results. After

the calculation of performance per watt ratio we observe that FPGA implementation is

79

Chapter 5. Results

3547x more energy efficient from CPU implementation on generic laptop. The results

of the energy efficiency are also depicted at the following graph. A log scale is used for

the Y axis of the graph.

Figure 5.20: Energy efficiency of Clefia algorithm.

5.2.9 Related Work

In this subsection, the proposed implementations of this thesis are going to be com-

pared with related works reported in the literature. The focus is on implementations

that provide hardware accelerated versions of the three encryption algorithms (Simon,

Clefia and Present) on FPGAs. Implementations of these algorithms on ASICs (Appli-

cation Specific Integrated Circuits) will also be reported, as they are of interest from

an architectural perspective, however direct comparisons in terms of performance and

energy efficiency results are not considered. ASICs can provide the maximum degrees

of performance and energy efficiency among all solutions but since they cannot be re-

programmed and modified post implementation, they cannot meet the flexibility and

adaptability requirements considered for the targeted applications. Several of the im-

plementations in the literature use pipeline architecture as well as unroll architecture.

Unrolled structures frequently have higher throughput, but they can have very high

requirements and little flexibility. Additionally, because each unrolled structure can only

target a specific key size, the occupancy overhead in systems that target many key sizes

is increased. With the pipeline architecture the performance in terms of throughput is

better but consumes more area for its implementation.

80

Chapter 5. Results

Also several FPGA-based implementations of the Simon encryption algorithm have

been presented. Wetzel and Bokslag [50] describe various hardware architecture de-

signs for Simon with 64-bit plaintext and 128-bit key on Xilinx Spartan-6 FPGAs.

Their highest performance designs use a mixed inner/outer round pipeline architec-

ture. To increase the throughput they employ pipelining within each cipher round and

also the round function is divided into n independent sub-functions. The performance

of this implementation provides a 33Gbit/sec throughput occupying 1149 slices, 2752

slice registers and 4096 slice LUTs. Lower performance versions are reported that em-

ploy an iterative architecture instead of an unrolled one, that present far lower area

requirements and also significantly lower throughput (269Mbps).

Our implementation of the Simon cipher (actually all three ciphers) follows the

iterative design paradigm. Highly pipelined and unrolled architectures provide maxi-

mum throughput at the expense of significantly higher resource usage (more than 10x

the resources), reduced flexibility and increased latency. Our effort has been to keep

the resource usage levels low (thus enabling us to use the available FPGA fabric to

host multiple encryption functions at the same time or employ entirely different ac-

celerators that may be required in an IoT edge node), retain maximum flexibility (an

iterative architecture easily adapts to different key lengths that require different num-

ber of rounds) and minimum latency (satisfying IoT application requirements and the

being more suitable to support encryption modes that depend on the outcomes of previ-

ously encrypted blocks). Therefore, compared to the iterative designs in [50], our work

has comparable requirements (222 slices vs 105 to 148 slices), but presents significantly

higher performance (1057Mbps vs 206-269Mbps).

The bit-serial data-path used by the systems described in [51] and [52] within 3 dif-

ferent implementations of Simon algorithm on Xilinx Spartan-3 and Xilinx Spartan-6.

Our work can be compared better with the one on Spartan-6. Their implementation

provides a throughput of 392.4 Mbps while use 766 slices with 135 Max frequency. Com-

paring these results with our work we can observe that our implementation needs less

slices (222 than 766) and achieve better throughput(1057Mbps instead of 392.4Mbps).

On both the Virtex-7 and Zynq-7000, the fault attack resistant architectures proposed

in [53] occupy 73 slices. These architectures are more space-efficient than our Simon

implementation, but at the cost of a throughput our design have better results.

A Present implementation measuring efficiency as a trade-off between performance

81

Chapter 5. Results

and area was published by Sbeiti et al [54] in 2009. Their findings showed that Present

was a good cipher for both high performance applications and those requiring inex-

pensive hardware. The cost of implementing that task using LUT-4 technology on a

Spartan-III FPGA was 202 slices with max frequency of 254MHz and a throughput of

508Mbps. The authors design the algorithm in order to achieve a minimal hardware

footprint targeted for low cost devices such as RFIDs. Comparing these results with

our work we achieve more throughput (2107Mbps instead of 508Mbps) but our im-

plementation needs more area (353 slices instead of 202) with higher frequency. The

following work [55] proposed resource-efficient and high-performance architecture for

Present block cipher. The implementation of this work have been done on LUT-6 tech-

nology based on Xilinx Virtex-5 XC5VFX70T-1-FF1136 FPGA device. This architec-

tures have a maximum clock frequency of 306.84 MHz, a delay of 33 clock cycles, and

a throughput of 595.08 Mbps. The required S-box(S) is realized by an area-optimized

combinational logic datapath. In comparison with this thesis work were have 350 MHz

maximum clock frequency and we achieve 3,5x times better throughput performance.

Another work proposed on [56]. The author of this work Bahram Rashidi describes the

hardware implementation of Present block cipher based on Virtex-5 XC5VLX50 and

Spartan-3 XC3S200 FPGAs. The purpose of this work is to achieve high-throughput. To

reduce the latency and increase throughput, the loop unrolling technique is applied in

the structures. Multiple implementations with different unroll factors have been made

on this work. On Spartan-3 FPGA with the unroll factor = 4 achieve a throughput

performance of 982Mbps with 576 slices while with same unroll factor on Virtex-5

the throughput performance that he achieve is 2359Mbps using 257 slices. Our imple-

mentation without using loop unroll technique needs more slices (353 vs 257) with a

throughput of 2107Mbps.

A pipelined unrolled architecture with three separate key expansion units for all

potential key sizes made up the first FPGA-based Clefia implementation that was de-

scribed in [57]. The authors of this work want to show that with a small area cost and

with no performance impact, full key expansion can be supported. This is achieved

by using addressable shift registers, allowing to compute the 4 and 8 branch CLEFIA

Feistel network within the same structure. Their implementation needs 200 slices with

375 max frequency and achieve 1.3 Gbps throughput. These results are not very differ-

ent from the results of our implementation. We achieve better throughput performance

82

Chapter 5. Results

(1,7Gbps instead of 1,3Gbps) with bigger hardware footprint (250 slices instead of 200).

Also a pipeline implementation of Clefia block cipher is described in [58]. The FPGA

for this work was a Alpha-Data ADM-XP platform. The authors of this implementa-

tion achieve a throughput performance of 2,4 GB/s with 200 MHz clock frequency. In

comparison with our implementation were we achieve a throughout of 1,7 GB/s at 350

MHz clock frequency without a pipeline architecture. Another compact implementa-

tion of clefia is proposed in [59]. This work achieves a throughput above 1Gbit/s with

a resource usage as low as 86 LUTs and 3 BRAMs on a VIRTEX 5 FPGA.

At table 5.14 displays information on the performance of the algorithms in this work

as well as others existing implementations from the literature.

Algorithm Published Board Slices
Max.Freq

(MHz)

Throughput

(Mbps)

Clefia -
Xilinx Kria

kv260
250 350 1742

Clefia Proenca [59] xc5vlx30 170 240 1700

Clefia Kryjak [58] Alpha-Data ADM-XP 200 2400

Clefia Chaves [57] xc5vlx30 200 375 1333

Present -
Xilinx Kria

kv260
353 350 2107

Present Bahram Rashidi [56] xc5vlx50 282 341 2359

Present Pandey [55] Virtex 5 - 306.84 595.0

Present Sbeiti et. al [54] Spartan-III 202 254 508

Simon -
Xilinx Kria

kv260
222 50 1057

Simon
Josh Wetzels

Wouter Bokslag [50]
Spartan 6 113 - 269

Simon PRASHANT AHIR [53] Virtex 7 73 - 302

Simon Aydin Aysu [51] Spartan 6 766 135 392

Table 5.14: Compare implementations of PRESENT, CLEFIA and SIMON block ci-
phers.

In the following, implementations of the algorithms from the literature on ASIC

technology are presented.

ASIC flow hardware implementation was the subject of several investigations. Dif-

ferent ASIC implementations for Simon including bit-serial, iterated, and partially and

fully pipelined, were shown by Beaulieu et al [29]. The findings show that, in com-

83

Chapter 5. Results

parison to other ciphers, Simon had the highest efficiency. Simon implementations on

ASIC hardware and 8-bit microcontroller software platforms were covered by Beaulieu

et al [29]. According to the ASIC results Simon64/96 obtain higher throughput with

less space(838 and 984 GE. respectively) but Present-80 produced a throughput of 12.4

Kbps at 100 kHz inside 1030 GE.

One of the first Clefia implementations, targeting ASIC technology, was proposed in

[60]. It included Clefia encryption/decryption and a 128-bit key expansion but did not

support 192 and 256-bit keys. Two hardware structures are suggested by the authors,

and they are examined from the prospective of non-linear F function implementation.

Τhis structure achieves the best throughput/area efficiency measure. This implementa-

tion achieves on a ASIC 90 nm device 21.07 Slices with 746.24MHz max. Frequency and

5306Mbps throughput. Another pipeline implementations of clefia algorithm is shown

in [58], this work is able to operate at a lower frequency, it still manages to attain a

throughput of 21.376 Gbps with a pipeline implementation of the algorithm. This is

done having a cost of 2479 slices.

An ASIC implementation of Present block cipher is reported in [61] this implemen-

tation was performed using Cadence software with 45nm technology. The total area

is 10.99 mm2 and total power is 2.26 mW. Another ASIC implementations of Present

algorithm can be found at [62] . This architecture is based on 8-bit datapath consisting

a 64-bit register for the encryption process and an 80-bit register for the key scheduling.

This work is done in SCL 180 nm technology. Area of the chip layout is 1.55 mm2 , with

1608 gate equivalent (GE). At 100 MHz operating frequency, total power consumption

of the chip is 0.228 mW. A throughput of 130.612 Mbps, energy 112.15 nJ, energy/bit

14.018 nJ/bit, and 0.813 efficiency is obtained.

84

Chapter 6

Conclusions

In this thesis, three lightweight encryption algorithms were examined (Clefia, Simon

and Present), focusing on their deployment on devices that are placed at the edge of

the IoT infrastructure. Software implementations of these algorithms on a variety of

CPU-based systems were tested covering a range of simple 32-bit ARM processors up to

high-performance x86-64 server-grade ones. Against those platforms, FPGA-accelerated

versions of the encryption processes running on simple Zynq US+ devices (Kria) were

proposed as low-cost, high-performance and energy efficient alternatives.

Our results in terms of performance demonstrate that the proposed architectures

can provide significant speedups compared to the best software platform (Intel Xeon-

based server) ranging from 30x up to 1400x depending on the algorithm. This is

achieved by devices that have the form factor and cost of the simplest software plat-

forms (against which the performance difference is even more pronounced). A similar

trend is observed when energy/power efficiency metrics are considered. The proposed

hardware accelerated architectures typically consume as little power as the simple ARM

Cortex A9 processor in the Zedboard, but since they provide orders of magnitude higher

performance, the performance per watt difference is again up to three orders of magni-

tude higher.

Comparing the proposed architectures with other related works reported in the

literature, it is shown that the performance achieved is lower than fully pipelined /

completely unrolled architectures. This is to be expected and it is by design, since our

stated goal is to provide area efficiency (so that multiple algorithms may be imple-

mented on the available FPGA resources) and minimize latency issues as our target

devices aim to serve multiple connected clients with stricter latency than throughput

requirements. Compared to reported works that follow the same architectural princi-

85

Chapter 6. Conclusions

ples and design goals, the proposed architectures typically perform better. It should

be noted that the proposed architectures also include software components for greater

flexibility and programmability compared to the related FPGA implementations re-

ported in the literature, thus making our systems more easy to deploy in the field in

IoT applications.

86

Bibliography

[1] “The Internet of Things kernel description,” https://www.projectcubicle.com/
internet-of-things-applications-in-industry/.

[2] I. Dutta, B. Ghosh, and M. Bayoumi, “Lightweight cryptography for internet of
insecure things: A survey,” in 2019 IEEE 9th Annual Computing and Communi-
cation Workshop and Conference (CCWC), Aug. 2019, p. 0475–0481.

[3] “Wikipedia kernel description,” https://en.wikipedia.org/wiki/Cryptographic
hash function.

[4] M. Rana, Q. Mamun, and R. Islam, “Current lightweight cryptography protocols
in smart city iot networks: A survey,” 10 2020.

[5] “FPGA Architecture kernel description,” https://coqube.com/fpga-design-flow/.

[6] V. Rao and K. V. Prema, “A review on lightweight cryptography for internet-of-
things based applications,” Journal of Ambient Intelligence and Humanized Com-
puting, vol. 12, p. 8835–8857.

[7] B. Chaitra, V. K. Kumar, and C. R. Shantharama, “A survey on various lightweight
cryptographic algorithms on fpga,” IOSR Journal of Electronics and Communica-
tion Engineering (IOSR-JECE), vol. 12, p. 54–59, 2017.

[8] V. K. Prasanna, A. Dandalis, and D. S. J. D. Prasanna, “Fpga-based cryptography
for internet security ,” 2000.

[9] H. Delfs and H. Knebl, Introduction to cryptography: principles and applications,
2nd ed. Springer Berlin Heidelberg, Dec. 2007, ch. 2, p. 11–48.

[10] C. Lara-Nino, A. Dı́az-Pérez, and M. Morales-Sandoval, “Elliptic curve lightweight
cryptography: A survey,” IEEE Access, vol. 4, p. 1–37, 2018.

[11] S. Chandra, S. Paira, S. Alam, and S. Bhattacharyya, “A comparative survey of
symmetric and asymmetric key cryptography,” in IEEE 2014 International Confer-
ence on Electronics,Communication and Computational Engineering (ICECCE),
Nov. 2014, p. 83–93.

[12] O. P. Piñol, S. Raza, J. Eriksson, and T. Voigt, “Bsd-based elliptic curve cryptog-
raphy for the open internet of things,” in 2015 7th International Conference on
New Technologies, Mobility and Security (NTMS), Jul. 2015, p. 1–5.

[13] I. Chatzigiannakis, A. Pyrgelis, P. G. Spirakis, and Y. C. Stamatiou, “Elliptic
curve based zero knowledge proofs and their applicability on resource constrained
devices,” in 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and
Sensor Systems, Nov. 2011, p. 715–720.

87

https://www.projectcubicle.com/internet-of-things-applications-in-industry/
https://www.projectcubicle.com/internet-of-things-applications-in-industry/
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://coqube.com/fpga-design-flow/

Bibliography

[14] T. Backenstrass, M. Blot, S. Pontie, and R. Leveugle, “Protection of ecc compu-
tations against side-channel attacks for lightweight implementations,” in 2016 1st
IEEE International Verification and Security Workshop (IVSW), Jul. 2016, p. 1–6.

[15] T. K. Goyal and V. Sahula, “Lightweight security algorithm for low power iot
devices,” in 2016 International Conference on Advances in Computing, Commu-
nications and Informatics (ICACCI), Sep. 2016, p. 1725–1729.

[16] S. Al-Kuwari, J. Davenport, and R. Bradford, “Cryptographic hash functions:
recent design trends and security notions,” in Short Paper Proceedings of 6th China
International Conference on Information Security and Cryptology (Inscrypt ’10),
Jan. 2010, p. 133–150.

[17] S. Al-Kuwari, J. H. Davenport, and R. J. Bradford, “Cryptographic hash func-
tions: recent design trends and security notions,” in The 6th China International
Conference on Information Security and Cryptology, Jan. 2010, p. 133–150.

[18] V. Thakor, M. A. Razzaque, and M. Khandaker, “Lightweight cryptography al-
gorithms for resource-constrained iot devices: A review, comparison and research
opportunities,” IEEE Access, vol. 9, p. 28 177–28 193, 2021.

[19] M. Pourghasem, E. Sheikhloo, and R. Ebrahimi Atani, “Light weight implemen-
tation of stream ciphers for m-commerce applications,” arXiv, 2014.

[20] K. Shankar and M. Elhoseny, Secure image transmission in wireless sensor network
(WSN) applications, 1st ed. Springer Cham, 2019, ch. 1, p. 7–12.

[21] C. Thorat and V. Inamdar, Applied Computing and Informatics, 2018, ch. 10, p.
1–6.

[22] G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou, and H. Manifavas, “A review of
lightweight block ciphers,” Journal of Cryptographic Engineering, vol. 8, p. 1–44,
2017.

[23] T. Suzaki and K. Minematsu, Fast Software Encryption. Springer Berlin Heidel-
berg, 2010, ch. 1, p. 19–39.

[24] V. A. Thakor, M. A. Razzaque, and M. R. A. Khandaker, “Lightweight cryptog-
raphy for iot: A state-of-the-art,” IEEE Acess, vol. arXiv:2006, p. 1–19, 2020.

[25] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight block cipher,” in
Cryptographic Hardware and Embedded Systems - CHES 2007, vol. 4727. Springer
Berlin Heidelberg, 2007, p. 450–466.

[26] R. Chatterjee and R. Chakraborty, “A modified lightweight present cipher for iot
security,” in 2020 International Conference on Computer Science, Engineering and
Applications (ICCSEA), 2020, p. 1–6.

[27] S. Feizi, A. Ahmadi, and A. Nemati, “A hardware implementation of simon cryp-
tography algorithm,” in 2014 4th International Conference on Computer and
Knowledge Engineering (ICCKE), 2014, p. 245–250.

[28] J. Wetzels and W. Bokslag, “Simple simon: Fpga implementations of the simon
64/128 block cipher,” ArXiv, vol. abs/1507.06368, 2016.

88

Bibliography

[29] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers,
“Implementation and performance of the simon and speck lightweight block ciphers
on asics,” Mathematics, Computer Science, 2016.

[30] H. AlKhzaimi and M. M. Lauridsen, “Cryptanalysis of the simon family of block
ciphers,” IACR Cryptol. ePrint Arch., vol. 2013, p. 543, 2013.

[31] A. Singh, N. Chawla, M. Kar, and S. Mukhopadhyay, “Energy efficient and side-
channel secure hardware architecture for lightweight cipher simon,” in 2018 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, 4 2018, p. 159–162.

[32] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers,
“Simon and speck: Block ciphers for the internet of things,” IACR Cryptol. ePrint
Arch., vol. 2015, p. 585, 2015.

[33] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, “The 128-bit block-
cipher clefia (extended abstract),” vol. 4593, p. 181–195, 2007.

[34] B. Sun, R. Li, M. Wang, P. Li, and C. Li, “Impossible differential cryptanalysis of
clefia.” IACR Cryptology ePrint Archive, vol. 2008, p. 151, 01 2008.

[35] J. Takahashi and T. Fukunaga, “Improved differential fault analysis on clefia,” in
2008 5th Workshop on Fault Diagnosis and Tolerance in Cryptography. IEEE,
Aug. 2008, p. 25–34.

[36] S. Rekha and S. Paramasivam, Threshold Implementation of a Low-Cost CLEFIA-
128 Cipher for Power Analysis Attack Resistance, Aug. 2019, p. 272–285.

[37] M. Katagi, “The 128-Bit Blockcipher CLEFIA,” p. 33, 2011.

[38] S. Churiwala, Designing with xilinx® FPGAs: using vivado, 1st ed. Springer
Cham, Jan. 2017, ch. 1, p. 5–7.

[39] Xilinx, LogiCORE IP DMA Product Guide (AXI).

[40] “Zedboard — avnet boards = https://www.avnet.com/wps/portal/us/products/
avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/
vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq
1fc7cb5hv9mxobyvrehtopkkp2 chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu
gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp
zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf
hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a
bwzdiedumt5qmglwz onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v
we jtotqas2 pzwwqipxoqr kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e
anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%
2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%
2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family,.”

[41] “Kria = https://www.xilinx.com/products/som/kria/kv260-vision-starter-kit.
html,.”

[42] “Intel core i5-4200u processor = https://ark.intel.com/content/www/us/en/ark/
products/75459/intel-core-i54200u-processor-3m-cache-up-to-2-60-ghz.html,.”

89

https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq_1fc7cb5hv9mxobyvrehtopkkp2_chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu_gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp_zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf_hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a_bwzdiedumt5qmglwz_onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v_we_jtotqas2_pzwwqipxoqr_kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e_anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq_1fc7cb5hv9mxobyvrehtopkkp2_chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu_gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp_zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf_hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a_bwzdiedumt5qmglwz_onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v_we_jtotqas2_pzwwqipxoqr_kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e_anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq_1fc7cb5hv9mxobyvrehtopkkp2_chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu_gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp_zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf_hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a_bwzdiedumt5qmglwz_onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v_we_jtotqas2_pzwwqipxoqr_kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e_anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq_1fc7cb5hv9mxobyvrehtopkkp2_chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu_gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp_zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf_hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a_bwzdiedumt5qmglwz_onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v_we_jtotqas2_pzwwqipxoqr_kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e_anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq_1fc7cb5hv9mxobyvrehtopkkp2_chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu_gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp_zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf_hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a_bwzdiedumt5qmglwz_onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v_we_jtotqas2_pzwwqipxoqr_kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e_anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq_1fc7cb5hv9mxobyvrehtopkkp2_chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu_gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp_zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf_hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a_bwzdiedumt5qmglwz_onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v_we_jtotqas2_pzwwqipxoqr_kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e_anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq_1fc7cb5hv9mxobyvrehtopkkp2_chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu_gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp_zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf_hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a_bwzdiedumt5qmglwz_onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v_we_jtotqas2_pzwwqipxoqr_kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e_anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq_1fc7cb5hv9mxobyvrehtopkkp2_chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu_gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp_zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf_hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a_bwzdiedumt5qmglwz_onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v_we_jtotqas2_pzwwqipxoqr_kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e_anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq_1fc7cb5hv9mxobyvrehtopkkp2_chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu_gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp_zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf_hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a_bwzdiedumt5qmglwz_onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v_we_jtotqas2_pzwwqipxoqr_kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e_anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq_1fc7cb5hv9mxobyvrehtopkkp2_chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu_gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp_zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf_hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a_bwzdiedumt5qmglwz_onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v_we_jtotqas2_pzwwqipxoqr_kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e_anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq_1fc7cb5hv9mxobyvrehtopkkp2_chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu_gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp_zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf_hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a_bwzdiedumt5qmglwz_onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v_we_jtotqas2_pzwwqipxoqr_kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e_anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vvrdu6mwfp0r-objjif8hcdqkrzlp0xbvoykknqsbsrn4tzfv7g66zhty-5olwdi7px77j1nmamznefw8kbecswrkq_1fc7cb5hv9mxobyvrehtopkkp2_chlhlhelsh9kkfdincfdtrw4ggyqvxr2nexy5kf9oppngoauu_gqyyrfqbtyjz3prcgvlvkleqyy0xna9352hfxlwfoeebusp_zgr7wgslite5vuwimv7oxr1uw2nbfbr6jpj98e300gcwvjdr3fpotszzpzgqf_hlanasfgdjzabcmqxwougm6xpl4-jv6h8twzjfaowpadqku72oz7vbxfaqy2a_bwzdiedumt5qmglwz_onogb3-y0olhku0mvwrmv6h-qwty5gikeyllvd6d9s-o8udlhbboete1rovvpsj4boa-njlx6phft6etlte12ap6w3vticnlnu5jgx6vvitutc03qpt0v_we_jtotqas2_pzwwqipxoqr_kjj735mod8b10knutdsuvkcwywrodmm3rzowxnqb-0m4tellnsfnuzaabz9ssxukz2e_anr2aec!/dz/d5/l2dbisevz0fbis9nqseh/?urile=wcm%3apath%3a%2favnet%2bcontent%2blibrary%2favnethome%2fproducts%2favnet-boards%2fdev%2bboards%2bkits%2bsoms%2fzedboard%2fzedboard-board-family
https://www.xilinx.com/products/som/kria/kv260-vision-starter-kit.html
https://www.xilinx.com/products/som/kria/kv260-vision-starter-kit.html
https://ark.intel.com/content/www/us/en/ark/products/75459/intel-core-i54200u-processor-3m-cache-up-to-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75459/intel-core-i54200u-processor-3m-cache-up-to-2-60-ghz.html

Bibliography

[43] “Intel xeon processor e5-2630 v4 = https://ark.intel.com/content/www/us/en/
ark/products/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz.html,.”

[44] “Poweredge r530 rack server = https://ark.intel.com/content/www/us/en/ark/
products/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz.html,.”

[45] “Sony corporation clefia software code = https://www.dell.com/en-uk/shop/
productdetailstxn/poweredge-r530,.”

[46] “Present implementation in c code = http://www.lightweightcrypto.org/
implementations.php,.”

[47] “Simon software implementation cryptolibrary = https://www.cryptopp.com/
docs/ref/simon 8h.html#details, .”

[48] “Powerstat = https://www.hecticgeek.com/powerstat-power-calculator-ubuntu-linux/.”

[49] “Vmstat tool = https://man7.org/linux/man-pages/man8/vmstat.8.html.”

[50] J. Wetzels and W. Bokslag, “Simple simon: Fpga implementations of the simon
64/128 block cipher,” Cryptology ePrint Archive, Paper 2016/029, 2016.

[51] A. Aysu, E. Gulcan, and P. Schaumont, “Simon says: Break area records of block
ciphers on fpgas.” IEEE Embedded Systems Letters, vol. 6, p. 37–40, 2014.

[52] E. Gulcan, A. Aysu, and P. Schaumont, “A flexible and compact hardware ar-
chitecture for the simon block cipher,” International Workshop on Lightweight
Cryptography for Security and Privacy, vol. 6, p. 34–50, 2014.

[53] P. Ahir, M. Mozafari-Kermani, and R. Azarderakhsh, “Lightweight architectures
for reliable and fault detection simon and speck cryptographic algorithms on fpga.”
ACM Transactions on Embedded Computing Systems, vol. 16, p. 1–17, 2017.

[54] M. Sbeiti, M. Silbermann, A. Poschmann, and C. Paar, “Design space exploration
of present implementation for fpgas,” in 5th Southern Conference on Programmable
Logic, April 2009.

[55] J. G. Pandey, T. Goel, and A. Karmakar, “An efficient vlsi architecture for present
block cipher and its fpga implementation,” in VLSI Design and Test, B. K.
Kaushik, S. Dasgupta, and V. Singh, Eds. Singapore: Springer Singapore, 2017,
p. 270–278.

[56] B. Rashidi, “High-throughput and lightweight hardware structures of hight and
present block ciphers,” Microelectronics Journal, 2019.

[57] J. C. Bittencout, J. Resende, W. Oliveira, and R. Chaves, “Clefia implementation
with full key expansion,” Aug. 2015.

[58] T. Kryjak and M. Gorgon, “Pipeline implementation of the 128-bit block cipher
clefia in fpga,” in Field Programmable Logic and Application(FPL)International
Conference on. IEEE, 2009, p. 373–378.

[59] P. Proenca and R. Chaves, “Compact clefia implementation on fpgas,” in 21st In-
ternational Conference on Field Programmable Logic and Applications, Sep. 2011,
p. 512–517.

90

https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz.html
https://www.dell.com/en-uk/shop/productdetailstxn/poweredge-r530
https://www.dell.com/en-uk/shop/productdetailstxn/poweredge-r530
http://www.lightweightcrypto.org/implementations.php
http://www.lightweightcrypto.org/implementations.php
https://www.cryptopp.com/docs/ref/simon_8h.html#details
https://www.cryptopp.com/docs/ref/simon_8h.html#details
https://www.hecticgeek.com/powerstat-power-calculator-ubuntu-linux/
https://man7.org/linux/man-pages/man8/vmstat.8.html

Bibliography

[60] T. Sugaware, N. Homma, T. Aoki, and A. Satoh, “Ieee international symposium on
circuits and systems,” in 5th Southern Conference on Programmable Logic, 2008,
p. 2925–2928.

[61] S. Anitha, Kumari and M. Mahalinga, “Asic implementation of present cipher for
iot application,” Journal of VLSI Design and Signal Processing, vol. 5, p. 12–18,
2019.

[62] J. G. Pandey, T. Goel, M. Nayak, C. Mitharwal, S. Khan, S. K. Vishvakarma,
A. Karmakar, and R. Singh, “A vlsi architecture for the present block cipher with
fpga and asic implementations,” in VLSI Design and Test, S. Rajaram, N. Bal-
amurugan, D. Gracia Nirmala Rani, and V. Singh, Eds. Singapore: Springer
Singapore, 2019, p. 210–220.

91

Appendices

92

Appendix A

Appendix

A.1 Present Algorithm runs on Software

Present64/80
ARM Cortex-A9

clock cycles seconds cycles/sec kbits/sec

2.25mb 1646612621 24.7 666644785.91 91.09

4.5mb 32929075436 49.39 666715437.05 91.11

9mb 65867234274 98.8 666672411.68 91.09

18mb 131717354252 197.8 666653275.89 91.10

36mb 263496787042 395.25 666658537.74 91.08

90mb 658659349614 987.99 666666008.37 91.09

Table A.1: Present64/80 runs on Zedboard

Present64/80
ARM Cortex-A53

clock cycles seconds cycles/sec kbits/sec

2.25mb 2016778564 10 201677856.4 225

4.5mb 4033578468 20 201678923.4 225

9mb 8067178524 40 201679463.1 225

18mb 16134378486 80 201679730.07 225

36mb 32268778510 161 200427195.71 223.60

90mb 80671978652 403 200178607.07 223.35

Table A.2: Present64/80 runs on Kria KV260

93

Appendix A. Appendix

Present64/80
Intel(R) Core(TM)
I5-4200U

clock cycles seconds cycles/sec kbits/sec

2.25mb 3650338 1.82 2000000 1232.76

4.5mb 7781318 3.89 2000000 1156.61

9mb 15177084 7.58 2000000 1185.99

18mb 29906160 14.95 2000000 1203.76

36mb 61171204 30.58 2000000 1177.02

90mb 150905448 75.45 2000000 1192.79

Table A.3: Present 64/80 runs on Intel(R) Core(TM) I5-4200U

Present64/80
Intel(R) Xeon(R)
E5-2630

clock cycles seconds cycles/sec kbits/sec

2.25mb 2980000 1.57 1898089.17 1433.12

4.5mb 7660000 3.13 2447284.34 1437.69

9mb 12520000 6.36 1968553.45 1415.09

18mb 23360000 12.68 1842271.29 1419.55

36mb 46720000 25.36 1842271.31 1419.62

90mb 118340000 63 1878412.69 1428.57

Table A.4: Present64/80 runs on Intel(R) Xeon(R) E5-2630

A.2 Clefia Algorithm runs on Software

Clefia128/128
ARM Cortex-A9

clock cycles seconds cycles/sec kbits/sec

2mb 3161389114 4.74 666959728.69 421.89

4mb 6404764954 9.61 666468777.73 416.23

8mb 12638951964 18.96 666611390.50 421.94

16mb 25499076418 38.25 666642520.73 418.30

32mb 51073576630 76.61 666669842.44 417.70

80mb 128051326706 192.08 666656219.83 416.49

Table A.5: Clefia128/128 runs on Zedboard

Clefia128/128
ARM Cortex-A53

clock cycles seconds cycles/sec kbits/sec

2mb 461026166 2.31 199578426.83 865.80

4mb 922055406 4.61 200012018.65 867.67

8mb 1844092842 9.22 200010069.63 867.67

16mb 3688181816 18.44 200009859.86 867.67

32mb 7376328934 36.88 200008919.03 867.67

80mb 18453210158 92.27 199991439.88 867.02

Table A.6: Clefia128/128 runs on Kria KV260

94

Appendix A. Appendix

Clefia128/128
Intel(R) Core(TM)
I5-4200U

clock cycles seconds cycles/sec kbits/sec

2mb 779280 0.39 2000000 5128.20

4mb 1570306 0.78 2000000 5094.54

8mb 3168166 1.58 2000000 5050.24

16mb 6838040 3.18 2134872.71 5031.44

32mb 12740248 6.37 2000000 5023.45

80mb 30817942 15.90 2000000 5031.44

Table A.7: Clefia128/128 runs on Intel(R) Core(TM) I5-4200U

Clefia128/128
Intel(R) Xeon(R)
E5-2630

clock cycles seconds cycles/sec kbits/sec

2mb 560000 0.28 1962846.12 7010.164

4mb 1140000 0.57 2000000 7017.54

8mb 2280000 1.14 2000000 7017.54

16mb 4640000 2.32 2000000 6896.55

32mb 9260000 4.63 2000000 6911.44

80mb 22920000 11.46 2000000 6980.80

Table A.8: Clefia128/128 runs on Intel(R) Xeon(R) E5-2630

A.3 Simon Algorithm runs on Software

Simon64/128
ARM Cortex-A53

clock cycles seconds cycles/sec kbits/sec

40mb 22064811274 33.1 666610612.50 1208.45

100mb 55154812932 82.73 666684551.33 1208.75

500mb 275754810880 413.63 666670238.81 1208.80

1000mb 551504812892 827.26 666664425.80 1208.80

Table A.9: Sion64/128 runs on Zedboard

Simon64/128
ARM Cortex-A53

clock cycles seconds cycles/sec kbits/sec

40mb 1670574850 8.35 200068844.31 4790.41

100mb 4174212370 20.87 200010175.85 4791.56

500mb 20865120416 104.33 199991569.21 4792.48

1000mb 41728757500 208.65 199994045.05 4792.71

Table A.10: Simon64/128 runs on Kria KV260

95

Appendix A. Appendix

Simon64/128
Intel(R) Core(TM)
I5-4200U

clock cycles seconds cycles/sec kbits/sec

40mb 4032212 2.01 2000000 19840.22

100mb 9895050 4.94 2000000 20212.12

500mb 48421678 24.21 2000000 20651.90

1000mb 98721878 49.36 2000000 20258.933

Table A.11: Simon64/128 runs on Intel(R) Core(TM) I5-4200U

Simon64/128
Intel(R) Xeon(R)
E5-2630

clock cycles seconds cycles/sec kbits/sec

40mb 2200000 1.1 2000000 36363.63

100mb 5540000 2.77 2000000 36101.08

500mb 27700000 13.85 2000000 36101.08

1000mb 55820000 27.91 2000000 35829.45

Table A.12: Simon64/128 runs on Intel(R) Xeon(R) E5-2630

96

	List of Figures
	List of Tables
	Introduction
	About Cryptography
	Symmetric Key Cryptography
	Asymmetric Key Cryptography
	Hash Functions
	Lightweight Cryptography
	Block and Stream Cipher
	Thesis Outline

	Algorithms Description
	Present algorithm
	Introduction of Present
	Present Encryption Block Cipher
	addRoundKey
	sBoxLayer
	pLayer
	Key Schedule

	Simon algorithm
	Introduction of Simon
	Simon Round Function
	Simon Key Schedule

	Clefia algorithm
	Introduction of Clefia
	Clefia Encryption Block Cipher
	Key Scheduling
	Functions F0,F1
	Tables M0,M1
	Clefia Sboxes
	DoubleSwap Function

	Platforms
	The structure of FPGAs
	Platforms
	Kria KV260 Vision AI Starter Kit

	FPGA Implementation
	Architecture Analysis
	System Architecture
	Data transfer with DMA and configuration
	Custom Blocks

	Architecture of Present Encryption
	Top Module
	Module sBoxLayer
	Module pLayer
	Module Key Schedule
	Module State Machine

	Architecture of Simon Encryption
	Top Level Module
	Module Key Schedule
	Round Function

	Architecture of Clefia Encryption
	Top Module
	Modules S0,S1
	Module M0
	Module M1
	Module F0
	Module F1
	Module GF4N
	Module Key Schedule
	Module Control

	Tools
	Communication between Software and Hardware
	AXI Protocol
	How AXI Works

	Results
	Software Implementations and Performance/Power Comparison Methodology
	Software Platforms
	Software Implementations
	Performance and Power Comparison Methodology

	Results of Present Algorithm
	Area, Latency and Power performance
	Present Software and Hardware comparison
	Results of Simon Algorithm
	Area, Latency and Power performance
	Simon Software and Hardware comparison
	Results of Clefia Algorithm
	Area, Latency and Power performance
	Clefia Software and Hardware comparison
	Related Work

	Conclusions
	Bibliography
	Appendices
	Appendix
	Present Algorithm runs on Software
	Clefia Algorithm runs on Software
	Simon Algorithm runs on Software

