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Abstract. The need to create and maintain a sustainable indoor environment is now more than 

ever compelling. Both the legislation framework concerning the energy performance of 

buildings, as determined in its evolution through the EU Directives 2010/31/EU, 2012/27/EU 

and 2018/844/EU, and the European strategic plans towards green buildings, denote the need of 

sustainability and comfort of indoor environment for the occupant. Moreover, the EU Directive 

2018/2001 sets the renewable energy target of at least 32% for 2030, denoting that the high 

renewable energy sources penetration level leads to challenges in the design and control of power 

generation, transmission and distribution.  Demand side management may be able to provide 

buildings with the energy flexibility needed, in order to utilize the intermittent production of 

Renewable Energy Sources in a much more efficient and cost-effective way.   The flexibility 

potential of installed building systems is investigated, while considering the effects on the indoor 

environment conditions and the perceived comfort. The implemented Demand Response (DR) 

control strategy shifts loads by changing heating system set point temperatures, based on market 

clearing prices of the day ahead market. The results indicated a reduction in energy consumption 

and energy costs, while maintaining indoor environment quality at satisfactory levels.   

1.  Introduction 

Main goal of the European Union (EU) is to be the leader of transition to clean energy, not just to adapt 

to it [1], [2], [3]. For this reason, commitments have been made towards the reduction of CO2 emissions 

by at least 40% by 2030, while modernizing the economy and creating growth opportunities for all 

European citizens [1], [3]. Main aspects in this direction are the continuous improvement of energy 

efficiency, the achievement of global leadership in renewable energy sources [2], the promotion of smart 

energy management systems and the provision of fair energy supply conditions to consumers [1], [3]. 

Buildings can become key players in this transition, as they account for about 35% of final energy 

consumption [4].The potential of building flexibility is mainly used to reduce energy costs or the cost 

of purchasing electricity and heat from energy grids, to increase the penetration of RES in distribution 

networks, or to develop real-time equalization of production and demand in order to maintain network 

stability [5]. In that sense, energy flexibility can be expressed as the power or/and energy that can change 
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over a period of time, as a reaction to an external stimulus, without compromising the indoor 

environment conditions and the comfort and well-being of the occupants [6]. 

Among the various types of buildings, office buildings are considered the most attractive option for 

implementing DR programs, as they are usually characterized by high energy consumption, and in most 

cases are better equipped than residential buildings in terms of automation infrastructure [7]. In office 

buildings, heating, ventilation and air conditioning systems (HVAC), lighting systems and other 

electrical appliances, can change their operating profile to provide energy network support services. 

In the last decade, an approach has been recorded focusing on a direct connection of the occupants’ 

needs with the corresponding installed HVAC system, utilizing data, such as the prevailing conditions 

inside a building to regulate the operation of the HVAC systems accordingly [8]. Particularly in terms 

of users’ comfort as noted by Antoniadou and Papadopoulos, from 1911 until today, and especially in 

the last decade, a number of research studies focus on the evaluation and determination of occupants’ 

comfort in the indoor environment. It is also noted that more than 13 models have been developed in the 

last 110 years trying to describe in a more detailed way such a subjective phenomenon. The developed 

models propose some methods to dynamically introduce the perception and feelings of users while 

describing comfort [9]. 

In order to enable the demand side management potential, there are two main types of programs that 

can be implemented. These are the Incentives Based Programs (IBP) and the Price Based Programs 

(PBP) [10,11]. PBP programs are based on the hypothesis of dynamic pricing, where the cost of 

electricity is not fixed, but changes following the actual cost of electricity generation. The main goal of 

these programs is to balance production and demand, providing high prices during periods of high 

demand or/and low production and low prices during periods of lower demand or/and higher production 

[10,11]. 

In order to achieve the level of controls that will allow consumers, but also utilities to benefit from 

demand side management, the appropriate control strategy of the systems of a building must be 

implemented [12]. Control strategies can be divided into two main categories, Rule-Based Control 

(RBC) and Model Predictive Control (MPC). RBC is a very simple method, in which the status of a 

variable is monitored and the system responds by changing its operation according to a predetermined 

strategy [12], while MPC bases its operation on predicting the energy behavior of a building. In the latter 

case, the optimal control strategy usually results from solving an optimization problem, with predefined 

constraints and a specific time horizon [12]. 

By combining PBP and different categories of control strategies, several investigators proposed some 

types of Economic or cost MCPs and RBCs. As far as economic MCPs are concerned, electricity prices 

from the day-ahead market in cost function type and seek of an optimized schedule that solves the 

derived cost-minimization problem are usually included [13], [14], [15]. On the other hand, Economic 

RBCs are usually based on the prediction of future electricity cost, using past electricity price data. 

RBCs are easier to implement and are found to provide significant energy cost decrease potential 

[16,17].  

In several European countries consumers can choose a real time pricing (RTP) tariff for electricity 

[18]. When RTP policies are applied, prices are estimated near to real-time energy usage and are based 

on wholesale electricity prices. These tariffs are mainly composed of electricity wholesale rates plus a 

retail profit and in several cases are “locked” for the day-ahead several hours before midday (E.g., 

Finland, 2pm) [18].  

In this paper, the development of a DR model and the assessment of a DR strategy is described. The 

demonstrated DR strategy is cost-based load shifting of the heating equipment. The main objective of 

the strategy is to shift the load from times with high electricity prices to times with lower electricity 

prices, while trying to maintain decent levels of occupants’ comfort. 

2.  Methodology 

To implement a DR model two identical offices were used, providing a test cell for the described 

research. The implementation is located in Thessaloniki, Greece on an office building of the Faculty of 
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Engineering at Aristotle University of Thessaloniki. Thessaloniki’s climate is Mediterranean, is hot 

Mediterranean subtropical that is mild with moderate seasonality (Köppen-Geiger classification: Csa), 

leading to moderate heating requirements and increased cooling ones. The chosen area exhibits a 

building profile with a variety of space usage and occupancy patterns. The energy demand of the 

building is mainly met by electrical and gas energy conversion systems. The basic loads are heating, 

cooling and lighting.  

2.1.  Test cell description  

The test cell is composed of two offices with the same size, orientation, interior design and equipment, 

that are adjacent (figure 1). The offices have a northeast orientation and border southeast and northwest 

with heated areas (other offices) southwest with an indoor corridor, while their northeast side is exposed 

to the environment. In the Typical Office, as denoted on Figure 1, a classic control method with a fixed 

temperature set point is applied, while on the DR Office a Rule Based Control based on the Greek Day 

Ahead electricity market prices, is applied.  

 
Figure 1. Test cell floor plan 

2.2.  HVAC Systems  

The building has a central heating installation to meet the needs for space heating. The installation 

includes two gas boiler units (high temperature), with central distribution network. The distribution 

network has a weather compensation control system to handle part loads. A monitoring and remote 

control system (SCADA) helps in achieving better management of the operation of the boilers and heat 

distribution system, to reduce fuel consumption. The emission system for space heating consists of 

classic AKAN hot water radiators, with thermostatic heads mounted on each radiator. The combined 

power of the boiler systems is 600 kW, according to the technical specifications of the manufacturer. 

The flue gas analysis measured the thermal efficiency of the boiler at ngm = 90%. 

Local air-cooled heat pumps (split type room air-conditioners) are used for cooling and are 

considered to cover 100% of the total cooling load of the building. The total installed cooling power is 

350 kW. As there are no technical characteristics and specifications for the units, the energy efficiency 

ratio of the heat pumps is considered EER = 2.5 and the coefficient of performance COP=2.5, in 

accordance with the Greek Energy Performance of Buildings Regulation for such systems older than 5 

years. 

The central heating system provides heating in the winter and the air source heat pumps cooling 

during summer. In order to test the DR model the hot water radiators are turned off during occupancy 

hours and the local heat pumps are used to provide the needed heating, as they provide the capability to 

enforce set temperatures. The heat pumps are of old non-inverter technology, with a heating capacity of 
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12000 BTUs. There is no mechanical ventilation system installed, the necessary air exchanges are 

achieved through proper use of the office windows and following the same pattern for both offices. 

2.3.  Measuring Instruments 

Each test room is equipped with several sensors. The Typical Office is equipped with a HOBO MX 

1102 data logger for measuring indoor air temperature, air relative humidity and CO2 concentration 

levels and a LogiLink EM0003 energy meter for measuring the electricity consumption. The installed 

energy meter does not have the capability of logging real time power data, so the total energy 

consumption for each hour is manually logged. The DR Office is equipped with a TESTO 480 for 

measuring indoor air temperature, relative humidity, CO2 concentration levels, PMV and PPD indices 

and a Energenie EGM-PWM-LAN meter for measuring real time electricity consumption. Moreover, a 

HOBO U30 weather station is installed on the rooftop of the building, measuring the air temperature, 

the air relative humidity, the wind speed/direction and the solar irradiance.  

2.4.   Occupancy Schedule 

Most office buildings in Greece provide basic HVAC services during normal business hours. Normal 

business hours for the described building are from 8:00 a.m. to 5:00 p.m. In regular conditions the 

average occupancy rate exceeds 50% during office hours. However during the COVID 19 pandemic, 

the profile of energy consumption in the building sector has changed, as traffic restrictions have led to 

mass teleworking and distance learning, leading to a reduction in activity in office buildings and a shift 

towards the residential building sector [19].  

A direct consequence of this change is the increase in energy consumption of residential buildings. 

In addition, most non-residential buildings should be able to adjust their spatial and temporal operating 

characteristics, to cope with fewer employees per surface unit and rolling or flexible occupancy 

schedules [19]. In this context, it should be noted that in the under evaluation building, the occupancy 

rate considerably reduced to levels below 20%, while the existing energy management system can not 

provide adequate control over the operation of HVAC systems to meet the change in space usage and 

load shape. 

2.5.  Demand Response Method 

The case of real time pricing (day ahead), where prices vary hourly on a daily basis is considered. The 

main problem while implementing a demand response program based on day ahead market data, is that 

prices change during the day and fluctuate even until the end of each hour that they refer to.   

Greek Day-Ahead market data are obtained [20] and the Market Clearing Price (MCP) data are used 

as price signals. MCP is the price that refers to the equilibrium point between supply and demand of 

electrical energy. 

Based on the information about the variation of electricity price, new set-point temperatures for space 

heating are defined. The heat pump operation in DR Office is switched from temperature-controlled to 

price-controlled. The temperature-control approach considers a predefined set point temperature to 

maintain satisfactory comfort levels, while the price-control manipulates the predefined set-point 

temperatures in order to shift loads from high price periods to lower price periods. 

A Rule based control (RBC) is implemented aiming at covering the building’s heat demand by 

optimal use of the air source heat pump, taking into consideration the next 24 hours forecast (day-ahead) 

energy price using 1 hour time-steps.  

The hot water radiators are thermostatically controlled, so they can be turned on and off. The central 

heating system is used during the hours when no occupancy occurs. During occupancy the hot water 

radiators are turned off and the local heat pumps provide the needed heat. The heat provided by hot 

water radiators is not measured, but its effect on temperature levels is easily noticeable in the diagrams 

that follow.  

3.  Results 
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The initial step of the analysis is to choose the set point temperature for each office. The setpoint for the 

typical office is set to 21 ⁰C and for the DR office fluctuates between 19 and 23 ⁰C depending on the 

MCP values. Setpoint temperature increases when price decreases and vice versa.  

 

 

 
Figure 2. Market Clearing Price values and temperature set points of Heat Pumps 

 

 
Figure 3. Temperature of offices and ambient air and heat pumps electrical power rates 
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The results of the application of DR strategy are depicted in Figure 3. The indoor air temperature and 

measured power for normal control (Typical office) and price-based control (DR office) and the ambient 

air temperature are presented. Due to the variable set point temperatures, there is a significant 

temperature and power variation for the DR office. The instability of temperature during the operation 

of the local non-inverter heat pumps is also prominent. In all three days high levels of ambient 

temperature are observed. The operation of heat pumps stops at around 12:30, because of low thermal 

loads due to high ambient temperature. The temperature differences observed between the two offices 

over the course of the measurement period could be due to deviations in the measuring instruments' 

accuracy or in the performance of the installed HVAC systems. 

As displayed in Table 1 the DR strategy results in a slight reduction of total energy consumption at 

days 1 and 3, but a slight increase during day 2. The total difference is relatively low and may be due to 

deviations in the accuracy of the measuring instruments or to the variation in space occupancy or/and 

the efficiency of local heat pumps. In terms of energy costs, it is noted that the absolute difference is 

only about a few cents of euro. However, the percentage reduction in energy costs is significant. 

 

Table 1. Total energy consumption and energy costs for the different office scenarios 

 
 

As it is known, the Fanger method [21] utilizes a 7-point predicted mean vote (PMV) index to 

determine thermal comfort. In this line of approach, the determination of PMV and PPD indices have 

been denoted for the DR Office as the indoor conditions were expected to note more intense variation 

compared to the typical office area. Based on the conducted analysis the PMV-index values for the DR 

Office are noted in Figure 4. PMV-index values vary in our analysis from -0.40 to +0.50, noting however 

values ranging from +0.50 to +1.00 only for a very short period of time. Considering that PMV values 

between -1 (slightly cool) and +1 (slightly warm) are considered acceptable [21], our implementation 

strategy keeps the PMV-index not only within acceptable bounds but in neutral levels of comfort in most 

cases.  

 

 
Figure 4. PMV values in DR Office 

4.  Conclusions 

The need to create and maintain a sustainable indoor environment is now more than ever compelling. 

The flexibility potential of installed building systems needs further investigation, while considering the 

Total energy Day 1 Day 2 Day 3 Total Energy cost Day 1 Day 2 Day 3 Total

DR Office (kWh) 2,092 2,13 1,98 6,202 DR Office 0,122 € 0,119 € 0,087 € 0,327 €

Typical Office (kWh) 2,38 2,11 2,02 6,51 Typical Office 0,143 € 0,128 € 0,100 € 0,372 €

Difference (kWh) -0,288 0,02 -0,04 -0,308 Difference -0,022 € -0,010 € -0,014 € -0,045 €

Percent change -12% 1% -2% Percent change -15% -8% -14%
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effects on the indoor environment conditions and the perceived comfort in cases of non-residential 

buildings leading towards energy efficient buildings with high indoor environment conditions. 

In the present work, the implementation of a DR strategy in an office located in Greece was 

evaluated. Its energy efficiency is compared to an identical office in which a standard heat pump control 

strategy is applied. The DR control strategy shifts loads by changing set point temperatures, based on 

dynamic energy prices and specifically on the market clearing price of the Greek day ahead market. 

Main goal is the reduction of the induced cost of energy, while still managing to maintain indoor 

comfort. The results indicated a small reduction in energy consumption and absolute energy costs, but 

at the same time a significant percentage reduction in energy costs. The impact of the application of the 

DR strategy on the indoor air temperature was found to be negligible. 

The quality of the indoor environment was maintained at satisfactory levels throughout the DR 

strategy implementation. High outdoor air temperatures, on the other hand, lead to a reduction in thermal 

loads, which aids maintaining indoor comfort and thus slightly distorts the quality of results. On the 

other hand, it provides a good example for rather warm winter days, which are frequent in Mediterranean 

climate. Future works include application of the strategy in typical winter or/and summer conditions and 

the development of an automated methodology for robust determination of temperature set points 

according to energy prices. 
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