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ABSTRACT An increasing number of emerging applications in data science and engineering are based
on multidimensional and structurally rich data. The irregularities, however, of high-dimensional data often
compromise the effectiveness of standardmachine learning algorithms.We hereby propose the Rank-R Feed-
forward Neural Network (FNN), a tensor-based nonlinear learning model that imposes Canonical/Polyadic
decomposition on its parameters, thereby offering two core advantages compared to typical machine learning
methods. First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully
exploit the structural information along every data dimension. Moreover, the number of the model’s trainable
parameters is substantially reduced, making it very efficient for small sample setting problems. We establish
the universal approximation and learnability properties of Rank-R FNN, and we validate its performance
on real-world hyperspectral datasets. Experimental evaluations show that Rank-R FNN is a computationally
inexpensive alternative of ordinary FNN that achieves state-of-the-art performance on higher-order tensor
data.

INDEX TERMS High-order data processing, hyperspectral data classification, Rank-R FNN, tensor-based
neural networks.

I. INTRODUCTION
Large sets of high-order data have become ubiquitous across
science and engineering disciplines, primarily due to recent
advances in sensing technologies and increasingly affordable
recording devices. Remote Sensing is not an exception, where
large hyperspectral data –collections of high-order images–
are becoming available and used for a variety of applications,
including urban and rural planning, change detection, map-
ping, geographic information systems, monitoring, housing
value, and navigation [1]–[3].

High-order data is produced either when data itself is
collected in a multi-linear format, or when low-order data
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is molded into high-order structures [4]–[6]. The informa-
tion encoded in high-order data exhibits strong correlations
across different modes, i.e., the modes of matrices or ten-
sors used [7]. Although such correlations favor data analysis
techniques, the structural complexity of acquired information
renders standard machine learning algorithms inadequate for
its analysis [8], [9].

In particular, most machine learning algorithms assume
that their input is in vector form. There exist, however,
cases, such as image analysis, where vectorization of ten-
sor input deteriorates the performance of standard data
analysis algorithms since it destroys any inherent struc-
tural information that may be present in data. [10] (spatial
and/or spectral coherency). Another drawback of vectoriza-
tion, without imposing additional structural constraints, is the
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production of large high-dimensional parameter spaceswhich
compromise both computational efficiency and theoretical
guarantees of vector-input machine learning methods [11].

To overcome the problems related to vectorization, Convo-
lutional Neural Networks (CNN) process multidimensional
inputs without vectorizing them. Specifically, via a sequence
of convolutions and nonlinear transformations, CNN map
multidimensional inputs to vector representations used for
classification purposes. Especially in hyperspectral image
data classification, CNN prove to be very accurate and robust
classifiers, as shown in [12], one of the most influential
works in remote sensing. However, the main drawback of
CNN is the large number of trainable parameters and, con-
sequently, the large number of training samples needed to
achieve accurate classification performance.

Motivated by the limitations above, we propose an alter-
native learning paradigm in pattern recognition of high-order
data. We introduce a tensor-based non-linear learning model,
henceforth called Rank-R Feedforward Neural Network
(FNN). The Rank-R FNN imposes a Canonical/Polyadic (CP)
decomposition of rank R on its weights, which leads to a dra-
matic reduction of the number of parameters to be estimated
during training. Consider for example a fully connected FNN
with one hidden layer and h hidden neurons that receives as
input a 3-order tensor object X ∈ Rp1×p2×p3 . The cardinality
of the weights set that connect the input to the hidden layer is
h
∏3

i=1 pi, while the cardinality of the corresponding set for
the Rank-R FNN is hR

∑3
i=1 pi. Moreover, the Rank-R FNN

processes covariates in tensor format in an attempt to exploit,
as much as possible, any structural richness presented in data
and reveal any correlations residing across different tensor
modes. To summarize, the main advantage of the proposed
rank-R FNN model is, first, the dramatic reduction of the
number of model parameters and, second, the exploitation
of the inputs’ structural information. These two properties
shield the proposed model against overfitting, making it ideal
for accurate classification when a limited number of training
examples are available.

Hyperspectral data classification is a typical small sam-
ple setting problem. Collecting large annotated hyperspectral
corpora is a tedious and high-cost task since a group of human
experts should visit the place depicted in a remotely sensed
image and manually annotate the displayed materials [13].
Therefore, this paper investigates the proposed Rank-R FNN
model’s capacity to classify hyperspectral data accurately and
compares it against typical machine learning schemes such as
CNN.

A. RELATED WORK
Several supervised and unsupervised learning meth-
ods have been proposed for analyzing data in tensor
format, including High Order SVD, Tucker and CP
decompositions, [14], Multi-linear PCA [15], probabilistic
decompositions [16]–[18], and CommonMode Patterns [19].
Such methods, known as subspace learning, project raw data
into lower dimensional spaces and consider these projections

as highly descriptive features of raw information. However,
there is no consensus on what choice of features best sum-
marizes a learning task [10]. In the supervised learning setup,
subspace learning methods are often utilized as a preprocess-
ing step [12], but they come with one key limitation: they
do not take into account the labels of the data and, as a con-
sequence, they produce features with limited discrimination
power for classification or regression tasks.

Tensor-based supervised learning methods for high-order
data have also been proposed in [11], [20]–[23]. These meth-
ods generate linear relations between the input and the desired
output, and thus, they poorly handle complex input-output
statistical relations that require nonlinear maps. Nonlinear
tensor classification models, such as the Rank-1 FNN, were
introduced recently in [24]. Rank-1 FNN is a Fully Connected
Feedforward Neural Network (FCFNN) whose weights sat-
isfy a rank-1 CP decomposition [25]. Rank-1 FNN, however,
comes with one drawback: the output of the first hidden layer
can only represent features that lie within axis-aligned rect-
angles (for details see [11]). The current study overcome this
drawback by not restricting the rank of the CP decomposition,
which is imposed on the model’s parameter, to be equal to
one.

Kossaifi et al. in [26], propose a tensor-based neural net-
work, which employs tensor contraction layers to propagate
the information of tensor inputs through the layers of the
network, and a tensor regression layer as the output layer.
The model in [26] and the proposed Rank-R FNNmodel may
look similar, they are, however, essentially different. Specif-
ically,the sequence of tensor contraction layers employed
in [26] perform a sequence of nonlinear tensor projections,
i.e., project a tensor object to another tensor subspace. There-
fore,the model in [26] retains the tensor form of the infor-
mation through all its layers. On the contrary, in the case of
Rank-R FNN, we project the tensor objects to a vector space
by imposing a CP decomposition of rankR on theweights that
connect the input to each one of the neurons of the first hidden
layer. This way, we produce a compact yet highly informative
representation of the inputs, and after the first hidden layer,
we are able to propagate the information in a similar manner
as in typical fully connected feed-forward neural networks.

Besides the derivation of linear and nonlinear tensor-based
learningmodels, the importance of tensor algebra tools is also
emphasized via their exploitation towards the compression
of very deep neural network architectures [27]–[29], as well
as towards the investigation of theoretical properties of deep
learning machines [30], [31]. The studies dealing with the
compression of deep learning architectures exploit tensor
decompositions to reduce the number of the parameters of
already trained networks with minor accuracy drop. In con-
trast to these works, in this study we derive a learning model
whose parameters are inherently compressed and this com-
pression is retained during the training phase. In other words,
the Rank-R FNN is not derived by compressing another
already trained model, but it is trained from scratch. On the
other hand, the studies focusing on the theoretical properties
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of deep neural networks exploit tensor algebra tools to con-
clude about the expressive power of known architectures,
such as convolutional and recurrent neural networks. The
presented study is complementary to the studies mentioned
above, since it focuses on the theoretical properties of the
proposed Rank-R FNN model.

B. OUR CONTRIBUTION
Themain contributions of this work are as follows.We extend
Rank-1 FNN to Rank-R FNN, a nonlinear classifier for tensor
data which imposes a CP decomposition constraint of rank
R on its weights. Allowing weights to satisfy CP decompo-
sitions of rank higher than one increases the representation
power of Rank-R FNNs allowing them to model complex
input-output statistical relations. In addition, this study sig-
nificantly extends the work of [32] in two different directions.
First, we investigate the theoretical properties of Rank-R FNN
models and prove, on the one hand, that they have universal
approximation properties, and, on the other, that the class
of functions they implement can be efficiently learned by
the empirical risk minimization principle. Second, we exper-
imentally investigate the robustness of Rank-R FNN on noisy
data, as well as its behavior with respect to different archi-
tecture design configurations. The observed performance of
Rank-R FNN on real-world high-order hyperspectral image
datasets indicates that it achieves state-of-the-art results on
small sample setting problems, where the number of labeled
examples is limited. Learning from a limited number of
training examples is one of the most important properties of
the proposed model, since in many real-world applications,
such as in hyperspectral data classification, collecting large
annotated corpora is a tedious and costly task.

As we summarize in Section VI, the advantages of Rank-R
model for classifying hyperspectral data are the following.
(A) Our model requires times smaller number of trainable
parameters which make it suitable for handling a small
amount of training samples. (B) It presents robust classifica-
tion accuracy both for noise-free and noisy data inputs. (C) It
converges very rapidly in contrast to CNN, which requires
many epochs to reach a plateau, and (D) it is very robust
against different execution runs in terms of converging to
the best solution. All these advantages have been revealed by
applying the proposed Rank-R FNN model for hyperspectral
data classification over benchmarked datasets.

The remainder of this paper is structured as follows.
Section 2 introduces the notation and states the prob-
lem formulation. Section 3 presents Rank-R FNN, while
Section 4 explores its theoretical properties. In Section 5,
we experimentally evaluate the proposed model, and in the
last section, Section 6, we conclude with a summary of
findings.

II. NOMENCLATURE AND PROBLEM FORMULATION
We hereby introduce the notation, definitions and tensor alge-
bra operations to be used throughout this study. After that,
we formulate the problem to be addressed.

A. TENSOR ALGEBRA NOTATION
The following definitions introduce basic operations pertain-
ing to high-order tensor processing. We focus on the oper-
ations that are used throughout this study. For an thorough
introduction in tensor algebra refer to the excellent survey on
higher-order tensor decompositions in [14]. In what follows,
tensors and vectors are denoted in bold uppercase and bold
lowercase letters, respectively, while and scalars are denoted
in lowercase letters.

1) TENSOR VECTORIZATION
The vec(B) operator stacks the entries of a D-order tensor
B ∈ Rp1×···×pD into a column vector. That is, entry B =
[· · · bi1,··· ,iD · · · ] maps to the jth entry of vec(B), in which
j = 1+

∑D
d=1(id − 1)

∏d−1
d ′=1 pd ′ .

2) TENSOR INNER PRODUCT
The inner product of two tensors A,B ∈ Rp1×···×pD with
D > 2 is defined as

〈A,B〉 = 〈vec(A), vec(B)〉

=

p1∑
i1=1

p2∑
i2=1

· · ·

pD∑
iD=1

ai1i2···iDbi1i2···iD , (1)

where i1, · · · , iD are the indices of tensors’ elements.

3) TENSOR MATRICIZATION
The mode-d matricization, B(d), maps a tensor B into a
pd ×

∏
d ′ 6=d pd ′ matrix by arranging the mode-d fibers to be

the columns of the resulting matrix. That is, the (i1, · · · , iD)
element of B maps to the (id , j) element of B(d), where
j = 1+

∑
d ′ 6=d (id ′ − 1)

∏
d ′′<d ′,d ′′ 6=d pd ′′ .

4) RANK-R CP DECOMPOSITION
A tensor B ∈ Rp1×···×pD admits a rank-R CP decomposition
if B =

∑R
r=1 b

(r)
1 ◦ · · · ◦ b

(r)
D , where b(r)d ∈ Rpd . This

decomposition is denoted as B = [[B1, . . . ,BD]], where
Bd = [b(1)d , . . . , b

(R)
d ] ∈ Rpd×R. When a tensor B admits such

a decomposition, it holds true that

B(d) = Bd (BD � · · · � Bd+1 � Bd−1 � · · · � B1)T , (2)

where � is the Khatri-Rao product.

5) VECTOR TENSORIZATION
The ten(b) operator transforms a vector b ∈ Rp1 p2···pD into
a tensor B ∈ Rp1×p2×···×pD , such that the element of B
indexed by i1, i2, · · · iD is the i-th element of b, where i =
1+

∑D
d=1(id − 1)

∏d−1
k=1 pk .

B. PROBLEM FORMULATION
Let X ∈ RI1×···×ID a D-order random tensor and X i ∈

RI1×···×ID independent copies of X from the same probability
distribution as X . Consider a family of learning models,
each one parameterized by a set of parameters θ . The set θ
constitutes a complete description of a model from the family
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and contains all parameters defining it. We assume that there
are C available classes and we aim at classifying X into one
of these classes using the models at hand.

Let p(X; θ ) denote a C-dimensional real vector whose
coordinates sum to one and its k-th element, pk (X; θ ), for
k = 1, . . . ,C, expresses the probability that X belongs to
the k-th class. Function p(·; θ ), when regarded as a function
ofX , is an approximation of the conditional probability thatX
belongs to the k-th class. The optimal value of θ is estimated
by empirical risk minimization over the training dataset

D = {(X i, t i)}Ni=1. (3)

Here t i = [ti,1, · · · , ti,C ]T ∈ {0, 1}C is a unitary vector with∑
k ti,k = 1 and indicates the class to which X i actually

belongs.1 In the following, whenever we omit subscript i
from a tensor, we just refer to an input sample. Having an
estimation for parameter θ , our final decision for X is

k∗i = arg max
k=1,...,C

pk (X; θ ). (4)

The ultimate goal in classification is to calculate the set of
model parameters θ where the minimum of∑

i

I(k∗i 6= argmax
k

t i)→ min (5)

is attained; I(·) in (5) stands for the indicator function and
takes values in {0, 1}. This is the primary goal of any clas-
sification scheme. However, in our case X is a tensor, and
so are many elements of the parameter set θ . Attaining the
minimum in (5) turns out to be an NP-hard problem (see also
Ch. 12 in [33]). For that reason, we use instead the negative
log-likelihood as a surrogate loss function to approximate the
objective in (5). Next, we describe a classifier for tensors,
whose input and model parameters retain their tensor form.

III. TENSOR-BASED RANK-R NONLINEAR CLASSIFIER
In this Section, we briefly introduce Rank-1 FNN and
describe in detail its extension, the Rank-R FNN classifier.

A. RANK-1 FNN MODELING
Rank-1 FNN is a two layer neural network which models the
weights connecting input layer to hidden layer as:

w(q)
= w(q)

D ◦ · · · ◦ w
(q)
1 ∈ RI1×···×ID , (6)

with w(q)
d ∈ RId , d = 1, · · · ,D, denoting weights which

connect the input to the q-th neuron of the hidden layer. The
activation function g(·) of the q-th hidden neuron receives
〈w(q),X〉, as input and outputs

uq = g(〈w(q),X〉)

= g(〈(w(q)
D ◦ · · · ◦ w

(q)
1 ),X〉) ∈ R;

(7)

thus, the output of Rank-1 FNN is

pk = σ (〈v(k),u〉). (8)

1When (X i, ti) is considered as a random tuple, the joint probability
measure P{(X i, ti)} admits the factorization P{Xi}P{ti|Xi}.

Here σ (·) denotes the softmax activation function, u =
[u1, u2, · · · , uQ]T , v(k) collects the weights between the hid-
den and the output layer, and superscript k corresponds to the
k-th output neuron (representing the k-th class in soft-max
classification). Although Rank-1 FNN looks similar to a con-
ventional FCFNN, it is significantly different due to the con-
straint in equation (6). Constraint (6) considerably reduces the
number of trainable parameters toQ

∑D
d=1 Id+QC , whereas

the number of parameters for the FCFNN isQ
∏D

d=1 Id+QC .

B. RANK-R FNN MODELING
The strength of Rank-1 FNN lies in the reduction of the
number of trainable parameters compared to an ordinary
FCFNN. Nevertheless, this reduction also affects its repre-
sentation power, i.e., it limits its ability to model complex
statistical relations between the input and the output vari-
ables.2 To address this limitation, we move to higher rank
decompositions and propose Rank-R FNN, a neural network
whose weights,W (q) connecting the input to the q-th neuron
of the hidden layer, satisfy a rank-R CP decomposition:

W (q)
= [[W (q)

1 , · · · ,W
(q)
D ]] ∈ RI1×···×ID , (9)

or else

vec(W (q)) = (W (q)
D � · · · �W (q)

1 )1R ∈ R
∏d=D
d=1 Id , (10)

where 1R stands for a vector with R ones. The total number of
weights of a Rank-R FNN is RQ

∑D
d=1 Id + QC . Under the

CP decomposition constraint, the output of the q-th hidden
neuron becomes

uq = g(〈W (q),X〉). (11)

Based on equations (2), (9) and (10), it holds true that

〈W (q),X〉 = diag〈W (q)
d ,Z

(q)
6=d 〉, (12)

where

Z(q)
6=d = X (d)(W

(q)
D � · · · �W (q)

d+1

�W (q)
d−1 � · · · �W (q)

1 ). (13)

Tensor X (d) denotes the mode-d matricization of tensor X .
In light of equation (12), the output of the q-th hidden neuron
uq can be written as

uq = g(〈W (q),X〉) = trace
(
g
(
(W (q)

d )TZ(q)
6=d

))
, (14)

while the output of Rank-R FNN for the k-th class is given
by (8). Note that W (q)

d ∈ RId×R and Z(q)
6=d ∈ RId×R, which

implies that (W (q)
d )TZ(q)

6=d is a square matrix in RR×R.

Matrix Z(q)
6=d is a transformation of input X and is inde-

pendent from W (q)
d . Under the previous notation, it becomes

clear that Eq. (14) actually resembles the operation performed
by a single perceptron with weights W (d)

d and input matrix

2Wewill see in Section IV that Rank-R FNNs are universal approximators,
while Rank-1 FNNs are not. This is a crucial difference between the class of
functions implemented by Rank-1 and Rank-R FNNs.
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Z(q)
6=d . If the rank-R canonically decomposed weights W (q)

d ′ ,

d ′ 6= d are known, then input matrices Z(q)
6=d are known

too. The previous observation underpins the derivation of
the optimization algorithm presented in the next subsection
which estimates the weights of Rank-R FNN models.

Algorithm 1 Rank-R FNN Weights Estimation
Initialization:
1. Set Iteration Index n→ 0
2. Initialize all weightsW (q)

d (n) and v(k)(n)
for d = 1, . . . ,D, q = 1, 2, · · · ,Q, k = 1, . . . ,C
3. repeat

for d = 1, . . . ,D do
ConsiderW (q)

d ′ fixed, for d
′
6= d, d ′ ∈ {1, . . . ,D}

for q = 1, . . .Q do
3.1 Estimate transformed input matrix Z(q)

6=d
[see Eq. (13)]
3.2 Compute Rank-R FNN output and loss
[see relations (14) and (16)]
3.3 Update weightsW (q)

d (n) towards
negative direction of ∂L/∂W (q)

d
end

end
for k = 1, . . . ,C do

3.4 Update weights v(k)(n) towards negative
direction of ∂E/∂v(k)

end
Set n→ n+ 1

until termination criteria are met;

C. ESTIMATION OF RANK-R FNN WEIGHTS
Let us aggregate all weight parameters of Rank-R FNN as

V = {v(k)}Ck=1 , Wd = {W
(q)
d }

Q
q=1, (15)

for d = 1, · · · ,D. In (15) v(k) collects the weights between
the hidden and the output layer, and superscript k cor-
responds to the k-th output neuron. Given training data
D = {(X i, t i)}Ni=1 and sets {Wd }

D
1 , V , we use the negative

log-likelihood function

L(W1, . . . ,WD,V ;D)

= −

N∑
i=1

C∑
k=1

ti,k log pk (X i; {Wd }
d
1 ,V ) (16)

to assess the classification performance of the corresponding
Rank-R FNN model on training data. Among all possible
Rank-R FNN models whose weights satisfy the CP decom-
position constraint in (9), we opt for that ones which achieve
minimal value L(W1, . . . ,WD,V ;D).
Equations (13) and (14) are crucial for the derivation of an

alternating optimization algorithm to minimize the objective
function in (16). When matrices V and W (q)

d ′ , d
′
6= d ,

are known, matrix Z(q)
6=d is reconstructed as in equation (13),

which implies that the only unknown parameter to be esti-
mated is the weight matrix W (q)

d . We adopt a coordinate
descent minimization scheme for the minimization of (16)
where in each step we keep V and W (q)

d ′ fixed and iterat-
ing overall d 6= d ′, d ∈ {1, . . . ,D} we minimize with
respect to W (q)

d . The derivative ∂L/∂W (q)
d can be computed

by the backpropagation algorithm and the estimation of
Rank-R FNN weights is done with gradient descent steps,
see Algorithm 1.

IV. THEORETICAL PROPERTIES OF RANK-R FNN
In this Section, we prove learnability and universal approx-
imation properties for the class of functions implemented
by Rank-R FNN models. For this purpose, we reveal their
connections to ordinary FCFNN models and, in Theorem 1
below, we construct a subjective mapping between Rank-R
FNN and ordinary FCFNNs.
Theorem 1 (Rank-R FNN Theorem): Let f : R

∏D
d=1 pd →

F be a two-layer fully connected FNNwith Q hidden neurons,
that maps the vectorized form, vec(A), of a tensor object A ∈
Rp1×···×pD to F. If pd < ∞, d = 1, · · · ,D, then there exists
a Rank-R FNN g : Rp1×···×pD → F with Q hidden neurons
that is equal to f .

Proof: See Appendix A. �
Remark 1: The Rank-R Theorem holds both for regression

and classification tasks. In case of regression tasks F ≡ R,
whereas for classification tasks F is the set of available
classes.

An immediate consequence of Rank-R FNN Theorem is
Corollary 1 below, which is based on the fact that two-layer
sigmoid FCFNNs are universal approximators, i.e., given any
continuous function h defined on a compact subset S of Rn

and any ε > 0, there exists a two layer FCFNN implementing
a function that is within ε of h at each point of S (see [34],
[35] or Exercise 20.1 in [33]).
Corollary 1: Rank-R FNNs are universal approximators;

given any continuous function h defined on a compact subset
S of Rn, there is a Rank-R FNN that implements a function
which is arbitrarily close to h at each point in S.
Apart from the universal approximation property, another

consequence of Theorem 1 is that the class of Rank-R FNNs,
with fixed number of
hidden neurons, is a learnable class of functions. Indeed, for
any fixed R < ∞, all Rank-R FNN models, with rank lower
that R, map to ordinary FCFNNs with weights in R

∏D
d=1 pd .

Since the class of FCFNNs with finite dimensional weights
and fixed number of neurons has finite VC dimension, the
class of Rank-R FNNs can be efficiently learned by the
empirical minimization principle in polynomial time, see also
[36], Theorem 20.4 in [33], or Exercise 20.5 in [33]. This lead
us to Corollary 2.
Corollary 2: The class of functions defined by Rank-R

FNN, with a fixed number of hidden neurons, has finite
sample complexity and, thus, is learnable with the empirical
risk minimization principle.
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Summarizing, for any FCFNN, with fixed number of
hidden neurons, there exists a Rank-R FNN with the same
number of neurons that reproduces exactly the same output.
This form of equivalence implies that Rank-R FNNs exhibit
the universal approximation property when the number of
hidden neurons grows unbounded. Finally, the class of func-
tions implemented by Rank-R FNNs of fixed rank, finite
number hidden neurons, and no cycles or loops in their graph,
is learnable. Next we proceed with the experimental valida-
tion of Rank-R FNNs.

V. EXPERIMENTAL VALIDATION
In this Section, we evaluate the classification performance of
Rank-R FNN3 using hyperspectral imagery, which is a typical
example of high-order data. Three widely known and publicly
available datasets, captured by three different sensors, are
used. In particular, we use i) the Indian Pines dataset, which
has been captured byAVIRIS sensor and consists of 224 spec-
tral bands and 10,249 labeled pixels assigned to 16 different
classes, ii) the Pavia University dataset, which has been cap-
tured by ROSIS sensor and consists of 103 spectral bands
and 42,776 labeled pixels assigned to 9 different classes,
and iii) the Botswana dataset, which has been captured by
Hyperion sensor and consists of 145 spectral bands and
3,248 labeled pixels assigned to 14 different classes. Figure 1
presents the employed datasets along with their ground truth.

FIGURE 1. The three hyperspectral datasets employed in the current
study. Ground truth for each one of the datasets is also presented.

We compare the performance of Rank-R FNN against the
CNN model of [12] for two main reasons. First, the CNN
of [12] is a benchmarking model for hyperspectral image
classification. Second, it is a simple yet very efficient archi-
tecture, although it is not designed explicitly for hyperspectral
data classification. In other words, the proposed Rank-Rmod-
els and the CNNmentioned above do not employ any specific

3The Rank-R FNN code used in these experiments is available in Python
at https://github.com/konstmakantasis/Rank-R-FNN

design choices for exploiting the particular characteristics of
hyperspectral data. Thus they can be used for any image pixel
classification task.

At this point, we should highlight that Rank-R FNN mod-
els can be straightforwardly applied on data represented as
tensors of arbitrary order. For example, hyperspectral data
that have been enhanced with mathematical morphology fea-
tures [37] are usually represented as tensor objects of order
larger than three. On the contrary, efficient processing of
high-order data with sophisticated CNN models cannot be
done in a straightforward manner since the high dimensional-
ity of such data practically renders their application extremely
inefficient due to the high computational cost of the convolu-
tion operation in more than three dimensions.

We set the number of hidden neurons of both Rank-1 FNN
and Rank-R FNN to 75, while the employed CNN consists of
two convolutional layers with 150 and 300 kernels, respec-
tively, of dimension 3 × 3, and a fully connected layer with
75 hidden neurons. For all learning models we use the same
training and testing datasets. Moreover, we investigate the
robustness of these models under different levels of white
noise.

A. DATASET DESCRIPTION
A hyperspectral image is a 3-order tensor of dimensions
p1×p2×p3, where p1 and p2 correspond to height and width
of the image, while p3 corresponds to its spectral bands. To
conduct pixel-wise classification, i.e., to classify each pixel
Ix,y at location (x, y) according to the material it depicts,
we follow the approach proposed in [25]. Specifically, it is
assumed that the label of a square patch Xx,y of size s×s×p3
centered at (x, y) has the same label with pixel Ix,y. Denoting
as tx,y the ground truth label of Ix,y, we form the dataset
D = {(Xx,y, tx,y)} for training and evaluation purposes. In all
experiments we set parameter s equal to 5. That way we
exploit spatial information of pixels, and, at the same time,
satisfy the assumption that, for the majority of pixels the
square patch Xx,y has same label as Ix,y [38].
Although conventional deep learning models (such as the

CNN model of [12]) can achieve almost perfect classifica-
tion results for these datasets when the number of training
samples is adequately high, we choose to train the models
using a limited number of training samples in this study. This
way, we focus on models’ capacity to learn small sample
setting classification tasks since employing a small number of
training samples is a common limitation in many real-world
applications such as hyperspectral image classification.

For this reason, in our experiments, we vary the number
of samples per class used for training to evaluate the pro-
posed tensor-based model’s performance when the number
of training data is limited. In particular, we randomly select
a specific number of samples α per class for training, while
the rest are used for testing purposes. In our case, the samples
per class used for training are α = 10 and 50. If some class
includes fewer samples, we select a portion of 50% randomly
for training.
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FIGURE 2. The classification accuracy and standard deviation on the test set of the proposed Rank-R model versus different epochs.

We also investigate the robustness of the models to the
presence of noise. In particular, in our experiments, we have
added a white noise level of 20% in every band of each pixel.
Due to the involved randomness during training/testing sets
splitting, we conduct each experiment for ten runs and report
the average classification accuracy and standard deviation on
testing sets

In this study, we opt for the holdout cross-validation
scheme, instead of the powerful K-fold cross-validation for
the following reason. Although, K-fold cross-validation is
a widely used scheme for evaluating the performance of
learning models and approximating their true error, in our
case it is not applicable. This is due to the fact that the classes
are not equally represented in the datasets, and thus it is not
possible to use K-fold cross-validation (even with different K
for each dataset) to evaluate the performance of the models.

B. RESULTS
In this section, we present the performance of the proposed
Rank-R FNNmodels and we compare them with the state-of-
the-art CNN model of [12] on the employed datasets. In the
first subsection, we present and discuss the performance of
the different models when they are trained on noise-free data.
In the second, we investigate the robustness of the same
models by evaluating their performance of noisy data.

1) MODELS’ PERFORMANCE EVALUATION ON
NOISY-FREE DATA
For Rank-R FNN we used five different values for
R ∈ {1, 2, 3, 4, 5} and denote the respective classifiers as
Rank-1 FNN, Rank-2 FNN, Rank-3 FNN, Rank-4 FNN, and
Rank-5 FNN.

Figure 2 illustrates the classification accuracy versus the
number of training epochs of the proposed Rank-R FNN
classifiers over the three examined data sets; the Botswana,
Pavia University and the India Pines datasets. In this figure,
we have also shown the standard deviation of the classifica-
tion accuracy results obtained over the 10 different runs as
an area of the same colour around the average line. As is
observed, all the Rank-R models converge quickly withing
a few training epochs; less than 20 for all cases. The degree
of the rank decomposition slightly affects the performance,

and it is usually application dependent. In particular, for
Botswana and Indian Pines datasets, the best performance is
achieved for R = 1. However, for Pavia University, the best
performance is for R = 4.

Figure 3 depicts comparisons between the proposed Rank-
R FNN model and the state-of-art CNN network of [12].
The results have been presented versus the number of train-
ing epochs and two different numbers of α. In particular,
Figure 3(top) indicates the case for α = 10 samples per class,
while Figure 3(bottom) for α = 50 samples per class. In this
figure, R = 1 for the Botswana and India Pines datasets and
R = 4 for the Pavia University since these values give the
best classification accuracy (see Figure 2). As is observed,
in all cases, the proposed Rank-R model converges more
rapidly than the conventional CNN-based network of [12].
Besides, the proposed Rank-Rmodel presents a much smaller
standard deviation of the average classification accuracy in
all cases, indicating the robustness of our model against
different execution runs. As the number of training samples
decreases, the proposed Rank-R FNN model’s performance
remains robust with minimal deviations from the average
classification accuracy over the 10 different runs. Indeed, for
smaller number of samples, better improvement is achieved
by our proposed model compared to CNN. Besides, the CNN
model’s standard deviation increases, especially in the case
of the Indian Pines dataset, as a small number of training
samples per class is selected.

Table 1 presents the average classification accuracy and
the respective standard deviation on the test sets over the
three examined datasets. The results have been obtained
for R ∈ {1, 2, 3, 4, 5} and compared with the CNN model
of [12]. In this table, we have depicted the results for 50 and
500 epochs, respectively. For all models, we have selected
α = 10 samples per class. The latter is selected to indicate
the performance of the proposed Rank-R FNN model in case
a few training samples are employed.

As is observed, in Botswana and Pavia University datasets,
the proposed Rank-R FNN model is about 3.8% and 1.8%
respectively better in performance, while in the case of the
Indian pines dataset is worse about 4.3%. However, CNN’s
standard deviation is times larger than the standard deviation
of the proposed Rank-R FNN. In particular, for the Pavia
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FIGURE 3. Comparative performance as far as classification accuracy on test set is concerned between the proposed RANK-R FNN model and the
state of the art CNN based network of [12]. (Top) The case of α = 10 samples per training class for the Botswana, Pavia University and the Indian
Pines dataset respectively. (Bottom) The case of α = 50 samples per training class for the Botswana, Pavia University and the Indian Pines dataset
respectively.

TABLE 1. Average classification accuracy and standard deviation (%) on
test set in case of no noise and 10 samples per class.

University dataset, the standard deviation of our model is 1.8
(1.02 vs 2.85) times smaller than of CNN,while for Botswana
is 3.6 (0.6 vs 2.81) times smaller and for India pines of about
6.0 (2.12 vs 14.8) times smaller (Table. 1).
Table 2 presents the number of trainable parameters in each

model. Specifically, the CNN employs 41, 48 and 57 times
more parameters than the Rank-1 FNN for the Indian Pines,
the Pavia University and the Botswana datasets, respectively.
This means that our Rank-R FNN requires times smaller
number of parameters for learning the classification task.

Finally, we conducted significance tests to check whether
or not the performance of the Rank-R FNN models

TABLE 2. Number of trainable parameters for each model.

statistically differs than the performance of the CNN.
Towards this direction, we pairwise statistical tests for each
dataset separately to test the null hypothesis that the CNN
and each of the Rank-R FNN models perform the same.
First, we conducted Shapiro-Wilk tests to verify the normality
of classifiers’ performances. In cases where the normality
assumption holds, we proceed by conducting a Levene’s test
to check whether the performances of the two classifiers
have the same variance. Then, based on the outcome of the
Levene’s test, we applied the corresponding t-test to test the
hypothesis that the two classifiers perform the same. In case
the normality assumption is not satisfied, we proceed by
conducting the non-parametric Mann-Whitney U test to test
the hypothesis that the performances of the two classifiers
come from the same distribution.

Based on the outcome of the t-test or the Mann-Whitney U
test, we test the null hypothesis –the two models perform the
same– at the significance level 5%. For those tests, we use
the classification accuracy of the models. The sample space
of the two samples (the performances of the two models
that we compare) is equal to 10, that is, the number of
times we repeated each experiment. We denote as HRank−R
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FIGURE 4. The performance in terms of classification accuracy and standard deviation on the test sets of the proposed Rank-R model versus
different epochs in case of a noise of 20%.

TABLE 3. The p-values for accepting the null hypothesis, HRank−R , that
the Rank-R FNN, for R = 1,2,3,4,5, performs the same as the CNN in
the case of no noise and 10-50 samples per class.

the null hypothesis that the Rank-R FNN models and the
CNN perform the same. Table 3 presents the results of those
significance tests. For 50 epochs and 50 samples per class,
all Rank-R FNN models perform significantly better than the
CNN on all datasets. For 50 epochs and 10 samples per class,
Rank-R FNN models perform significantly better than the
CNN on Botswana and Pavia University datasets. For the
Indian Pines, however, the difference in performance is not
significant, mainly due to the large standard deviation of the
CNN performance across different runs. After 500 epochs,
all models have converged. For 500 epochs and 10 samples
per class, the difference in models’ performance cannot be
considered significant, except for Rank-1 FNN on Botswana
dataset. For 50 samples per class, Rank-R FNN models (for
R = 1, 3, 4) perform significantly better on the Botswana
dataset. For the Pavia University, the difference in perfor-
mance between Rank-R FNN and CNN is not significant,
while for Indian Pines, CNN performs significantly better
than Rank-R FNN for R = 1, 2, 3.

2) MODELS’ PERFORMANCE EVALUATION ON NOISY DATA
INPUTS
In the second set of experiments, we evaluate models’ perfor-
mance in noisy input datasets. Figure 4 indicates the classi-
fication accuracy on test sets versus the number of training

epochs for rank R = 1, 2, 3, 4, 5. In this figure, we have
also illustrated the standard deviation of the classification
accuracy over 10 different executed runs as an area of the
same colour around the average line. As is observed, the best
performance is achieved for R = 1 as far as the Botswana
dataset is concerned, while for the Pavia University and
Indian Pines the best performance is achieved for R = 2.
Again, we observe that the proposed Rank-R FNN models
converge rapidly in less than 20 epochs independently of the
values of R.
Figure 5 depicts a comparative study of the proposed

Rank-R FNN model and the CNN network. This figure also
illustrates the standard deviation of the classification accu-
racy on test sets over 10 different runs as an area around
the average line. We have selected R = 1 for the Botswana
dataset, and R = 2 for the Pavia University and Indian
Pines since these rank values give the best classification
accuracy (see Figure 4). As is observed, the proposed Rank-R
model presents high accuracy regardless of the noise level
in its input, indicating robustness against noise. Besides,
the proposed Rank-R FNN model presents much lower stan-
dard deviations against different run executions than the
CNN-based network of [12]. Also, as noisy inputs are feeding
to the classification networks, the CNNmodel’s performance
more rapidly decreases compared to the proposed Rank-R
model. This is justified by the high representation power of
CNNs, allowing them to over-fit small noise levels.

Table 4 presents the results of classification accuracy
on test sets of our proposed model and the CNN in
case of a 20% noise. We depict the results for 50 and
500 epochs.We observe that in all cases, the proposedRank-R
model presents better classification accuracy than the CNN,
though times smaller number of parameters are employed
(see Table 2). In particular, in the PaviaUniversity dataset, our
model is 3.9%better than CNN even for 500 epochs, while for
50 epochs, the improvement reaches 19.1%.As for Botswana,
the improvement is 3.3% in the case of 500 epochs and 33.9%
for 50 epochs. Finally, for the Indian Pines, the improvement
is 1.6% for 500 epochs and 22.2% for 50 epochs. These
numbers show that our model rapidly converges than the
CNN, which constitutes another advantage of our method.

Contrary to CNN, tensor-based models seem to be noise-
robust, since their performance has small variations across
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FIGURE 5. Comparative performance of the proposed Rank-R model and the state of the art CNN-based network of [12]. In this figure,
we assume a noise on the input data of 20%. The comparisons have been made for α values of 10 and 50 respectively. In this figure, we have
also depicted the standard deviation of the classification accuracy of each model. The Botswana dataset with RANK-1 since it gives the best
classification accuracy (see Fig.4). The Pavia University Dataset with RANK-2 since it gives the best classification accuracy (see Fig.4). The
Indian Pines Dataset with RANK-2 since it gives the best classification accuracy (see Fig.4).

TABLE 4. Average classification accuracy and standard deviation (%) on
test sets in case of a 20% noise and 10 samples per class.

different levels of noise. The significant reduction of the
number of trainable parameters, shields them against over-
fitting, and their performance has small variations across
different levels of noise applied on the data. Besides, our
Rank-R model improves classification performance com-
pared to CNN when noise is added to the data. Thus, our
model is more robust than the CNN model.

VI. CONCLUSION-DISCUSSIONS
In this work we present Rank-R FNN, a tensor-based non-
linear classifier that imposes a CP decomposition on its
weight parameters that connect the input layer to the first
hidden layer. Varying the rank of weights decomposition can
be seen as a regularization technique that affects the learning
capacity of the model and shows off robustness to overfitting.
We proved that Rank-R FNN models are universal approxi-
mators and form a learnable class of functions. Experiments
on three publicly available high-order hyperspectral image
datasets show that the proposed model has robustness against
noise especially when a small number of training samples is

selected, smaller standard deviation over different execution
runs and it rapidly converges with respect to the training
epochs. In particular, the main conclusions are the following:
• The number of the parameters of the proposed Rank-R
model is times smaller than the number of the respec-
tive parameters of conventional CNN networks like the
one of [12]. In particular, the CNN models need 41,
48 and 57 times more parameters compared to the Rank-
1 FNN for the Indian Pines, the Pavia University and the
Botswana datasets, respectively.

• The proposed Rank-R model converges much more
rapidly compared to the traditional CNN network. More
specifically, our models converges in less than 20 epochs
for all the examined datasets, while CNN requires more
than 200 epochs for its convergence.

• The standard deviation of the classification accuracy of
our model is much smaller than the one achieved by the
use of the CNN over different execution runs. Particu-
larly, the average reduction of the standard deviation is
on average 3.8 times over all datasets for the noise-free
examples and on average 20% better in case of noisy
data inputs.

• The proposed Rank-R model is robust against noisy
input data retaining both convergence rate efficiency,
(less than 20 epochs and classification accuracy. Indeed,
in case of adding noise, our model outperforms CNN
for all datasets and when convergence of 500 epochs is
achieved. Moreover, the improvement of our model to
the CNN increases as more noise is added to the input
data.

• The classification accuracy of the proposed model is
statistically better when a small number of training
samples per class are selected (that is 10 samples for
20 epochs), while the improvement decreases for large
training epochs of 500; for noise-free data, in two out of
the three datasets, the proposed Rank-R model slightly
outperforms the CNN model by 3.8% and 1.8% for
Botswana and Pavia University datasets, while in the
Indian Pines dataset is slightly worse by 4.3%. For noisy
data, and particularly when a noise of 20% is added,
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our model outperforms CNN for all the three examined
datasets, that is, it is 3.9% better for the Pavia University
dataset, 3.3% better for the Botswama dataset and 1.6%
for the Indian Pines dataset.

APPENDIX A
Proof of Rank-R FNN Theorem:We have to show that for any
f there exists g such that g(A) = f (A), for any tensor object
A ∈ Rp1×···×pD . Functions f and g can be written as

f = f2(f1) and g = g2(g1),

where f1 and g1 represent the output of the hidden layer, and
functions f2 and g2 map the hidden layer outputs to the output
layer. Since these two networks have the same number of
hidden neurons we can set g2 = f2. In order to complete
the proof, it suffices to show that there exists g1 such that
g1(A) = f1(A).
Functions f1 and g1 are vector functions, that is

f1 = [f 11 , f
2
1 , · · · f

Q
1 ]T and g1 = [g11, g

2
1, · · · g

Q
1 ]

T .

Without loss of generality assume that f q1 = σ for all q ∈
{1, . . . ,Q}, where σ is the sigmoid activation function. Under
the previous assumption, we can set gq1 = σ for all q.
From now on, with an abuse of notation, we remove

the superscript q and refer to hidden units f and g. What
remains to show is that, for any w, there exist decomposition∑R

r=1 b
(r)
1 ◦ · · · b

(r)
D such that

σ (〈w,A〉) = σ (〈
R∑
r=1

b(r)1 ◦ · · · b
(r)
D ,A〉)

But any w ∈ R
∏D

1 pd admits a rank R decomposition for some
finite R, i.e.,

ten(w) =
R∑
r=1

b(r)1 ◦ · · · b
(r)
D , (17)

or equivalently

vec(
R∑
r=1

b(r)1 ◦ · · · b
(r)
D ) = w.

Equation (17) holds for every tensor ten(w) ∈ Rp1×···×pD , if
its rank, let’s say R′, is less than or equal to R. An upper bound
for the rank R′ of such tensor ten(w) is the following:

R′ ≤ min
i
Pi with Pi =

∏
d 6=i

pd .

Therefore, for R ≥ mini Pi, there exist b
(r)
d for d = 1, · · · ,D,

r = 1, · · · ,R such that equation (17) holds. The above
arguments hold for every q = 1, · · · ,Q, which implies that
there exists g1 such that g1(A) = f1(A) for any A.
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