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Abstract

This work’s main objective was to exploit ambient signal backscattering to aid ra-

dio communication, through a smart reflective surface or detect airplane reflections

through a passive radar system.

First, ultra-low cost, commodity, radio frequency identification (RFID) tags are

utilized as elements of a reconfigurable intelligent surface (RIS). Such batteryless tags

are powered and controlled by a software-defined radio (SDR) reader, with properly

modified software, so that a source-destination link is assisted, operating at a different

band. Signal model includes small-scale and large-scale fading, direct link, as well

as specific parameters relevant to reflection (i.e., backscatter) radio, such as antenna

structural mode and reflection efficiency, typically overlooked in the literature. An

algorithm is offered that computes the optimal RIS configuration with complexity of

O(M logM) in number of elements M , instead of intractable exponential complex-

ity of exhaustive search, while accommodating any number K ≥ 2 of loads. With

the proposed algorithm, it is shown that performance gains reach a plateau for con-

stant element spacing and increasing number of elements, suggesting that the weak,

passive nature of backscattered links limits the performance gains, even with perfect

channel estimation. A concrete way is offered to design and prototype a wireless, bat-

teryless, RF-powered, reconfigurable surface and a proof-of-concept is experimentally

demonstrated.

Then, an FM passive radar station capable of tracking airplanes in Cartesian 3D

coordinates was developed. The station was constructed using a low-cost SDR, based

on the LimeSDR USB platform; the latter is a relatively low-cost SDR, in the order of

300$. The station is complemented with a 5-element Yagi antenna for observation and

another 3-element Yagi antenna, for observing the FM radio broadcasting stations.

Signals from different FM broadcasting stations were collected and amplitude-range-

Doppler(ARD) plots were created. Then, a bistatic tracker was designed for each

broadcasting station, estimating the bistatic range and Doppler shift from each ARD

plot. Finally, the estimated range-Doppler frequency shift pairs from each station

were fed as input to the Cartesian tracker, which was designed to offer 3D tracking.

Simulation results showed an error below 100m in each direction. The system exploits



space diversity, due to the multiple spatially separated broadcasting stations required

as input, and frequency diversity, due to processing of multiple frequency bands of

interest. The system is scalable, since increasing the number of broadcasting stations

utilized requires no change in the processing chain. Experimental results with the low-

cost LimeSDR platform corroborate theoretical findings and demonstrate the utility

of this work, as a testbed for further research and development.
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Chapter 1

Introduction

Significant interest has been attracted recently on reconfigurable intelligent surfaces

(RISs), which are viewed as a way to control the environment, with a large num-

ber of passive elements, i.e., without amplification; such surfaces are envisioned to

offer a focusing effect (e.g., review work in [2], [3], and references therein). Despite

the fact that RIS is a special case of bistatic backscatter radio [4–6], or multistatic

scatter radio [7], [8], such connection is not widely known in the literature. Backscat-

ter, i.e., reflection radio has been extensively used in radio frequency identification

(RFID) and recently was proposed for sensor networking applications (e.g., work

in [9] for monostatic interrogation and work in [10–16] for bistatic, batteryless sensor

interrogation and references therein). Review material and connection to ambient

backscatter communication [17], a special case of bistatic backscatter, can be found

in [18] and references therein.

Another technology that exploits ambient signal’s reflections on objects is passive

bistatic radar (PBR). This type of radar operates in a bistatic manner [19], using

non-cooperative illuminators of opportunity (IoO), such as FM radio [20] or DTV

stations to detect targets [21]. Therefore, expensive radar transmitters and licensing

is not needed and pre-existing signals are used, without exacerbating the spectral

congestion. Instead, PBR station operates with cheap components such as off-the-

shelf software-defined radio (SDR) receivers, with prices starting at 8$ (RTLSDR),

accompanied with a standard personal computer [22]. Other characteristics include

fast update rates (i.e 0.1 − 1 s) [20] and covert operation, since there are no energy

emissions from the PBR station, in contrast to an active radar system. Moreover,

although the narrow bandwidth leads to low range and bearing accuracy, the large

integration times leads to an excellent Doppler resolution.

PBR is known for its prominent use in countering stealth technology [23]. Stealth

targets are mainly designed to either absorb or scatter the electromagnetic wave in

an angle that differs from the incident to prevent detection by a monostatic radar.

PBR use could be beneficial in detecting stealth aircraft. This is due to the bistatic

nature of the PBR and the characteristics of the VHF (i.e. FM) or the UHF (i.e.

DVB-T). The wavelength of these frequencies is in the order of meters, where the
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aircraft absorption capability is considered not as strong as in the microwave region.

Also, the utilization of GPS signals have enabled multistatic PBR operation [24].

Also, there are strong links between tag ambient backscattering tags and PBR,

demonstrated in [25], where an increase of communication range using PBR tech-

niques and DTV signals was demonstrated both theoretically and experimentally;

experimental results showed a possible rate of 1 kbps at a range of 100 meters.

1.1 Related Studies

According to [26], a near-field, squared-shaped RIS can offer limited gains. Firstly,

given a large surface, the distance between the source and the elements of RIS can

be much greater than the link distance (i.e. distance from source to the center of

RIS), resulting in significant attenuation. Secondly, distant elements of the surface

exhibit lower local effective areas. Finally, the polarization mismatch increases for

the elements deployed far away from the center of the surface. Similarly, authors

in [27], pinpoint that the received power scattered by a RIS is bounded as the size of

the surface increases.

Assuming the presence of a RIS, work in [28] considered the joint maximization

of spectral and energy efficiency in a multi-user MISO downlink network; alternative

optimization of base station beamforming and RIS phase shifts was employed, subject

to individual link budget guarantees for the mobile users. Such formulation led to non-

convex optimization problems, addressed by two computationally affordable methods.

In order to make the problem more tractable, the authors assumed infinite-resolution

phase shifters, no direct links and perfect channel state information (CSI) available

at the base station; comparison to multi-antenna amplify-and-forward relaying was

also performed. In [29], the performance of a single-cell multiuser system aided by

multiple RISs was evaluated. Through simulations, it was shown that the RIS-aided

system can outperform full-duplex relaying, in terms of spatial throughput, when the

number of RIS elements exceeds a certain value. Differently from the single-user case

where the RIS should be deployed near the BS or user for rate maximization, RISs

(in the multi-user system) should be distributed across the whole network.

Work in [30] introduced expressions to compute the power reflected from a RIS

as a function of distance between the transmitter or receiver and the RIS, the size

of the RIS and the phase transformation applied by RIS. Calculations were based on

the general scalar theory of diffraction and the Huygens-Fresnel principle. Free space

path loss models were offered in [31], along with an experimental testbed for their
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verification. It is noted that a significant issue on RIS implementation is the mutual

coupling. Conceptually, each element modifies the phase of the impinging EM wave.

When the elements are spaced by at least half of the wavelength, mutual coupling

among them is usually ignored and each element can be designed independently of

the others [32].

Work in [33] employed tools from stochastic geometry and studied the effect of

large-scale deployment of RISs on the performance of cellular networks. Direct links

assumed blocked and blockages, such as buildings or trees, were modeled with a line

Boolean model. A subset of the blockages was equipped with RISs and a performance

study on cellular networks was performed, assuming no inter-cell interference and

small-scale fading effect.

Joint study of RIS with non-orthogonal multiple access (NOMA) has been recently

an attractive research topic [34–37]. There exist two dominant NOMA schemes: the

first is relevant to power domain multiplexing, which assumes that different users are

allocated different transmission power, based on their channel conditions; the second is

relevant to code domain multiplexing, which assumes that different users are assigned

different codes, multiplexed over the same time-frequency resources. Complexity of

successive interference cancellation (SIC) in both schemes was studied.

Work in [38–42] proposed metasurfaces in order to manipulate electromagnetic

(EM) waves, allowing for anomalous reflection, full EM absorption, refraction, and

polarization control. In [38], [41], [42] an application programming interface (API)

is envisioned to exist on a server, in order to control the metasurfaces. Evaluations,

solely based on simulations, showed improved received power and coverage.

A small number of experimental testbeds has recently emerged, e.g., work in

[1,43–45]; [43] offered a 36-element array, with phase shifters helping endpoints whose

line-of-sight (LoS) is blocked; [44] developed a RIS with 256 elements exploiting pos-

itive intrinsic-negative (PIN) diodes for 2−bit phase shifting; [1] utilized software-

controlled, 2-load RF switches in groups, in order to select different surface con-

figurations with thousands of elements, exploiting feedback from the destination; a

RIS-based system was implemented in [45] with 256 elements (controlled with varac-

tor diodes), which could facilitate amplitude-and-phase-varying modulation, assisting

2× 2 MIMO transmission. In principle, each element should be controlled by a ded-

icated digital-to-analog converter (DAC). Due to hardware limitations however, two

DACs were used in order to control the elements. The distance between the RIS and

the two receiving antennas was about 1.5 meters and cables were required to control

the RIS elements from a dedicated field programmable gate array (FPGA). All offered
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testbeds so far are based on wired prototypes.

Prior art in PBR [20] has shown that it is possible to localize and track targets

in 3D, using range and bearing measurements. However the accuracy was limited by

the low accuracy of the bearing measurements. In [46], a combination of multilatera-

tion techniques, along with an array of antennas as a direction finder, demonstrated a

target accuracy of 250 m at a range of 20 km from the receiver. Authors in [47] demon-

strate in both theory and simulation results, the significant performance improvement

in terms of position and velocity estimation of a PBR that uses an increasing number

of antennas.

Localization algorithms have been proposed for the single-receiver and multiple

transmitter case or vice versa, such as in [48], where two closed-form solutions are de-

rived. For the multiple-receiver to multiple-transmitters case, [49] uses a closed-form

two-step weighted least squares (WLS) method, to minimize the weighted equation

error energy and estimate the target’s state.

In [50], experimental investigation showed that increasing the number of PBR

receivers, in both FM and DVB-T bands, is beneficial in terms of the detection

range, localization error and tracking quality. This improvement occurs due to the

increased number of bistatic geometries, exploitation of complementarities in the

FM and DVB-T waveforms and observation of the target from various aspect angles

(multistatism).

In [51], PBR target detection is improved using a combination of multiple FM

channels, exploiting frequency diversity. As a result, performance deterioration due

to instantaneous bandwidth variations of FM channels is reduced significantly. In [52],

a supersonic rocket was launched and tracked in 3D Cartesian coordinates with DVB-

T PBR. This work demonstrated the ability of a PBR to track targets, whose position

and velocity changes rapidly, due to the high refresh rate.

Finally, various projects over the last few years have offered open-source software,

helping researchers and enthusiasts in learning and extending PBR technology [53],

[54].

1.2 Contribution

This work exploits commodity, ultra-low cost, commercial radio frequency identifica-

tion tags as the RIS elements. Such batteryless tags are powered and controlled by a

software-defined radio (SDR) reader, operating at carrier frequency f2, with properly

modified software, so that a source-destination link, operating at a different carrier
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RIS
TAG

f1

f2

f1

Source Reader Destination

dy

dx

Z0

Z1

LoS

Figure 1.1: The proposed wireless surface with commodity, wirelessly-controlled, RF-
powered, RFID tags.

frequency f1, is assisted (Fig. 1.1).

It is found for the first time in the literature (to the best of our knowledge): a)

the optimal gain and corresponding best RIS element configuration, with tractable

polynomial complexity (instead of exponential) in number of elements and b) the way

to design and prototype a wireless, batteryless, RF-powered RIS, with commodity

RFID tags. Future extensions at various carrier frequencies could be accommodated,

through simple modifications in the antenna and matching network of each RFID tag,

as well as modifications in the RFID protocol for efficient, RIS-tailored operation. The

contributions are summarized as follows:

• Signal model includes small-scale and large-scale fading, as well as specific pa-

rameters relevant to reflection (i.e., backscatter) radio, such as antenna struc-

tural mode and reflection efficiency, typically overlooked in the literature; such

modeling is critical in RIS-relevant research, due to the lack of amplification,

the passive nature of reflecting elements and thus, the inherently weak signals

involved.

• An algorithm that computes the optimal RIS configuration with tractable poly-

nomial complexity of O(M logM), instead of intractable complexity of KM for

exhaustive search with large M , where K ≥ 2 is the number of loads per RIS

element and M is the total number of RIS elements. The algorithm can ac-

commodate any set of reflection coefficients (e.g., not necessarily of common

amplitude). Such algorithm allows for careful communication theory studies

when M is in the order of thousands.

• Using the proposed optimization method, it is numerically demonstrated that
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performance gain will reach a plateau if RIS element spacing is kept constant,

for increasing number of elements in the order of thousands. This finding cor-

roborates recent reports on bounded RIS performance and suggests that even

with perfect channel estimation, the weak nature of backscattered links lim-

its the performance gains, even for large number of RIS elements. Numerical

results also suggest that amplification may be needed in practical setups.

• A RIS prototype is demonstrated, which is completely wireless and battery-

less, using commercial (Gen2) RFID tags as the RIS elements. The surface

is controlled by a software-defined radio reader, running a carefully modified

stack of the Gen2 RFID protocol. Experimental results offer, to the best of

our knowledge, the first wireless, batteryless RIS and future modifications and

enhancements are also proposed.

• A PBR station has been developed using low-cost hardware, including two FM

antennas, a relatively low-cost SDR (300$) and a standard laptop. The stages of

signal processing are presented and discussed. Experimental results are offered

in the bistatic coordinates, where a Kalman filter-based bistatic tracker is used

to estimate the target’s state, evaluating the PBR’s performance. Spatial and

frequency diversity is examined in a multistatic PBR setup, using a scalable

two-stage Cartesian 3D tracker and its performance has been validated through

simulations. The fully-operational PBR station, developed in this work, pro-

vides a testbed for further research and development.

1.3 Organization

The rest of the work is organized as follows: Chapter 2 offers a detailed system and

signal model, tailored to the weak nature of backscattered signals along with the al-

gorithm that can compute the optimal RIS configuration, given CSI, with tractable

complexity; Chapter 3 describes the batteryless, wireless RIS implementation; Chap-

ter 4 offers evaluation, both in terms of simulations, as well as experimental results.

Chapter 5 provides basic PBR theory, the system model and the signal process-

ing chain, including clutter removal, correlation processing and detection; Chapter 6

presents a target tracker operating in the bistatic coordinates, i.e., estimation of range

and Doppler frequency pair for a given illuminating transmitter, accompanied with

experimental results. Chapter 7 offers a cartesian 3D tracker that uses the bistatic

tracks’ range-Doppler frequency pairs from at least three illuminating transmitter-
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receiver pairs, to obtain a 3D position and velocity estimate of the target’s state.

Finally, conclusions and future work are offered in Chapter 8.

Notation: 0N denotes the all-zeros vector; the phase of complex number z is

denoted as z, while ℜ{z} denotes the real part of z; the distribution of a proper

complex Gaussian N × 1 vector x with mean µ and covariance matrix Σ is denoted

by CN (µ,Σ) ≜ 1
πN det(Σ)

e−(x−µ)HΣ−1(x−µ); the special case of a circularly symmetric

complex Gaussian N × 1 vector corresponds by definition to CN (0N ,Σ); expectation

of function g(·) of random variable x is denoted by E[g(x)]; the derivative of a variable
x is denoted by ẋ.
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Chapter 2

Optimal RIS configuration

2.1 Channel Model

A source-destination link is assisted by an array of M tags/RIS elements. The fol-

lowing large-scale channel path-loss model is adopted [55]:

LX ∝
(

λ

4πdX0

)2(
dX0
dX

)vX

, (2.1)

where X ∈ {SD, STm,TmD} denotes the source-to-destination, source-to-tag m and

tag m-to-destination, respectively; λ is the carrier wavelength, dX0 is a reference dis-

tance, vX is the path-loss exponent and dX is the distance for link X.

Flat fading is assumed; complex channel coefficients hSD, hSTm and hTmD denote

the baseband channel coefficients for the source-destination, source-tag and tag-reader

link, respectively. Due to strong line-of-sight (LoS) signals present in the problem,

small-scale Rice flat fading channel model [55] is mainly adopted:1

hTmD ∼ CN
(√

κTmD

κTmD + 1
σTmD,

σ2
TmD

κTmD + 1

)
, (2.2)

where hTmD
△
= |hTmD| e−jϕTmD , kTmD is the power ratio between the deterministic LoS

component and the scattering components and E[|hTmD|2] = σ2
hTmD

is the average

power of the scattering components. For link budget normalization purposes, σ2
hTmD

=

1 will be also assumed (other values could be easily accommodated into the large-

scale, average coefficients). Similar notation and assumptions hold for hSTm , m ∈
{1, 2, . . . ,M} and hSD. It is noted that for κ = 0, Rice is simplified to Rayleigh

fading.

Quasi-static block fading is assumed, i.e., the channel remains constant for Lc

(source-destination link) symbols and changes independently between channel coher-

ence time periods. Channel coefficients hSD, {hSTm}, {hTmD}, m ∈ {1, 2, . . . ,M} are

1The complex channel is the superposition of
√

κTmD

κTmD+1 σTmD ejθ+CN
(
0,

σ2
TmD

κTmD+1

)
with random

θ.
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assumed independent in the numerical results. Furthermore, the following notation

is also adopted:

hm = hSTm hTmD = |hSTm hTmD| e−jϕm ,m ∈ {1, 2, . . . ,M},

h0 = hSD,m = 0. (2.3)

2.2 Signal Model

The baseband source message c(t) is given by:

c(t) =
√
2P m(t) (2.4)

where E[|m(t)|2] = 1. Different normalization could be incorporated into the large-

scale coefficients. The baseband complex equivalent of the scattered waveform from

tag m follows [6]:

um(t) =
√
η LSTm [As − Γm(t)] hSTm c(t), (2.5)

Γm(t) ∈ {Γ1,Γ2, . . . ,ΓK}, (2.6)

where Γm(t) stands for the modified (complex) reflection coefficient for tag m, as-

suming that the tag can terminate its antenna between K loads and η models the

(limited) tag power scattering efficiency. It is noted that for passive (amplification-

free) tags, |Γk| ≤ 1, while for commercial RFID tags, K = 2. Parameter As stands

for the load-independent structural mode that solely depends on tag’s antenna [56],

commonly overlooked in the literature; As = 1 only for minimum scattering anten-

nas, i.e., antennas that do not reflect anything when terminated at open (i.e., infinite)

load, corresponding to unit reflection coefficient (and in that case As − Γ = 0).

The received demodulated complex baseband signal at the destination is given by

the superposition of the source and all tags’ backscattered signals propagated through
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wireless channels hSD and {hTmD}, respectively:

y(t) =
√

LSD hSD c(t) +
M∑

m=1

√
LTmD hTmD um(t) + n(t)

=
√
LSD hSD c(t) + n(t)

+
M∑

m=1

√
η LSTmLTmD hSTm hTmD [As − Γm(t)] c(t)

=
√
2P

[
√
g0 h0 +

M∑
m=1

√
gm hm Ym(t)

]
m(t) + n(t), (2.7)

where n(t) is the thermal noise at the receiver and

g0 = LSD, (2.8)

gm = η LSTmLTmD E
[
|As − Γm(t)|2

]
, (2.9)

Ym(t) =
As − Γm(t)√

E
[
|As − Γm(t)|2

] , (2.10)

ym [Γm(t)]
△
=

√
gm hm Ym(t). (2.11)

Notice that E[|h0|2] = E[|hm|2] = E[|Ym|2] = 1 since E[|hm|2] =

E[|hSTm|2]E[|hTmD|2], due to the followed assumptions. It is also noted that

E
[
|As − Γm(t)|2

]
= (1/K)

∑K
k=1 |As − Γk|2 .

The above model is valid when coupling among the tags is negligible, i.e., the

tags are separated by distance at least equal to λ/2. Additive thermal noise n(t) is

modelled by a complex, circularly symmetric, additive Gaussian noise process with

E[|n(t)|2] = N0B, where B stands for receiver’s bandwidth.2

RIS targets at SNR improvement, by controlling the environment, through proper

selection of the reflection coefficient at each element. According to Eq. (2.7), the

2N0 = kbTθ, where kb and Tθ are the Boltzmann constant and receiver temperature, respectively.
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following instantaneous power maximization problem is formulated:

max
{Ym(t)}

∣∣∣∣∣√g0 h0 +
M∑

m=1

√
gm hm Ym(t)

∣∣∣∣∣
2

2P (2.12)

⇔ max
{Ym(t)}

∣∣∣∣∣∣∣
√
g0 h0︸ ︷︷ ︸
y0

+
M∑

m=1

√
gm hm Ym(t)

∣∣∣∣∣∣∣ (2.13)

= max
{Γm(t)}

∣∣∣∣∣y0 +
M∑

m=1

ym
[
Γm(t)

]∣∣∣∣∣ , (2.14)

which cannot be solved with exhaustive search, since each RIS element (among M

elements) can select among K loads, i.e., Γm(t) ∈ {Γ1,Γ2, . . . ,ΓK}, and thus, there

are KM possible load configurations. Even for K = 2 and M = 100, exhaustive

search among 2100 load configurations is not an option.

The following offers an optimal method for the above optimization problem, with

log-linear complexity O(M log (M)) in the number M of RIS elements, instead of the

exponential (in M) complexity of exhaustive search.

The problem above is similar to noncoherent sequence detection of orthogonally-

modulated sequences, solved with polynomial complexity in [57]. The trick is to

introduce an auxiliary scalar variable ϕ into the problem of Eq. (2.14):

max
{Γm(t)}

max
ϕ∈[0,2π)

ℜ

{
e−jϕ

(
y0 +

M∑
m=1

ym
[
Γm(t)

])}
=

max
ϕ∈[0,2π)

max
{Γm(t)}

(
ℜ
{
e−jϕy0

}
+

M∑
m=1

ℜ
{
e−jϕym

[
Γm(t)

]}) (2.15)
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2.3 K = 2 Loads

For a given point ϕ ∈ [0, 2π), the innermost maximization in Eq. (2.15) is separable for

each Γm(t) and hence, splits into independent maximizations for anym = 1, 2, . . . ,M :

Γ̂m(t) = argmax
Γm(t)∈{Γ1,Γ2}

ℜ
{
e−jϕym [Γm(t)]

}
⇔ ℜ

{
e−jϕym [Γ1]

} Γ̂m(t)=Γ1

≷
Γ̂m(t)=Γ2

ℜ
{
e−jϕym [Γ2]

}
⇔ ℜ

{
e−jϕ (ym [Γ1]− ym [Γ2])

} Γ̂m(t)=Γ1

≷
Γ̂m(t)=Γ2

0

⇔ cos (ϕ− ym [Γ1]− ym [Γ2])
Γ̂m(t)=Γ1

≷
Γ̂m(t)=Γ2

0 (2.16)

Given the relation in Eq. (2.15), the optimal load sequence Γ̂opt can be found by

varying ϕ from 0 to 2π. It is further noticed that, as ϕ scans [0, 2π), the decision

Γ̂m(t) changes, according to Eq. (2.16), only when:

cos (ϕ− ym [Γ1]− ym [Γ2]) = 0 ⇔ ϕ = ±π
2
+ ym [Γ1]− ym [Γ2] (mod 2π)︸ ︷︷ ︸

ϕ
(1)
m ,ϕ

(2)
m

.

(2.17)

Therefore, the sequence Γ̂ =
[
Γ̂1(t), Γ̂2(t), . . . , Γ̂M(t)

]T
changes only at

(
ϕ
(1)
1 , ϕ

(2)
1 , ϕ

(1)
2 , ϕ

(2)
2 , · · · , ϕ(1)

M , ϕ
(2)
M

)
.

For the remaining part of this section, we assume that the above 2M points are

distinct and nonzero, i.e., ϕ
(j)
m ̸= ϕ

(k)
l and ϕ

(j)
m ̸= 0, for any j, k,∈ {1, 2} and m, l ∈

{1, 2, . . . ,M} with m ̸= l. There is a case where the above assumption does not hold,

examined in [57]. If the above points are sorted in ascending order, i.e.,

(θ1, θ2, · · · , θ2M) = sort
(
ϕ
(1)
1 , ϕ

(2)
1 , ϕ

(1)
2 , ϕ

(2)
2 , · · · , ϕ(1)

M , ϕ
(2)
M

)
, (2.18)

then the decision Γ̂ will remain constant in each one of the 2M + 1 intervals

(θi, θi+1), i ∈ {0, 1, . . . , 2M}, with θ0 = 0 and θ2M+1 = 2π. The goal is the iden-

tification of the 2M + 1 sequences that correspond to these intervals,3 one of which

3It can be shown that the sequence at [0, θ1) is the same with the sequence at [θ2M , 2π) and thus,
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(a) (b)

Figure 2.1: The 21 reflection coefficients used in the simulations.

gives the optimal Γ̂opt, i.e., the one that offers the maximum power; thus, the quality

of each sequence is calculated with the norm metric of Eq. (2.14), which explicitly

includes the direct channel h0. Based on the above, the sorting operation in Eq. (2.18)

is dominant in terms of computational cost, which is O(M logM) and not 2M .

2.4 K > 2 Loads

The method described above can be generalized to K > 2 loads, i.e., Γm(t) be-

longs in {Γ1,Γ2, . . . ,ΓK}. The solution is given by selecting the largest value of

ℜ
{
e−jϕym[Γk]

}
among all k ∈ {1, 2, . . . K}, which results in testing 2M × (K − 1)

changes of ϕ and as a result, same number of sequence changes and not 2M ×
(
K
2

)
,

as one would expect; the rest of the steps are exactly the same as in K = 2. Formal

proof and details can be found in [57]. Notice that the norm metric for the quality

of each sequence must include h0. The complexity of the algorithm is not KM , but

again O(M logM) for M > K.4.

Fig. 2.1a depicts K = 21 (complex) reflection coefficients, corresponding to the

21 loads, offered through a varactor at each tag, as experimentally tested in [59]. It

can be shown that these reflection coefficients span more than 120◦. Fig. 2.1b shows

As−Γk, k ∈ {1, 2, . . . K}, which incorporates the contribution of the structural mode

of each RIS element antenna, typically overlooked in the literature; it can be seen

that the span of As − Γk in degrees is much smaller, in the order of 60◦.

2M intervals/sequences should be identified.
4During writing, work in [58] was found, which however offers suboptimal gain for K > 2 loads

per element; for K = 2 loads, the algorithm there requires sorting of 2M + 2 phases [58, page 970,
first column, definition of 2M + 2 arcs in [0, 2π)], and thus obtains complexity of O(M log(M)).
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Chapter 3

Wireless Batteryless

Implementation with RFIDs

The RFID-based RIS is controlled by the RFID reader at carrier frequency f2, through

commands such as Select, Query and ACK, explained below. In the commercial RFID

standard (EPC Gen2), a framed slotted Aloha (FSA) protocol is used, so that tags

backscatter one at a time, without collision. For RIS purposes, the opposite is needed,

i.e., tags must be forced to backscatter in carefully selected groups.

0 1 2 3 4 5 6 7 8

Time (ms)

16

18

20

22

Inventory round without RN16 collision

QUERY

RN16

ACK

EPC

(a) No RN16 collision.

0 1 2 3 4 5 6 7 8

Time (ms)

16

18

20

22

Inventory round with RN16 collision

QUERY

RN16

ACK

NO EPC 
RESPONSE

(b) RN16 collision.

Figure 3.1: Conventional Gen2 RFID operation from experimental measurements:
each tag responds to a Query command with a random RN16 message; if it is correctly
acknowledged, it will respond with its EPC.

In Gen2, the reader initiates the start of a frame with a Query command, which

contains the number of slots. Ideally, the number of slots should be equal to the

number of tags to be inventoried. If the reader advertises number of slots equal to

1, then all tags in the vicinity of the reader will respond. That was the approach

followed in this work. Then, each tag responds with a random 16-bit number, namely

the RN16 message, which is in principle different among the competing tags. If the

reader correctly decodes that message then it will send the ACK command, containing

the RN16 sent by the tag. Collision detection and error detection is conducted at
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the reader using the line coding the tags incorporate (FM0 or Miller).1 If the tag is

correctly acknowledged, it will reply with its ID (EPC); the latter is typically 96−bits

payload plus CRC bits. Fig. 3.1a depicts an inventory round with an acknowledged

tag, while in Fig. 3.1b multiple tags have backscattered their RN16, resulting to a

collision; this is the case exploited in this work.

Figure 3.2: Superposition of Preamble+RN16 from multiple tags.

The RN16 is preceded by a 6-bit Preamble sequence, which does not follow the

line coding rules and is the same for all tags. As a result, using the Preamble one

could measure the effect of a specific RIS configuration (where configuration denotes

the set of tags that change their reflection coefficients, among the total number of

RIS tags). Since the random 16-bit sequence of the RN16 is different for each tag,

the signal level (or the effective channel) during RN16 could be higher or lower than

the Preamble level because only a subset of the configuration’s tags are terminated

at the same load at a given point of time. This is shown in Fig. 3.2.

In the Gen2 industrial RFID standard, the Select command (issued by the Reader)

is asserting or deasserting the SL flag of the tags. When a tag has its SL flag asserted,

it responds with an RN16 after a Query command. The Select command contains a

mask with a specified length and starting point. Each tag compares this mask with

its corresponding EPC bits. The Action parameter, which is a field set by the reader

during the Select command, allows the user to specify how the SL flag will change

if the mask matches the EPC of the tag. To assert a specific tag’s SL flag without

1The reader directs the tags about the line code they are going to use.
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Figure 3.3: Reader-Tag communication during a configuration.

affecting the others’, the Action parameter is set to {0, 0, 1}. To deassert all SL flags

with one Select, the Action parameter is set to {0, 0, 0} and the mask is set to avoid

corresponding to any tag.
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Figure 3.4: Power at Destination during different configurations.

For RIS purposes, a specific configuration is set by having the reader issuing suc-

cessive Select commands and asserting the SL flag of the specified tags, sequentially.

This is shown in Fig. 3.3. First, a continuous wave (CW) energizes the tags and then

the Select commands are issued. Afterwards, we can observe 10 inventory rounds

(Query-RN16-ACK), where the peaks are the superposition of the RN16 from the

selected tags. Finally, to advance to a new configuration, another Select is sent but

with Action parameter equal to {0, 0, 0} and a non-matching mask to any tag.

In Fig. 3.4 we observe a sequence of 9 different configurations. Each configuration
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spans 10 inventory (Query-RN16-ACK) rounds. Different configurations offer differ-

ent effective channel and hence, different maximum signal power. Those peaks occur

at the Preamble+RN16 tag response, as explained in Fig. 3.3. It is noted that the

measurements were conducted in a static indoor environment, with channel coherence

time spanning several hundreds of msec (and thus, different peaks are due to different

tag configurations and not changes in the channel). The time between the end of

the last RN16 from one configuration and the start of the first RN16 from the next

is specified as tc. More specifically, by varying the backscatter link frequency (BLF)

parameter, tc changes accordingly. The dependence of tc in number of tags selected

at each configuration, is better explained by the following equation:

tc = (µ+ 1) (TSELECT + T4) + TDELAY + TPU

= (µ+ 1)

(
61 · 1

BLF
· 103 + 0.15ms

)
+ 30ms + 184 · 1

BLF
· 103 (3.1)

In Eq. (3.1), µ is the number of activated elements/tags in a configuration with

µ Select commands asserting the SL flags and, at the end of the configuration, one

deasserting them; TSELECT is the duration of a Select and T4 is the minimum duration

between successive reader commands; TDELAY is a time interval at the end of the

configuration where no commands or continuous wave (CW) is transmitted by the

reader, shown in Fig. 3.3. This allows the tags to deassert their SL flags and was

found heuristically for the specific RFID tags used, in the order of 30ms; backscatter-

Link frequency BLF ∈ [40 kHz, 640 kHz] was set in the experimental setup equal to

40kHz. For time TPU, the reader sends CW prior to the Select command to power-up

the tags and set them to the Ready state. By varying the BLF parameter, tc changes

accordingly. For example, if µ = 50, then tc ∈ [43 ms, 116 ms]. In Fig. 3.4, tc = 116

ms. Future RIS-friendly modifications of Gen2 could further reduce this parameter.

For example, parameter TDELAY should be decreased, the Select command should be

reduced in size and parameter BLF should be increased as much as possible.

The experimental setup is depicted in Fig. 3.5, with M = 100 commodity Alien

ALN-9840 Gen2 RFID tags , separated by dx = 10 cm and dy = 5 cm. The source-

destination link operates at f1 = 870 MHz, while the software-defined radio reader

operates at f2 = 866 MHz, with zero interference among the two channels. Modi-

fications in the Gen2 reader software stack from [60] were conducted to enable RIS

functionality. Two commodity USRP N200 software defined radios, each equipped

with a RFX900 daughterboard, were utilized, both connected to a commodity laptop



Chapter 3. Wireless Batteryless Implementation with RFIDs 26

866 MHz

Figure 3.5: Experimental setup.

through a switch. One SDR was used as the Reader that controlled the RIS tags and

the other was utilized as the destination. Source of the link was a signal generator

at 870 MHz. The antennas used at the reader and source were circularly-polarized.

It is emphasized that Figs. 3.1, 3.2, 3.3, 3.4 are offered from the SDR receiver at the

destination.

Gen2 RFIDs are exploited as batteryless, wirelessly controlled reflective elements.

Each RFID label requires an impinged RF power greater than its sensitivity threshold.

In the case of the utilized ALN-9840 tags, an RFID reader should (typically) provide

at least −17.8 dBm (−14.8 dBm if write operations are required) of RF power at the

location of each tag [61].



27

Chapter 4

Numerical Results

4.1 Simulations
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Figure 4.1: Average Power Gain; tags’ spacing dx = dy =
λ
2
.

Figs. 4.1 and 4.2 are generated with typical indoor static conditions in mind:

κSTm = κTmD = κSD = κ = 8, vX = 3; moreover, η = 10%, dX0 = dSD = 3 m, f2 = 870

MHz, P = 5 dBm, and 10 dB relative end-2-end antenna gain for the backscattered

links compared to direct link, assuming that the source and destination antennas

point towards the RIS, assisting its operation.

Fig. 4.1 offers the average power improvement due to RIS and direct link operation,

compared to direct link communication only (without RIS). Several instances of the

channels are generated, optimal configuration is found, for K = 2 or K = 21 loads

per element and M = 100 RIS elements, based on the analysis of Section 2.2 and the

average power improvement is reported. The SD link is parallel to RIS and distance

from surface (dRIS−SD) is varied. It is noted that exhaustive search among KM = 2100

or 21100 configurations among RIS elements is practically impossible; however, results

are offered based on the optimal gain discovery algorithm of Section 2.2. It is observed
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Figure 4.2: Average power improvement (dB) vs number of RIS elements M .

that as the distance of the SD link from RIS increases, performance gains of optimal

RIS operation decrease. That is due to the fact that backscattered links (through

RIS) become weaker, as the distance of the SD link from the surface increases. This

finding suggests that amplification at each RIS element (i.e., |Γk| > 1), i.e., active

rather than passive RIS operation is needed; it is also important to carefully model

the wireless channel, as well as the backscattering operation. Moreover, it is observed

that using K = 21 loads for each element, despite the small angle span of the induced

backscattered signals (explained in Sec. 2.4), offers power gain in the order of 1.3

additional dB only, compared to K = 2. Perfect CSI is assumed in this figure, as well

as in next Fig. 4.2 and Fig. 4.3.

Fig. 4.2 offers average power improvement as a function of M , for two setups:

Fig. 4.2a sets dx = 0.1 m < λ/2 and dy = 0.05 m < λ/2 (setup (a)), while Fig. 4.2b

sets spacing between adjacent tags equal to λ/2 = 0.172 m (setup (b)). For both

setups, dSD = 3 m, dRIS−SD = 1 m, while setup (a) ignores possible coupling between

adjacent tags. It is found that performance in setup (b) reaches a plateau with a

faster rate than in (a), as a consequence of the larger element spacing. This finding

suggests that even with perfect channel estimation, the weak nature of backscattered

links limits the performance gains, even for large number of tags/RIS elements, in

the order of M = 6000.

Fig. 4.3 shows a comparison of the average power improvement of the proposed

algorithm versus a majority voting algorithm for K = 2 loads per RIS element, pro-

posed in [1]. The distances are dRIS−SD = 1 m, dSD = 3 m and the element spacing is

dx = λ/2 and dy = λ/2. Also, the transmission power is P = 20 dBm, η = 10% and
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Figure 4.3: Comparison of the proposed algorithm (“Best Config.”) vs a majority
voting algorithm [1].

κ = 8. The algorithm in [1] is feedback-based and uses Kr feedback measurements to

decide which elements contribute constructively. Fig. 4.3 offers three cases: 1st case

with Kr =
⌈
3(M+1)

2

⌉
, 2nd case with Kr =M+1 and 3rd case with Kr =

⌈
M+1
2

⌉
, where

M is the number of RIS elements. Parameter Kr was chosen proportionally to the

total number of channels M + 1, with the underlying assumption that estimation of

all channel coefficients in this work incurs a time overhead similar to the Kr feedback

measurements. Fig. 4.3 shows that the proposed algorithm has a greater average

power improvement for K = 2 loads. Also, it can further enhance its performance

by using tags with K > 2 loads. In addition, the algorithm in [1] has a complexity

of O(MKr) and it is required that Kr ≥ M , so that a well-determined problem is

crafted. The proposed algorithm is computationally more efficient, given that it has

a complexity of O(M logM) compared to O(MKr), while it can efficiently find the

optimal configuration even for K > 2 loads per RIS element. A specific example with

K = 21 loads for the proposed algorithm is also depicted.

It is noted that both Figs. 4.2, 4.3 demonstrate that a quadratic scaling law of

M2 for the beamforming gain is not in place. This is not surprising, since as the

number M of RIS elements increases, the distance of certain RIS elements from

source or destination (of the SD link) also increases and hence, their contribution to

the aggregate signal diminishes. The quadratic scaling law is valid only when the

signal amplitude from each contributing element remains constant, as M increases,

which is clearly not the case in realistic setups.
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Figure 4.4: Proposed algorithm (“Best Config.”) vs suboptimal methods.

Fig. 4.4 presents a comparison between the proposed algorithm and state-of-

the-art methods [1], [62], [63]. Alternative optimization (AO) with semi-definite

relaxation-based initialization or random initialization are tested [62], [63]; with such

AO, each element’s estimated load is determined in an iterative manner, solving

for each element separately, while fixing all the other elements’ loads. Proper ini-

tialization of the elements’ phase shifts is required. AO Random Init. depicts the

performance of the AO algorithm with random initialization and the AO SDR Init.

with quantization of the continuous phases obtained from [62], to the nearest discrete

loads’ phases. Perfect CSI is assumed with κ = 3, vX = 3; moreover, η = 10%,

dX0 = dSD = 3 m, f2 = 870 MHz, P = 5 dBm, and 20 dB relative end-2-end antenna

gain for the backscattered links compared to direct link. Also, for the RFocus al-

gorithm Kr = M + 1. All the algorithms depicted are for K = 2 loads of constant

amplitude and difference in phase equal to π.

Based on Fig. 4.4 it is observed that the proposed algorithm outperforms both

AO schemes and RFocus and provides the optimal solution. Furthermore, the SDR

problem that initiates the loads of the AO SDR Init. has significant computational

complexity in the number M of RIS elements of at least O(M3.5) due to the utilized

semi-definite relaxation, which is prohibitive for large intelligent surfaces (i.e., large

M). That is why the figure is limited to a relatively smallM , up toM = 132. In sharp

contrast, the proposed algorithm conveniently scales up to a large number of elements

M , in the order of hundreds to thousands, due to its attractive O(M log(M)) compu-

tational complexity. Additionally, the formulation of [62] and [63] assumes a common
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Figure 4.5: Received signal strength at the destination: constructive vs destructive
RIS impact.

constant amplitude reflection coefficient across all elements, which may not be the

case in practical RIS designs and implementations. The proposed scheme is more

general, since it can accommodate any set of reflection coefficients, not necessarily of

common amplitude.

4.2 Experiments with the Wireless, Batteryless

Testbed

For the purposes of channel estimation, the reflective elements are required to ter-

minate their antenna at loads attaining the values of As and 0. Unfortunately, the

commercial RFIDs we utilized as RIS elements do not support Γ = As. In addition,

the exact loads of the RFID tag are not readily available. Thus, a different validation

approach was adopted.

Fig. 4.5 offers the received power at the destination, operating @ 870 MHz, with

the setup of Fig. 7 for two different configurations. With the reader on (@ 866

MHz), both the RIS and the SD link contribute to the received power (@ 870 MHz).

With the reader switched off, the received power at the destination is measured and

depicted. Clearly, one configuration offers constructive and another destructive RIS

operation. The source-RIS distance was denoted as dRIS−S and the destination-RIS

as dRIS−D, measured from the RIS center; these parameters are the same as in Fig.

4.6.

Fig. 4.6 shows the maximum power improvement achieved as a function of number

of configurations tested, for variable number of activated tags (denoted by µ). The

setup corresponds to dRIS−S = 2.4 m, dRIS−D = 1 m and dSD = 2.1 m. For a given
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Figure 4.6: Maximum power improvement vs Number of configurations tested for
several µ.

configuration and µ, the value reported is over five repetitions. Increasing the number

of configurations tested results to an increased maximum power value, on par with the

simulation results. It is noted that the relatively small number of RIS elements/RFID

tags tested, can only offer a small power improvement. Also, when µ is increased, the

maximum gain is increased for a given number of configurations.

Fig. 4.8 offers the maximum power gain improvement, measured for three different

source positions, over 1000 random configurations. For these experiments, a new RIS

was established, consisting of M = 256 tags with dx = 5.25 cm and dy = 5 cm. The

experiment was repeated for µ = {64, 128, 192} and for P = {0, 10} dBm. The

rest of the setup is kept static. Also, to reduce the amount of interference at the

destination link, the reader was moved to 920 MHz. The individual distances for the

three different source positions tested are listed in Table 4.1 and a schematic of the

setup is depicted in Fig. 4.7. Results of these experiments are offered in Fig. 4.8.

Position

dX (m)
dSD dRIS−S dRIS−D

1 2.10 3.22 1.09

2 2.24 3.18 1.09

3 3.25 4.02 1.09

Table 4.1: Distances for the positions of
Fig. 4.8.

RIS 

Destination
@870 MHz

Reader 
@920 MHz

1
2 3

Different positions for Source (@870 MHz)

* * *

1

0.5

0
Scale (m)

Figure 4.7: Top view of the setup of
Fig. 4.8.

Fig. 4.8 shows that the maximum gain improvement is highly associated with
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Positions Positions

Figure 4.8: Maximum power improvement for various positions and µ values (P =
{0, 10} dBm).

the position of the source link, since position 2 has the maximum gain for each value

of µ. This leads to the conclusion that the channels have a dominant effect on the

RIS operation and can either enhance or limit its performance. Also, increasing the

number of effective tags µ is systematically improving the RIS performance, which

shows that future applications should incorporate a higher number of tags (order of

thousands) to achieve maximum gains. Additionally, varying the transmission power

of the source P did not show any dramatic effect on the operation of the RIS.
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Chapter 5

Passive radar overview

In this chapter, some basic passive radar theory is presented along with an overview

of the individual components that comprise the developed PBR system. This chapter

is based on [19], [46], [64].

5.1 Background

The geometry of the PBR is described in Fig. 5.1, where the transmitter j and the

receiver i, are the foci of an ellipse where the target’s position lies. The target’s 3D

velocity vector v is, also, depicted.

Figure 5.1: Bistatic radar geometry.

5.1.1 Bistatic Range

The bistatic range between the jth transmitter located at (xjT , y
j
T , z

j
T ), a target at

(x, y, z) and the ith receiver at (xiR, y
i
R, z

i
R) is computed by first measuring the distance

from the transmitter to the target:

Rj
T =

√
(x− xjT )

2 + (y − yjT )
2 + (z − zjT )

2, (5.1)
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from the target to the receiver:

Ri
R =

√
(x− xiR)

2 + (y − yiR)
2 + (z − ziR)

2 (5.2)

and the baseline distance which is:

Ri,j
B =

√
(xjT − xiR)

2 + (yjT − yiR)
2 + (zjT − ziR)

2. (5.3)

Then, the bistatic range becomes:

Rij = Rj
T +Ri

R −Ri,j
B . (5.4)

The bistatic range Rij is obtained by the time delay τ , which is the delay between

the target’s echo and the reference signal calculated as follows:

Rij = c τ, (5.5)

with c the speed of light. An ellipsoid is formed from that delay, with the transmitter

j and receiver i at its foci.

5.1.2 Bistatic Velocity

The bistatic velocity between the jth transmitter, a target moving with speed vector

v = [ẋ, ẏ, ż]T in the three-dimensional (3D) space and the ith receiver is given as

follows:

Vij =
(x− xjT )ẋ+ (y − yjT )ẏ + (z − zjT )ż

Rj
T

+
(x− xiR)ẋ+ (y − yiR)ẏ + (z − ziR)ż

Ri
R

.

(5.6)

The bistatic velocity is calculated by measuring the Doppler frequency shift f i,j
d of

the target’s echo relative to the reference signal, transmitted from the jth transmitter

and received from the ith receiver. The formula is listed below:

Vij = −λj f i,j
d , (5.7)

where the wavelength of the jth transmitter is λj =
c

fj
c
, with f j

c the jth transmitter’s

carrier frequency.
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5.2 System Model

A PBR system captures the transmitted signal in various forms, shown in Fig. 5.2.

Figure 5.2: The various paths of the transmitted signal prior to PBR capturing.

The observation antenna receives a signal so(t), which could be analysed to its

individual components as follows:

so(t) = scl(t) + star(t) + vo(t), (5.8)

where scl(t) is the clutter, star(t) is the target’s reflection and vo(t) is additive complex

white Gaussian noise. Clutter is comprised from the direct signal leakage (DSI)

and multipath reflections of the transmitted waveform in various surfaces, such as

buildings, mountains etc. as shown in Fig. 5.2. The target’s reflection is a relatively

weak signal, that arrives with a certain delay and Doppler shift.

The reference antenna receives the following signal:

sr(t) = Ar stx(t−
RB

c
) + vr(t), (5.9)

with stx(t) the FM station’s transmitted signal, a scaling parameter Ar corresponding

to the channel’s impact and RB the baseline distance between the FM station and the

PBR. For the rest of the analysis, it is assumed that the received signal sr(t) is equal

to stx(t), along with its discrete-time counterparts, sr[n] and stx[n]. This is considered
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a relatively accurate assumption when there is line-of-sight (LOS) reception of the

transmitter’s signal by the reference antenna.

A more analytical form of the observation signal model of Eq. 5.8 is given in

discrete-time, where samples are generated with a sampling frequency of Fs = 1/Ts,

as follows:

so[n] =
M−1∑
k=0

wk sr[n− dcl,k]︸ ︷︷ ︸
clutter

+
N−1∑
l=0

bl sr[n− de,l] exp

(
j 2π fe,l n

Fs

)
︸ ︷︷ ︸

target reflections

+vo[n], (5.10)

with clutter comprising of M discrete paths with the kth path having a complex

amplitude wk and a delay dcl,k that corresponds to the channel’s effect. Also, there

are N targets present in the observation area. The lth target reflection has complex

amplitude bl, delay de,l and an exponential term due to the Doppler frequency fe,l.

In addition, there is additive complex Gaussian noise, modelled by the term vo[n].

Then, sr[n] is used to extract any unwanted clutter from the observation signal,

as follows:

star[n] = so[n]−
M−1∑
k=0

wk sr[n− dcl,k] + vo[n]. (5.11)

Both the clutter and the target reflections are scaled and delayed replicas of the

reference signal sr[n]; scl[n] can be separated from star[n] due to the target’s Doppler

shift and, more specifically, due to the orthogonality principle between appropriately

frequency shifted signals, as described in [64]. Removing scl[n] requires appropriate

values for each wk term, which corresponds to a delay dcl,k. This is the topic of

Sec. 5.4.1. Successful removal would reduce the range-Doppler sidelobe levels, thus

enabling target detection.

5.3 Experimental Setup

The system comprises of two high gain antennas, a Yagi-Uda (Fig. 5.3) with 3

elements, as the reference and a custom made 5 element small Yagi-Uda [65] antenna

(Fig. 5.4), as the observation antenna.

The reference antenna has LOS with the transmitters for optimal performance

and is mounted on the roof of the School of Electrical and Computer Engineering

building in TUC. On the other hand, DSI and clutter are major limiting factors in
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Figure 5.3: Reference antenna.

Figure 5.4: Observation antenna.

the PBR’s performance. A method to mitigate this problem is by properly placing

the antenna in such a way to shield it from unwanted signal leakage. This involves

angular nulling, where the antenna is carefully steered in order to find the lowest

DSI level while, also, by using large surfaces such as buildings as RF shielding. This

methods help to reduce the amount of clutter received by the observation antenna.

The I/Q baseband samples for both sr[n] and so[n] are captured with the help of a

Lime software-defined radio (SDR)-LimeSDR (connected through USB to a laptop),

depicted in Fig. 5.5, also exploiting the GNURadio software framework. This type

of SDR has 2 receivers, capable of simultaneous and synchronous reception. Its ADC

resolution is 12 bits, thus enabling moderate clutter removal and PBR performance.
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Figure 5.5: The LimeSDR USB used.

5.4 Signal processing

The processing on each passive radar (PR) node is depicted in Fig. 5.6.

Figure 5.6: Stages of the PR processing.

Two RF chains drive both the reference, looking directly towards the illuminator

of opportunity (IoO), and the observation signal, which is directed towards the target

and contains its echo plus clutter.

Then, some initial preprocessing takes place, which includes filtering each channel

of interest by moving the input central frequency to the channels central frequency,

decimating the IQ samples to match the channels’ bandwidth, removing any sample

offsets between the two RF chains etc.

5.4.1 Clutter removal

Next, clutter removing from the observation signal is a crucial step in passive radar

processing. The cross-correlation between the reference and the observation signal

creates a very strong peak around |χ(0, 0)|, i.e., where most of the direct signal leakage

(DSI) occurs. This phenomenon introduces unwanted sidelobes to the Range-Doppler

surface, which mask the target’s weak signal. Reflections on the earth’s surface, sea,

buildings, moving cars or trees etc. only exacerbate the problem, thus making clutter

removal a necessity.
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The basic assumption in order to remove the DSI is that, as shown in Eq. 5.10,

it is a scaled and delayed replica of the reference signal. In other words, any DSI or

clutter due to reflections in general, is mainly due to static or nearly static objects.

This is in contrast to the velocities of civil aircraft for example, where Doppler shifts

can reach tens or hundreds of Hz to the central frequency. Therefore, removing clutter

would require to find the correct amplitudes wk of Eq. 5.10 on each delayed replica

of the reference signal.

The algorithms used in this thesis were based on [64], where a comparison of

the performance and computational cost of the least squares (LS), normalized least

mean squares (NLMS) and fast block NLMS (FBNLMS) was performed. The results

showed that NLMS was the better performing algorithm in terms of clutter removing

and FBNLMS had the least satisfactory results in that regard. In terms of complexity,

FBNLMS was quite faster than both the other algorithms, could perform the DSI

removal in less time than the coherent processing interval (CPI) and thus, was the

favorable contestant for real-time processing.

The clutter removal algorithms from [64] will not be repeated in this work. The

experimental part of this thesis contains the exact parameters that were used to tune

the clutter removal algorithms.

5.4.2 Cross-Ambiguity Function (CAF)

After the clutter removal process, observation signal contains only the targets’ reflec-

tions star[n] and noise. This enables the calculation of the cross-ambiguity function

(CAF):

|ψ(τ, f)| =
∣∣∣∣ C−1∑
n=0

star[n] s
∗
r[n− τ ] exp

(
j 2π f n

Fs

) ∣∣∣∣, (5.12)

where C is the number of samples of one coherent processing interval (CPI), sr[n] is

the reference signal, f is the Doppler frequency and Fs is the sampling frequency; CAF

is a cross-correlation of the observation signal with the reference signal with various

delays τ and frequency shifts f , in order to create an amplitude-range-Doppler (ARD)

map. An efficient algorithm for this procedure is described in [64].
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5.4.3 Constant False Alarm Rate (CFAR) Detection

In the constant false alarm rate (CFAR) detection stage, the level of the probability

of false alarm is kept constant and is given as an input. False alarms occur when

an ARD surface cell has a large value, although there are no targets with the cor-

responding bistatic range and Doppler shift. This is often due to remaining clutter

or thermal noise. The probability of detection varies according to the noise variance.

The standard cell-averaging CFAR is used, described in [20]. More specifically, the

number of cells for averaging is M = 20, with 10 on each side of the cell under

test (CUT). The closest G = 4 cells on each side to the CUT are omitted from the

averaging procedure and are called guard cells. The threshold level is set at 3db.
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Chapter 6

Bistatic Tracker

This section describes the basic principles for a basic Kalman filter tracker using the

bistatic measurements from the ARD surface as input and estimating the bistatic

range and velocity of targets [66], [20].

6.1 Kalman Filter Theory

The Kalman filter (KF) is used to estimate the state of an evolving process x, given

a discrete set of noisy measurements.

First, there is the system evolution from time k− 1 to time k:

xk = f(xk−1,vk−1), (6.1)

with f(·) the state transition model, xk−1 the previous system state and vk−1 the noise

process.

Then, the measurement vector zk depends on the state xk according to the mea-

surement model h(·) as follows:

zk = h(xk,wk), (6.2)

wherewk is the measurement noise. The true system states are a combination between

the state transition and the measurement model.

When both f(xk−1,vk−1) and h(xk,wk) are linear functions and both vk−1 and

wk are additive Gaussian random variables, the Kalman filter produces the optimal

mean squared error estimate of xk.

Matrix definitions at each time-step follow:

• Fk: the state-transition model;

• Qk: the covariance of the process noise;

• Hk: the observation model;
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• Rk: the covariance of the observation noise.

• Initial state – unknown, random variable with known mean (initial estimate)

and covariance (initial uncertainty).

The state estimate xk and the associated covariance Pk summarize the information

from previous stages.

The state transition model Fk can be expressed as:

x−
k = Fk xk−1 + vk−1, (6.3)

and the measurement model Hk as:

zk = Hk x
−
k +wk. (6.4)

The process noise vk and measurement noise wk are described as follows:

vk ∼ N(0,Qk), (6.5)

wk ∼ N(0,Rk). (6.6)

Kalman filter is a consecutive cycle between prediction and measurement updates.

First, the current state is predicted by the state transition model:

x−
k = Fk xk−1. (6.7)

Next, the covariance matrix, which gives the uncertainty of the predicted state esti-

mate, is estimated during the prediction stage as follows:

P−
k = Fk Pk−1F

T
k +Qk−1. (6.8)

Then, the measurement update combines the information of the measurement zk of

the current time step k, with the predicted estimate:

yk = zk −Hk x
−
k , (6.9)

xk = x−
k +Kk yk (6.10)

Pk = P−
k −Kk Hk P

−
k , (6.11)

where Kk is the Kalman gain and yk is the measurement residual or innovation.
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The Kalman gain is denoted as follows:

Kk = P−
k HT

k S−1
k , (6.12)

and the innovation covariance is given as:

Sk = Hk P
−
k HT

k +Rk. (6.13)

6.2 Track Initiation

The tracker uses a standard M-out-of-N initiation logic, which states that a track

is considered “preliminary” until it has been observed in M out of the last N ARD

surfaces. In this case, it is confirmed. There are various alternatives in choosing the

fraction M/N, affecting both the probability of detection (PD) and false alarm (PFA)

[66].

6.3 Association Gate

The association gate (or validation) region is the region inside of which the measure-

ments are considered valid association candidates to belong to a specific target [66].

Its purpose is to restrict the space where the target’s measurement is considered more

likely to occur. This region is defined as follows:

Vk(γ) = [zk − ẑk]
T S−1

k [z − ẑk] ≤ γ, (6.14)

and it is an ellipsoid. The gate probability is:

PG ≜ P {zk ∈ Vk(γ)} (6.15)

denoting the probability that the target’s actual measurement will lie inside the el-

lipsoid.

Then, one could choose between the valid association candidates to find which

one is the most suitable. Among them, there will be the true measurement and false

alarms due to clutter residual or thermal noise. There are various alternatives on the

selection and some of them will be listed below:

• Non-Bayesian association techniques
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– Nearest Neighbor Standard Filter (NNSF),

– Strongest Neighbor Standard Filter (SNSF),

• Bayesian association techniques

– Probabilistic Data Association Filter (PDAF).

In the Non-Bayesian association techniques, the tracking procedure is the follow-

ing:

1. Validation of measurements.

2. Selection of one of the validated measurements.

3. Update the tracker using the chosen measurement.

Step 2 has two alternatives; either choosing the measurement closest to the predicted

measurement (NNSF) or the strongest one (in terms of intensity) inside the validation

region (SNSF). In this work, the Non Bayesian techniques were used, although PDAF

or other Bayesian techniques could potentially improve the performance of the tracker.

6.4 Experimental Results

The measurement vector is given as follows:

xk = [rk ṙk fk ḟk]
T , (6.16)

where rk is the bistatic range, ṙk the bistatic range rate, fk the Doppler frequency

and ḟk the Doppler frequency change rate.

The state transition model is constant and is described as follows:

Fk = F =


1 0 −λ δτ 0

0 0 −λ −λ δτ
0 0 1 δτ

0 0 0 1

 , (6.17)

x−
k = Fxk−1, (6.18)

where λ is the signal’s wavelength and δτ is the update rate or the rate of new

incoming measurements to the tracker. The covariance matrix is calculated as follows:

P−
k = FPk−1F

T +Qk. (6.19)



6.4. Experimental Results 46

The initial values of the state covariance matrix P0 and the process noise covari-

ance matrix Qk in the FM signal’s case are listed below:

P0 =


5 0 0 0

0 0.0225 0 0

0 0 0.04 0

0 0 0 0.1

 , (6.20)

Qk = Q =


3.0 0 0 0

0 0.02 0 0

0 0 0.2 0

0 0 0 0.05

 , (6.21)

with P0 basic units of measurement being km and Hz and the covariance matrix

Q kept constant in time. Also, the covariance matrix Rk modelling the bistatic

measurement errors is a matrix kept constant in time, given as follows:

Rk = R =

[
4.0 0

0 2.0

]
. (6.22)

For the experiment, automatic dependent surveillance-broadcast (ADSB) data

were used as the baseline, since they are considered much more precise. Flight

SEH2CQ departing at 07: 00 UTC, in the 1st of November, 2022, from the lo-

cal airport in Chania to Athens was tracked for 110 seconds between 07: 04 : 58

to 07: 06 : 23. The clutter removal algorithm is Least Squares (LS) with filter tap

number M = 50, applied in Doppler shifts −2 Hz to 2 Hz around the central fre-

quency. The CPI and tracker update rate were both set at TCPI = δτ = 1 s and the

sampling frequency Fs = 200 kHz. The gate value was γ = 16, which corresponds to

a gate probability PG = .9997. Also, the association filter was chosen to be SNSF.

It was observed, that due to the range sidelobes, SNSF performed better than the

NSSF both in terms of accuracy and in terms of tracks lost. The initiation logic was

set to be M/N = 4/5. The results in terms of bistatic range and Doppler shift are

shown in Figs. 6.1 and 6.2.

Both the bistatic range and Doppler tracked values are relatively close to the

true data. More specifically, the mean absolute error (MAE) of the bistatic range

is below 800 m and below 12 Hz in the Doppler frequency. This range deviation is

expected since exploiting FM signals gives a range resolution ∆R = c/(BW ) ranging
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Figure 6.1: Track estimated bistatic range vs ground truth.
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Figure 6.2: Track estimated Doppler frequency vs ground truth.

between 1500 to 3000 m, depending on the instantaneous bandwidth of the station.

The narrow FM bandwidth enables large integration times (i.e. 1 s) and thus, a fine

Doppler resolution (i.e. 1/T = 1 Hz). Therefore, Doppler measurements are expected

to be more precise.
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Chapter 7

Cartesian 3D Tracking

In this chapter, the Cartesian 3D position and velocity tracker used will be analysed;

specifically, given range-Doppler estimations from at least three ambient illuminators,

the 3D state of the target will be offered; performance will be evaluated through

simulation results, that correspond to a realistic scenario with one PBR station and

three FM transmitters.

7.1 Localization algorithm

There are various algorithms to localize a target using multistatic radar [48], [67].

There is the direction of arrival (DOA)-based localization [46], where one has both

the bistatic range and the target’s azimuth. Also, there is the multilateration method

in which the intersection points of three or more bistatic ellipsoids are used. The

DOA-based method is considered to have low precision, due to the large wavelengths

of the antennas in VHF. In our case, the multilateration method will be examined.

The Cartesian tracker needs an initialization point of the target’s position and

velocity. The localization algorithm used is the spherical intersection (SX) [48]. This

algorithm works in a multi-transmitter and single receiver setup or vice versa. The

solution is in closed form and its accuracy is heavily influenced by the geometry of

the scene, as demonstrated in [48].

7.2 Nonlinear tracker

The Extended Kalman Filter (EKF) is a suboptimal state estimation algorithm for

nonlinear systems. When either of the functions f(·) or h(·) is nonlinear, these func-

tions are approximated by the evaluation of the Jacobians:

Fk =
∂fk
∂x

∣∣∣
x=xk−1

, (7.1)

Hk =
∂hk+1

∂x

∣∣∣
x=x−

k

. (7.2)
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The rest of the steps are the same as in the standard Kalman filter.

The target motion model in the Cartesian coordinates is the following (subscript

“c” stands for Cartesian):

x−
c,k = Fc xc,k−1 + uc,k−1, (7.3)

where xc,k =
[
x vx y vy z vz

]′
is the state vector, Fc is the transition matrix

and uc is the process noise. The measurements for both the Cartesian position and

velocity are obtained from the localization step, described in Sec. 7.1.

The bistatic measurements from the PR nodes are:

zbi,k = hi(x
−
c,k) +wi,k, (7.4)

where zbi,k is the vector of bistatic measurements (range and range rate) of the ith

transmitter, hi(·) is the nonlinear function connecting the Cartesian measurements

with the bistatic measurements for the ith transmitter andwi,k denotes the zero-mean

Gaussian distributed measurement noise with covariance matrix:

R̃ci = E[wi,kw
′
i,k] =

[
σ2
R 0

0 σ2
V

]
, (7.5)

with σR and σV the standard deviation of the bistatic range and the bistatic velocity

of each PR node’s measurements, respectively. The nonlinear function hi(·) converts
the target’s state vector from the Cartesian to the bistatic domain:

[
Ri

Vi

]
= hi





x

vx

y

vy

z

vz




, (7.6)

where the equations used to do the transformation are Eqs. 5.4, 5.6 for the bistatic

range and velocity, respectively. This transformation occurs during the measurement

update and it uses the predicted state vector x−c,k at time k as input.

The choice between classic Kalman filter (KF) and extended Kalman filter (EKF)

is driven by the relationship of the measurements with the state vector, which is

denoted by the function hi(·). In case it was linear, then the classical KF would be
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applied. In this case, Eqs. 5.4 and 5.6 show a highly nonlinear relation between the

measurements and the state vector. In such cases, EKF is the standard approach.

The nonlinear Cartesian tracker has the same prediction steps with the bistatic

tracker due to the linear motion model in both domains. The prediction step of the

Cartesian tracker is listed below:

x−
c,k = Fc xc,k−1, (7.7)

P−
c,k = FcPc,k−1F

′
c +Qc, (7.8)

where P−
c,k is the predicted state’s covariance matrix, Pc,k−1 is the corrected state’s co-

variance matrix of the previous time step k−1, and Qc is the process noise covariance

matrix.

Also, hi(·) is linearized in the EKF by computing the Jacobian matrix:

Hci,k =
∂hi(x)

∂x

∣∣∣
x=x−

c,k

=

[
∂R̃i

∂x
∂R̃i

∂vx

∂R̃i

∂y
∂R̃i

∂vy

∂R̃i

∂z
∂R̃i

∂vz
∂Ṽi

∂x
∂Ṽi

∂vx

∂Ṽi

∂y
∂Ṽi

∂vy

∂Ṽi

∂z
∂Ṽi

∂vz

]
, (7.9)

where the partial derivatives of the function hi(·) with respect to the state prediction

vector x−c,k are calculated, using the Eqs. 5.4, 5.6.

7.2.1 Updating scheme

For the measurement update steps there are two alternatives: the parallel and the

sequential approach. The parallel updating scheme can be inconvenient, due to the

fact that sets of measurements are tested each time in the validation gate. Therefore,

it could be a complicated task, when multiple targets are present, due to the amount

of tests that must be performed. This is not a problem in the sequential approach,

where each transmitter-receiver pair is treated individually.

The state estimate and its covariance matrix are set equal to the temporary vari-

ables:

x̃c0,k = x̃c,k, (7.10)

Pc0,k = Pc,k, (7.11)



7.3. Two-stage target tracker 51

and the update steps are performed for each of the N TXs, separately, as follows:

for i = 1, . . . , N

Sci,k = Hci,kP
−
c(i−1),kH

′
ci,k +Rci, (7.12)

Kci,k = P−
c(i−1),kH

′
ci,kS

−1
ci,k
, (7.13)

x̃ci,k = x̃−
c(i−1),k +Kci,kvci,k, (7.14)

Pci,k = P−
c(i−1),k −Kc,kHci,kP

−
c(i−1),k, (7.15)

end

The bistatic measurements that are valid candidates for updating the state are tested

separately for each transmitter-receiver pair, in contrast to the parallel scheme, as

follows:

v′
ci,k S

−1
ci,k

vci,k ≤ γ, (7.16)

with vci,k the innovation of the ith transmitter at time k and Sci,k a 2 × 2 innova-

tion covariance matrix corresponding to transmitter i. Also, because all the bistatic

measurements are not always available (which is the realistic case since PD < 1), the

sequential approach can update a track only with a subset of the transmitter-receiver

pairs.

7.3 Two-stage target tracker

A two-stage tracker is presented in Fig. 7.1. From each transmitter-receiver pair an

individual ARD map is generated from the CFAR detector, presented in 5.4.3. The

Cartesian tracker needs an initialization point to start a Cartesian track. This is

offered from the localization algorithm, discussed in 7.1. In order to avoid significant

computational overhead due to false alarms, the localization process is performed

with tracks produced by bistatic trackers, such as the one presented in Chapter 6.

Then, the Cartesian tracker updates the targets’ 3D state using the ARD maps. Any

unassigned detections from the bistatic plots are used from the bistatic trackers, to

create new target tracks.
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Figure 7.1: Overview of the two-stage tracker.

7.4 Simulations

According to [67], the performance of the sequential and parallel schemes is similar.

Also, the sequential approach is more versatile and, therefore, it was preferred.

The two-stage tracker presented above was tested through simulations in a scenario

with one receiver and three spatially separated transmitters. The target’s trajectory

was created using the motion model in Eq. 7.3, with σxy = 1 and σz = 0.1. The

target’s initial position is at [10, 30, 10] km. The transmitters’ locations are listed in

Table 7.1.

Transmitter x (km) y (km) z (km)

1 42 40 0.6
2 -20 0 0.3
3 10 -40 0.5

Table 7.1: Locations of the TXs in relation to the RX placed at [0, 0, 0].

The first step includes the formation of bistatic tracks from the measurements.

The measurements where created by adding Gaussian noise with zero mean and stan-

dard deviation σR = 500 m in bistatic range and σV = 1 m/s in bistatic velocity with

PD = 0.75. These values of error are expected for a narrowband FM signal. Fig. 7.2

demonstrates the noisy measurements obtained (blue dots), the bistatic track formed
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(red line) and the true bistatic range value (yellow dashed line). It is clear from the

figure, that although the measurements are noisy, the bistatic track formed is close to

the truth. Therefore, it is shown that the Cartesian tracker increases the accuracy of

the measurements compared to the ground truth. Due to the fine Doppler resolution,

which leads to accurate Doppler measurements, the improvement obtained from the

tracker in terms of bistatic velocity is not significant, as demonstrated in 7.3.
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Figure 7.2: Bistatic Range (km) corresponding to noisy measurements, the tracker
output and the ground truth.

In order to be more specific, the absolute error between each track state’s bistatic

range and the true bistatic range is shown in Fig. 7.4, where the measurements’

error (blue line) is constantly significantly higher than the track’s error (red line).

The track error is kept mostly below 500 m, while the measurement’s error is mostly

between 500 and 1000 m.

Then, the target’s tracked state, including 3D position and velocity, is shown in

Figs. 7.5, 7.6. In Fig. 7.5, the true position of the target in the 3D axis is depicted (red

line), along with the tracked values (blue dashed line). It is shown, that the tracker

needs more iterations to converge on the z axis. Also, even after the convergence there

are some ripples. This is in contrast to the X and Y axes, where the convergence is

almost instant. The reason is the scene geometry. Although, in the x and y-axes

the transmitters are spread kilometres apart, generating a more diverse scene, in the
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Figure 7.3: Bistatic range rate (m/s) of noisy measurements, tracked value and the
ground truth.
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Figure 7.4: Absolute error of the noisy measurements and the tracked bistatic range
from the ground truth.
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z-axis this is not possible. Also, the true speed (m/s) of the plane in each of the 3

axes is depicted in Fig. 7.6, where again the z-axis is the slowest to converge.
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Figure 7.5: Cartesian tracker’s position output vs ground truth.
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Figure 7.6: Cartesian tracker’s velocity output vs ground truth.
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Next, the absolute error of the plane’s position is shown in Fig. 7.7. The tracker

converges after approximately 50 iterations. Absolute error is kept below 100m, in

all three directions.
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Figure 7.7: Cartesian tracker’s error in range.
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Chapter 8

Conclusion

It was shown that it is possible to find the optimal RIS element configuration with

complexity of O(M logM), offering theory and results for large number M of RIS

elements, in the order of thousands; in the latter case, complexity KM of exhaustive

search is prohibitive for any similar analysis. Comparison with prior art configuration

also reveals the benefits of the proposed technique. It was also found that the passive

nature of RIS, i.e., lack of amplification, limits the benefits, even for extended number

of RIS elements. A wireless and batteryless testbed, designed with RFID tags was also

demonstrated, pointing to the necessary modifications required, in order to wirelessly

control the RFID tag/RIS elements.1 Future work could exploit findings of this

work, offering a specialized protocol for more efficient wireless and batteryless RIS,

with RFID and backscatter radio technology.

For the passive radar, a Cartesian tracker comprising of two stages has been

presented. The simulations and the experimental results validated its performance.

Initially, the raw measurements from each of the three transmitters are gathered and

the corresponding bistatic tracks are formed, using the tracker of Ch. 6. This step

reduces significantly the amount of false alarms that will be given as input to the next

steps, thus, reducing the overall complexity of the system. In addition, the bistatic

state estimates are more accurate than the raw measurements and lead to better

performance of the following stages.

Next, once the bistatic tracks from all the transmitter-receiver pairs have been

created, an initial position and velocity estimate is created using the localization

algorithm SX. Finally, the initial point is given as input to the Cartesian tracker,

which follows the 3D state of the target using a nonlinear EKF filter. Simulation

results showed that by adding noise with standard deviation 500 m in range and

1 m/s in velocity, which are typical values for FM stations, a tracking accuracy below

100 m in all directions can be achieved. As future work, this experimental testbed

could be expanded by using more transmitters or by adding low-cost PBR stations,

without altering the tracking algorithms presented, which are fully scalable.

1Relevant results can be found in [68], [69]
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