
Technical University of Crete

School of Electrical and Computer Engineering

Diploma Thesis

Design and Implementation
of an Autonomous-Ready Electric

Motorcycle Using Drive PX2

Kleanthis Kyriazakis

Submitted in partial fulfillment of the requirements for the Diploma in
Electrical and Computer Engineering of the Technical University of Crete

July 2023

Πολυτεχνείο Κρήτης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διπλωματική Εργασία

Σχεδίαση και Ανάπτυξη

μιας Autonomous-Ready Ηλεκτρικής
Μοτοσυκλέτας με χρήση του Drive PX2

Κλεάνθης Κυριαζάκης

Η εργασία εκπονήθηκε στο πλαίσιο των απαιτήσεων για την απόκτηση Διπλώματος

Μηχανικού από την Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

του Πολυτεχνείου Κρήτης

Ιούλιος 2023

Thesis Committee

Assistant Professor
Eleftherios Doitsidis, Ph.D.

Professor
Eftychios Koutroulis, Ph.D.

Professor
Michail G. Lagoudakis, Ph.D.

Technical University of Crete
School of Production Engineering and Management,

Technical University of Crete
School of Electrical and Computer Engineering,

Technical University of Crete
School of Electrical and Computer Engineering,

Abstract

The history of mass-production vehicles has been moving in two directions in recent
years: electrification and autonomous driving. In fact, the combination of these two
features looks set to dominate in the coming decades, as a large amount of resources
is devoted to the development of these technologies. Responding to this trend, the
motorcycle industry has recently been moving in the same directions, already pre-
senting the first prototypes with impressive safety features in terms of balance and
ride. The present diploma thesis proposes a low-cost, autonomous navigation sys-
tem, designed for a prototype, autonomous-ready electric motorcycle that is being
developed at the Technical University of Crete. The proposed system is based on
Nvidia’s Drive PX2 computing platform, which acts as the main brain of the vehicle,
as well as two high-resolution cameras, which act as the main perception sensors.
Using the Python programming language and the TensorFlow library, a real-time
visual object detection system, based on a convolutional neural network, was de-
veloped, which specializes in vehicle and road traffic signal detection. At the same
time, an Adaptive Cruise Control system was developed for the autonomous adjust-
ment of the speed and the steering of the motorcycle, based on the perception of the
current situation on the road. Information and data are displayed to the motorcycle
rider via a touchscreen display, which offers various functions through a friendly
graphical user interface, as well as analysis of specific scenarios. The interconnec-
tion of all subsystems, including the power supply from the motorcycle batteries,
is achieved through a specially designed circuit and appropriate wiring. The pro-
posed system is ready to be installed on-board in the prototype, autonomous-ready
electric motorcycle, once its mechanical part is designed and tested for conventional
driving.

Περίληψη

Η ιστορία των οχημάτων μαζικής παραγωγής κινείται τα τελευταία χρόνια προς δύο

κατευθύνσεις: ηλεκτροκίνηση και αυτόνομη οδήγηση. Μάλιστα, ο συνδυασμός αυτών
των δύο χαρακτηριστικών φαίνεται ότι θα κυριαρχήσει στις επόμενες δεκαετίες, κα-
θώς αφιερώνεται μεγάλος όγκος πόρων στην ανάπτυξη αυτών των τεχνολογιών. Αν-
ταποκρινόμενη σ’ αυτήν την τάση, στις ίδιες κατευθύνσεις κινείται πρόσφατα και η
βιομηχανία μοτοσυκλετών, παρουσιάζοντας ήδη τα πρώτα πρωτότυπα με εντυπωσιακά
χαρακτηριστικά ασφάλειας ως προς την ισορροπία και την οδήγηση. Η παρούσα διπλω-
ματική εργασία προτείνει ένα σύστημα αυτόνομης πλοήγησης χαμηλού κόστους, σχεδι-
ασμένο για μια πρωτότυπη, autonomous-ready ηλεκτρική μοτοσυκλέτα που αναπτύσσε-
ται στο Πολυτεχνείο Κρήτης. Το προτεινόμενο σύστημα βασίζεται στην υπολογιστική
πλατφόρμα Drive PX2 της Nvidia, η οποία λειτουργεί ως ο κύριος εγκέφαλος του οχή-
ματος, καθώς και σε δύο κάμερες υψηλής ανάλυσης, οι οποίοι λειτουργούν ως κύριοι
αισθητήρες αντίληψης. Με τη χρήση της γλώσσας προγραμματισμού Python και της
βιβλιοθήκης TensorFlow, αναπτύχθηκε ένα σύστημα οπτικής ανίχνευσης αντικειμένων
σε πραγματικό χρόνο, βασισμένο σε ένα συνελικτικό νευρωνικό δίκτυο, το οποίο ει-
δικεύεται στην ανίχνευση οχημάτων και σημάτων οδικής κυκλοφορίας. Παράλληλα,
αναπτύχθηκε και ένα σύστημα Adaptive Cruise Control για την αυτόνομη ρύθμιση της
ταχύτητας και της διεύθυνσης της μοτοσυκλέτας, βάσει της αντίληψης της τρέχουσας
κατάστασης στον δρόμο. Πληροφορίες και δεδομένα προβάλλονται στον αναβάτη
της μοτοσυκλέτας μέσω μιας οθόνης αφής, η οποία προσφέρει διάφορες λειτουργίες
μέσα από ένα φιλικό γραφικό περιβάλλον χρήστη, καθώς και ανάλυση συγκεκριμένων
σεναρίων. Η διασύνδεση όλων των υποσυστημάτων, συμπεριλαμβανομένης και της τρο-
φοδοσίας από τις μπαταρίες της μοτοσυκλέτας, επιτυγχάνεται μέσω ενός ειδικά σχε-
διασμένου κυκλώματος και κατάλληλης συνδεσμολογίας. Το προτεινόμενο σύστημα
είναι έτοιμο για τοποθέτηση on-board στην πρωτότυπη, autonomous-ready ηλεκτρική
μοτοσυκλέτα, μόλις ολοκληρωθεί η σχεδίαση και η δοκιμή του μηχανολογικού μέρους
της για συμβατική οδήγηση.

Acknowledgements

I would like to express my deepest appreciation to my thesis supervisor, Profes-

sor Michail G. Lagoudakis for the extended assistance and constructive advice he

provided on the current thesis. I cannot begin to express my thanks to Professor

Eleftherios Doitsidis for playing a decisive role in the completion of this work and his

invaluable encouragement and suggestions throughout the duration of this project.

I would also like to thank Professor Eftychios Koutroulis, a member of my thesis

committee for helpful advice reviewing the manuscript. I would also like to extend

my deepest gratitude to my family for their wise counsel and sympathetic ear. You

are always there for me. I am extremely grateful to all the new friends I made,

Nicholas, John, George, Sifis, Vasilis, Nikos, who have always been a major source

of support and for all their help in the conceptualization and implementation of the

work presented here. Finally, I could not have completed this dissertation without

the help of Dr. Polychronis Spanoudakis and members of the TUCer team. This

thesis would not be possible without your support.

I

Contents

List of Figures 1

Acronyms and Abbreviations 3

1 Introduction 6
1.1 Thesis Motivation . 6
1.2 Thesis Contribution . 6
1.3 Thesis Outline . 7

2 Background 9
2.1 Sensors . 11

2.1.1 Odometry . 11
2.1.2 Inertial Measurement Unit . 11
2.1.3 Camera . 12
2.1.4 GNSS . 14
2.1.5 Radar . 16
2.1.6 LiDAR . 17
2.1.7 Ultrasound . 19

2.2 Communication Protocols . 20
2.2.1 CAN . 21
2.2.2 LIN . 22
2.2.3 FlexRay . 23

2.3 Nvidia Drive Platform . 24
2.3.1 Hardware for Self-Driving Cars 24
2.3.2 Software for Self-Driving Cars 25

3 Related Work 28
3.0.1 Nvidia Drive Hyperion . 28
3.0.2 Yamaha Motobot . 29
3.0.3 BMW R 1200 GS . 30
3.0.4 Waymo Urban Driver . 31

4 Platform Description 32
4.1 Electric Motorcycle . 32
4.2 Platform and Sensors . 33

4.2.1 Nvidia Drive PX2 . 33
4.2.2 SEKONIX SF3324-100 Cameras 34
4.2.3 Grayhill 3D70 Display . 35

II

5 Offline Programming 37
5.1 Object Detection and Recognition . 38
5.2 Traffic Sign Recognition . 39
5.3 Adaptive Cruise Control . 42
5.4 Simulation . 45

5.4.1 CARLA Simulator . 45
5.4.2 Proposed Approach . 46
5.4.3 Simple P Controller for Throttle Control 49
5.4.4 PID Controller for throttle control 52
5.4.5 Extensive PID Experiments 55

6 Platform Programming 58
6.1 Nvidia Drive PX2 Software . 58

6.1.1 Software Development . 58
6.1.2 Object Detection . 58
6.1.3 Rear Facing Camera . 60
6.1.4 Autonomy and Adaptive Cruise Control 60

6.2 Grayhill 3D70 Display . 62
6.2.1 Graphical User Interface . 62
6.2.2 Connectivity . 64

6.3 Experiments . 65

7 Platform Deployment 67
7.1 Power Supply . 67
7.2 Drive PX2 . 68
7.3 Camera Mounting and Wiring . 70
7.4 Display . 70
7.5 Interconnection . 72

8 Conclusion and Future Work 76

References 77

III

List of Figures

1.1 Autonomous system and onboard footage 6
1.2 Development Workflow of this work 7

2.1 The six stages of autonomy . 9
2.2 Sensor configuration of an autonomous car [5] 10
2.3 Visual Odometry Pipeline [6] . 11
2.4 IMU’s sensor models [7] . 12
2.5 Simplified configuration of a Camera’s sensor [9] 13
2.6 Examples of camera limitations . 14
2.7 Stereoscopic camera system with Raspberry Pi [10] 14
2.8 Geo-spacial Positioning using Trilateration [12] 15
2.9 Simplified Radar architecture [14] . 16
2.10 LiDAR captured point-cloud view [16] 18
2.11 Simplified LiDAR sensor diagram [17] 18
2.12 LiDAR and Radar accuracy [18] . 19
2.13 Automotive Ultrasonic Sensors . 20
2.14 Tesla configuration: Radar(Green), Camera(Blue), Ultrasonic sen-

sors(Yellow) [19] . 20
2.15 Simplified CAN configuration in a modern vehicle [21] 21
2.16 Simplified LIN configuration for component control in car door [23] . 22
2.17 Car configuration utilizing CAN, LIN and FlexRay [24] 23
2.18 Drive PX2 and AGX Platforms . 24
2.19 Nvidia DRIVE Software Stack . 26

3.1 Nvidia DRIVE Hyperion [31] . 28
3.2 Yamaha Motobot YZF-R1M [32] . 29
3.3 BMW R1200GS self-driving motorcycle 30
3.4 Waymo autonomous Vehicle sensor configuration [33] 31

4.1 Bike concept . 32
4.2 Drive PX2 Platform - top view . 33
4.3 Drive PX2 Platform - side view . 33
4.4 SEKONIX SF3324-100 GMSL Camera 34
4.5 SEKONIX SF3324-100 block diagram [35] 34
4.6 Grayhill 3D70 Display . 35
4.7 Grayhill 3D70 Development breakout board 36

5.1 Flowchart of the proposed network 37
5.2 Cascade Classifier Pipeline [41] . 38

1

5.3 Tensorflow Model Garden Example [42] 39
5.4 Convolutional Neural Network input resizing 40
5.5 Neural Network Structure . 40
5.6 Convolutional Neural Network training data sample 41
5.7 Traffic Sign Recognition Test Results 41
5.8 Visualisation of how angle is calculated 43
5.9 Sequence of frames during testing of Vehicle Tracking in a crowded

area . 44
5.10 Proposed network for CARLA simulation 45
5.11 Shots of CARLA Town 10 . 46
5.12 Yamaha YZF model with camera placement 47
5.13 Yamaha YZF in Carla simulation . 47
5.14 Object Detection in Carla . 48
5.15 Object tracking with cars surrounding the desired vehicle 48
5.16 Data log sample during experiment in CARLA 49
5.17 Motorcycle’s path during ACC test 50
5.18 Distance plot during ACC test . 51
5.19 Angle plot during ACC test . 51
5.20 Throttle control PID diagram . 52
5.21 Motorcycle path for the second experiment 53
5.22 Throttle PID control test results . 54
5.23 Distance plot during ACC test with the fittest PID parameters 55
5.24 Motorcycle path during the extensive experiment 56
5.25 Extensive PID test results . 57

6.1 Source compilation workflow . 58
6.2 Modified DriveNet running on Drive PX2 with pre-recorded video . . 59
6.3 ACC tracking on Drive PX2 using a pre-recorded video 61
6.4 Main display view, designed on Qt Creator 63
6.5 Rear View Screen Arrangement . 63
6.6 Autonomy View Screen Arrangement 64
6.7 Main Display View experiment configuration 65
6.8 Main Display View with front camera feed and ACC system 66
6.9 Close up of the Main Display View 66

7.1 MEAN WELL RSD-300C-12 Isolated DC/DC Converter 68
7.2 MEAN WELL RSD-300C-12 Isolated DC/DC Converter Block Dia-

gram [56] . 68
7.3 Drive PX2 Power supply . 69
7.4 Drive PX2 Power Circuit . 69
7.5 Camera SMK CRS9001 Connector 70
7.6 3D70 Display and its mounting frame 71
7.7 3D70 Deployment board schematic 71
7.8 Display connectors used in the proposed board 72
7.9 Display board Molex power connectors 73
7.10 Final 3D70 Deployment board schematic 73
7.11 Deployment board Designed PCB . 74
7.12 Proposed Pipeline of our system . 75

2

8.1 CAN bus wiring Proposal . 77

3

Acronyms and Abbreviations

ACC Adaptive Cruise Control
ADC Analog to Digital Converter
API Application Programming Interface
ARM Advanced RISC Machine
AV Autonomous Vehicle
BB Bounding Box
CAN Controller Area Network
CES Consumer Electronics Show
CV Computer Vision
DC Direct current
dGPU Dedicated Graphics Processing Unit
DNN Deep Neural Network
FMCW frequency-modulated continuous-wave
FPS Frames Per Second
GMSL Gigabit Multimedia Serial Link
GPU Graphics Processing Unit
GTC GPU Technology Conference
GUI Graphical User Interface
HDMI High-Definition Multimedia Interface
iGPU Integrated Graphics Processing Unit
INT8 8-Bit Integer
IO Input and Output
IoT Internet of Things
IR Infrared
ISP Image Signal Processor
LCD Liquid Crystal Display
LED Light Emitting Diode
LiDAR Light Detection And Ranging
ML Machine Learning
NAS Smart Network Attached Storage
NASA National Aeronautics and Space Administration
OBD On-board diagnostics
OPS Operations Per Second
OTA Over-The-Air
PCAP Projected Capacitive
PPS Points Per Second
PVA Programmable Vision Accelerator

4

Radar Radio Detection And Ranging
RCCB Red Clear Clear Blue
RISC Reduced Instruction Set Computer
SAE Society of Auto-motive Engineers
SDK Software Development Kit
SNR Signal to Noise Ratio
SoC System on a Chip
Sonar Sound Navigation And Ranging
TOT Time of Transmission
WVGA Wide Video Graphics Array

5

Chapter 1

Introduction

1.1 Thesis Motivation

In recent years, advances in driving technology as well as challenges in urban trans-
portation created opportunities for development of fully autonomous vehicles and
have attracted numerous manufacturers that invest immense amounts of resources
and time [1]. Currently, it has evolved into a race with the ultimate goal of being
the first to make this dream come true. It is not certain when fully autonomous
vehicles will enter mass production, and some would say that it is a question of “if”,
rather than “when”. A rational scenario would be for most people to simply order a
driverless vehicle in order to travel to a location they want, while having the oppor-
tunity to read a book, watch TV, answer e-mails or even take a nap. In urban areas
with driverless cars, the human error while driving is eliminated which makes our
transportation a lot safer and the number of vehicles is reduced, positively impacting
the environment. With the rise of electric vehicles with autonomous capabilities, the
electric motorcycle industry also attracted a lot of interest that continues to grow
on a daily basis.

1.2 Thesis Contribution

This thesis presents an autonomous-ready system (Figure 1.1) designed for a proto-
type three-wheeled electric motorcycle using Nvidia’s Drive PX2 as the main pro-
cessing unit and Grayhill’s 3D70 display for human-computer interaction.

(a) System concept configuration (b) Onboard view during test run

Figure 1.1: Autonomous system and onboard footage

6

The development workflow of this work is presented in Figure 1.2 and its main goals
are the following:

• A hardware and software configuration using Nvidia Drive PX2, that utilizes
two high resolution cameras, for object detection and recognition applications.

• The development of an object detection and recognition system, that can ana-
lyze the camera feed and perceive the environment surrounding the motorcycle.

• An Adaptive Cruise Control system, which is simulated and tested in the
CARLA virtual environment in order to verify and improve its behavior, with
the intention being its deployment to the Drive PX2 system, as a smart driver
assistance system.

• Implementation of a traffic sign recognition model that leverages the object
detection system mentioned earlier. Its role is important on traffic assistance
driving systems and automatic driving systems.

• The design and implementation of a Graphical User Interface with multiple
functionalities intended for the Grayhill 3D70 touchscreen display. The display
provides the driver with necessary information the Drive PX2 system yields,
as well as grant situational awareness by displaying the real-time camera feed
to the user.

• A method to link the above sub-systems into a single autonomous-ready sys-
tem, to be deployed on the electric motorcycle.

Figure 1.2: Development Workflow of this work

1.3 Thesis Outline

The rest of this thesis is organised as follows.

In Chapter 2 we explain self-driving vehicles and the way they are categorized, as
well as some of the characteristics featured. Afterwards, various sensors widely
used in autonomous vehicles are discussed and their operation logic is described.
Some of those sensors are Odometry, Inertial Measurement Units, Cameras, GNSS,
Radar and so on. Succeeding this, the workings of some communication protocols
adopted in modern vehicles, such as CAN, LIN and FlexRay busses are explained.
Next, Nvidia’s DRIVE platform, along with its most compelling features offered, is
discussed.

Chapter 3 concerns similar autonomous applications on motorcycles and autonomous
vehicles that utilize Nvidia’s DRIVE platform.

7

Chapter 4 describes the platform used in this work, including specifications of the
electric motorcycle, Drive PX2 system, cameras and Grayhill 3D70 display.

Chapter 5 includes details concerning software development of systems for offline
object detection, traffic sign recognition and adaptive cruise control, and offline
experiments conducted in the Carla Simulator in order to test the algorithms in a
virtual urban area.

Chapter 6 includes details about deploying the above algorithms on the DRIVE PX2
platform, and also design and testing of the Graphical User Interface for the 3D70
display.

Chapter 7 specifies the proposed key components for the final deployment of our
system on the motorcycle including schematics and PCB designs, and details on
how they connect and interact with each other.

In the final chapter we discuss future work to extend this system’s capabilities and
features.

8

Chapter 2

Background

A self-driving, also known as an autonomous vehicle (AV), is capable of sensing its
surrounding environment and operating without requiring human interaction. By
fusing the information gathered from different sensors, such as Cameras, Radars,
LiDARs and odometry measurement units, it is able to perceive its surroundings.
AVs can go anywhere a traditional car goes and do everything that an experienced
human driver does. The Society of Automotive Engineers (SAE) currently catego-
rizes autonomy in vehicles in six Levels [2] ranging from Level 0 (no automation) to
Level 5, meaning fully autonomous requiring no human interaction.

Figure 2.1: The six stages of autonomy

Autonomous vehicles rely on sensors, actuators, complex algorithms, machine learn-
ing models, and powerful processors to execute software. Modern self-driving cars
generally use localization and mapping algorithms [3], which fuse data from mul-
tiple sensors to calculate current location estimates. Waymo, formerly Google’s
self-driving car project and now an autonomous driving technology development
company, has developed a variant of those algorithms that include detection and

9

tracking of other moving objects (DATMO), which also handles obstacles, such as
cars and pedestrians [4].

Modern vehicles provide features that help keeping the car within its lane on a
highway and parking assistance that helps takes over the steering function while
parking, as the driver is responsible for the throttle control. Braking and steering
assistance, or any other feature that require the driver to have full responsibility for
monitoring the road and taking over, if the assistance system fails, are qualified as
Level 1 automation. Level 2 driving automation is considered “hands off”, meaning
the automated system is capable of taking full control of the vehicle’s basic functions
(throttle and steering control). Despite its name, the term “hands off” should not
be taken literally, as it is necessary for the driver to constantly monitor the driv-
ing situation and be prepared to intervene immediately at any point if the system
does not respond properly. The 3rd Level is the “eyes off” category, that allows
the driver to safely turn their mind away from driving and into something else. At
this point, the system is capable of resolving every situation that might arise and
call for immediate action. This system, when the time comes, will alert the driver
in an orderly fashion, when it is time the driver must take over control, and the
driver has to be prepared to intervene within a limited time, usually specified by
the system’s manufacturer. The high automation 4th Level is considered “mind off”
and is very similar to the previous one, with the difference being that the driver’s
attention will never be required for safety, and they are free to even leave the driver’s
seat. This kind of automation is only allowed in certain spatial areas at the time.
Finally, Level 5 automation is called a “steering wheel optional” and is exactly what
its name implies. A Level 5 vehicle could be a car designed to work on any kind of
surface, in any weather condition, and not bound to specific locales.

Figure 2.2: Sensor configuration of an autonomous car [5]

In Figure 2.2, a possible sensor configuration on an autonomous vehicle is presented.
Cameras are used to provide a 360-degree view of the vehicle, parking assistance and
object detection and recognition features. Ultrasound sensors placed in the front
and rear of the car are responsible for close-range object detection mainly in tight
spaces and while parking. A combination of Radar and LiDAR sensors provide high
accuracy perception of distant objects with high frequency sampling. Finally, the

10

vehicle utilizes Global Navigation Satellite Systems (GNSS), Inertial Measurement
Units (IMUs) and odometry sensors for localization in real-time.

2.1 Sensors

2.1.1 Odometry

Odometry is the estimation of relative location based on data gathered by sensors,
such as Cameras or Rotation Optical Encoders, that measure wheel rotation. The
most common types of sensors used is wheel odometry that calculates the vehicle’s
speed and location using the wheel’s rotational speed. Although this method is
susceptible to errors due to the integration of velocity over time, high frequency
and precise measurements in addition to a calibrated sensor can make odometry
measurements effective and accurate. Other sensors that can be used for odometry
measurements are the Inertial Navigation System (INS), Optical Cameras, Laser
Sensors, Sonar/Ultrasonic sensors and Global Positioning Systems (GPS). In Figure
2.3 we can see the visual pipeline described in [6], that determines odometry infor-
mation by using sequential frames from a stereo camera setup. Acquired camera
frames, undergo a feature tracking process, which include feature detection and de-
scriptor extraction. These descriptors are used to track the correspondent features
in both temporal and stereo domain. After rejecting possible outliers generated by
the feature matching process, the odometry information is estimated.

Figure 2.3: Visual Odometry Pipeline [6]

2.1.2 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is an assembly of at least three gyroscopes and
three accelerometers, used to obtain inertial parameters of a moving object along the
three axis. This includes its attitude parameters (yaw, pitch, roll), position, speed
and usually measure the magnetic field strength along the three-dimensional axis.
In aircrafts, these systems are integrated into Inertial Navigation Systems (INS)
that can utilize and process measurements to constantly calculate the state of the
vehicle. The IMU-equipped INS sets the foundation for the navigation and control
of all commercial or military vehicles, such as aircrafts, ships, missiles, satellites etc.
In land vehicles, IMUs can be found inside navigation systems and enable them to
gather as much accurate data as possible about the vehicle’s speed, acceleration,
heading, steering rate and much more. Besides navigation, they are used for many
orientation purposes in various consumer products, such as smartphones, laptops,
fitness trackers and other wearables.

11

(a) IMU basic accelerometer model (b) IMU basic gyroscope model

Figure 2.4: IMU’s sensor models [7]

An IMU’s primary sensor is the accelerometer, responsible for measuring the change
of velocity over time, or acceleration. They can be found in wide variety of types,
including mechanical, capacitive, quartz or MEMS accelerometers with capacitive
being the most common. Its basic principle, as seen in Figure 2.4a, is essentially a
mass connected to two springs that react to acceleration along its sensitivity axis
and shifts to either side.

Gyroscopes are the sensors responsible for angular rate measurements. There are
numerous types of gyroscope architectures, with various levels of performance ac-
cording to their application and include mechanical gyroscopes, fiber-optic gyro-
scopes (FOGs), ring laser gyroscopes (RLGs), and quartz/MEMS gyroscopes. In
Figure 2.4b, we can see a simply gyroscope model, called Tuning Fork configuration,
that consists of two objects of known mass connected by a spring, and can measure
angular rate on along a specific axis.

2.1.3 Camera

One of the primary sensors of every autonomous vehicle is the camera. As one
of the main sensors used in AVs, they are very good at high resolution tasks, like
classification, scene understanding or tasks that require color perception, like traffic
light or sign recognition. Nowadays, vehicles rely on multiple cameras placed on
every side to stitch together a 360◦degree view of their environment that provide
visuals of the surroundings and help detect the speed and distance of nearby objects,
as well as their three-dimensional shape. In order to acquire the best view possible,
they require an unobstructed line of sight, and thus they can only be placed behind
a translucent surface such as glass, that also protect them from different types of
weather conditions, such as humidity, rain or temperature.

Camera sensors work on the principle of the light entering an enclosed box through
a converging or convex lens and an image is recorded on a light-sensitive medium.
This medium, also called the image plane, is where the light is stored forming an
image. CCD and CMOS [8] are the most common type of camera sensors, but
depending on the manufacturer the camera and sensor layout may differ. After

12

photons pass through the lens, the light sensitive surface converts those rays into
electrons, those electrons are then converted to voltage, amplified, passed through
an Analog-Digital Converter (ADC) and converted to a number in a metric unit or
pixels (Figure 2.5). A camera is a passive type of sensor designed to detect and
measure reflected natural emissions produced by constituents of the Earth’s surface
and its atmosphere.

Figure 2.5: Simplified configuration of a Camera’s sensor [9]

Depending on the lens type, some have a wide field of view, as much as 120◦degrees,
and a shorter range, while others focus on a narrower view to provide long-range
visuals to a specific direction. Although they are relatively cheap compared to other
sensors, like Radar or LiDAR, and provide accurate visuals, cameras have their limi-
tations. Their working principle is similar to the human eye, that acquires light rays
bouncing around and uses glass to redirect them to a single point, creating a sharp
image. Thus, in cases where it is hard for humans to observe their environment,
cameras also struggle. For instance, in Figure 2.6 we can see the influenced cam-
era feed in low visibility conditions, like fog and nighttime, that render the object
detection harder for camera-based sensors.

A vision sensor requires an unobstructed line of sight, which means it has to be
placed in open air or behind a translucent surface (i.e. the wind shield). A vision
system relies on image processing algorithms to detect and classify objects. Image
processing is a demanding process, but the information that can be extracted from
images is very useful and can be used for many tasks, like mapping and navigation.
Camera sensors are able to capture colors, vividness, minutiae of scenes with very
high resolution compared to other sensors, such as lasers, radars or ultrasound. But
their biggest drawback is their lack of depth perception. Humans and animals have
two eyes, that transmit information to the brain. These data are almost identical,
but using the slight displacements observed, the brain can translate them to depth
information. This logic can also be adapted in camera systems, in situations that

13

(a) Camera view during fog (b) Camera view during night

Figure 2.6: Examples of camera limitations

depth perception is essential. In Figure 2.7 we have an example of a stereoscopic
camera system connected on a Raspberry Pi system that handles all the necessary
calculations.

Figure 2.7: Stereoscopic camera system with Raspberry Pi [10]

The use of two or more camera sensors a set distance apart and data triangulation
of similar pixels from both 2D frames, provide three dimensional measurements
throughout the full field of view. Three dimensional imaging can be achieved through
many different ways, with the main categories being passive and active [11]. Passive
stereo imaging is dependent on the environment lighting and does not apply external
light. It is a cost-effective solution with high efficiency in well-lit areas, but suffers
in low visibility and non-textured scenes. Active stereo imaging overcomes these
challenges by employing light using a laser or a projector. In well lit areas or in long
ranges, it works similarly to passive imaging, but offers high efficiency in low-light
or non-textured scenes.

2.1.4 GNSS

One of the global navigation satellite systems (GNSS) is the Global Positioning
System (GPS), a satellite navigation or satnav system owned by the United States
government. Global Navigation Satellite System (GLONASS) is also a Russian

14

space-based satnav system. Other systems include European Union’s Galileo and the
Chinese navigation system BeiDou. These systems use satellites to provide accurate
geo-spatial positioning, by allowing GPS receivers to determine longitude, latitude
and elevation data with a few centimeters precision. The original motivation for
navigation using satellites was many military applications that allow precise delivery
of weapons. Nowadays, such systems are used to determine the user’s location or
track an object at any given moment and provide numerous sectors, such as science,
aviation or agriculture, with the means to explore, map and analyse regions across
the entire globe.

Figure 2.8: Geo-spacial Positioning using Trilateration [12]

GPS satellites circle the earth every twelve hours in a precise orbit. The Unites
States currently have 31 active satellites in orbit, making it impossible for someone
with a GPS receiver to get lost, no matter where they are. Every satellite is equipped
with a very stable atomic clock synchronized with one another and with ground
clocks and acts as a transmitter that constantly transmits a unique signal that
contains its orbital parameters and a message that includes the time of transmission
(TOT). A GPS receiver device, such as a smartphone, collects the signal and using
the included TOT data, calculates the distance from each satellite. As demonstrated
in Figure 2.8, using three distances, trilateration can pinpoint a precise location at
the point where all circles intersect. With a minimum of 3 satellites, the GPS
receiver can get a two-dimensional (horizontal) fix by making the assumption that
the current altitude is at mean sea level. For three-dimensional fix, a minimum of 4
satellites are required, though typically many more than that are used in order to
increase accuracy.

Autonomous vehicles use Radars, LiDARs and Cameras to read and understand the
environment around them and sense movements with Inertial Measurement Units.
Using these sensors they can navigate through towns and highways with safety,
while following the traffic laws. However, in order to geolocate themselves around the
entire globe and perform long range path-planning, they need a high precision Global
Navigation Satellite System (GNSS). This technology provides the high accuracy
and reliability an autonomous vehicle needs. GNSS system data is usually fused
with data from other sensors, such as IMUs [13], using a processing unit, in order to

15

further increase the data accuracy. They can also be used in the development and
assessment of new maps, as well as smart path finding, in order to get around traffic
jams, accidents or environment obstacles from data gathered by other AVs.

2.1.5 Radar

Radio detection and ranging (Radar) is a detection system that actively transmits
and receives electromagnetic waves in the microwave range (1 to 1000 GHz). A radar
system usually consists of an antenna used both for transmitting and receiving and
a processor used to analyse the collected signal and determine the properties of the
object. Radar sensors collect the waves reflected by an object that return to the
receiver, and can detect, track and position an object along with its speed.

Radar was first developed for military application before the second World War,
and initially was used to aim searchlights and later to aim anti-aircraft guns. The
end of the war precipitated researchers to improve resolution and portability. In
modern aircrafts, as well as in air traffic control, pulse-doppler radars are used in
order to detect detect aircrafts, ships, weather formations, and terrain. Automo-
tive radars are of smaller size and needed for collision avoidance, pedestrian and
cyclist detection systems. The technology generally used for these applications is
frequency-modulated continuous-wave (FMCW), which is quite different from the
pulse-Doppler radar. In the following figure (Figure 2.9), a simplified Radar archi-
tecture is presented that illustrates the main components of a Radar sensor.

Figure 2.9: Simplified Radar architecture [14]

Many high-tech radar systems are associated with digital signal processing, machine
learning and are able to perceive useful information from very high noise levels. In
the automotive industry, radar systems are the primary sensors used in driving as-
sistance systems, such as adaptive cruise control, collision avoidance or pedestrian
detection. As one of the main sensors used in modern vehicles, it plays an impor-
tant role in long distance detection. With a typical range of 300 to 500 meters, it
can reliably measure an object’s distance and relative speed. Due to radio wave
properties, it remains effective through rain, fog, smoke and of course nighttime.
Finally, Radar is one of the few sensors that provide the flexibility to function even
when placed behind opaque surfaces, that systems like cameras, LiDAR or ultrasonic
sensors disallow.

16

Automotive Radar sensors are categorized based on their detection range into Short
and Long Range radars [15]. Short-Range radars are commonly used in obstacle
avoidance or blind-spot detection systems with a maximum detection range of 30
meters. They use the 24GHz frequency band, can be placed around the vehicle
to increase the detection region and are typically inexpensive compared to their
counterparts. Long-Range Radar systems use the higher frequency band of 77GHz
and provide higher resolution with greater range. Typical ranges can reach 200
meters, and can calculate distance to other vehicles as well as their speed. Addi-
tionally, they can offer long range obstacle detection in cases where an obstruction
is indistinguishable by a Camera sensor or the human eye.

2.1.6 LiDAR

Light Detection and Ranging (LiDAR) is a remote sensing technology for measuring
ranges by using the pulse of a laser. Also known as 3D scanning or laser scanning, it
can be used to create digital 3-D representations and map of various environments
and ocean surfaces. The concept of LiDAR was conceived in 1930 and involved the
use of powerful searchlights to probe the atmosphere. Since then, LiDAR’s major
purpose was atmospheric research and meteorology. A LiDAR system mounted
on an aircraft or satellite, can carry out different surveying and mapping tasks.
Recently, NASA described LiDAR as the key technology for enabling developing
autonomous systems to maneuver and perform precision landing with future robotic
and crewed lunar-landing vehicles. A complete LiDAR system used in mapping
includes the laser scanning system and is integrated with an Inertial Measurement
Unit (IMU) and a GPS receiver. Apart from mapping and environment applications,
today it can be used in Architecture, real estate and construction to survey buildings,
road and railway networks, scan and produce floor-plans and accurate 3D models
for constant monitoring of structures, for architects and structural engineers.

Autonomous vehicles use all kinds of sensors to “see” around them such as cameras,
ultrasound sensors, radars, etc, but are limited in terms of range, depth and coverage
area. LiDAR technology can provide a 360-degree view of the environment (Figure
2.10) with further depth and detail than other solutions, high efficiency at night
and low light conditions, and thanks to recent developments, the ability to detect
objects with a 250 to to 400 metres maximum range. Although considered a game-
changer equipment for driving assistance system developers, LiDAR comes with a
few downsides. The data captured are recreations of reality rather than photos,
which means a vehicle system can be vunerable to tampering or manipulation, and
thus have weaker security compared to images captured from a camera sensor. At
the moment, Artificial Intelligence and Machine Learning algorithms with LiDAR
data input that gradually learn over time are only at research stage. Finally, LiDAR
requires moving parts working in high precision that is easy to malfunction or brake,
thus its cost of acquisition and maintenance is high.

The main component of a LiDAR system is the laser transmitting and receiving
systems along with their common or individual optical lens. The laser sends out light
pulses of near-infrared wavelength of usually 905 or 1550 nanometers and measure
how long it takes for the receiver to detect the reflected pulse. The data processing
system combines the direction and calculated distance of each pulse to create a

17

Figure 2.10: LiDAR captured point-cloud view [16]

point-cloud representation. The LiDAR laser system emits pulses with a speed of
thousands to millions pulses per second, in a circle covering a 360 degree area, while
also moving up and down. This way, it generates a real-time 3D representation of
the environment to be used by the vehicle’s computer for safe navigation.

Different LiDAR sensors exist for various applications, with different vertical and
horizontal field of view, depending on the area we need to cover. The number
of channels can also vary, with more channels producing a denser point-cloud and
providing a more detailed view, but increasing the cost. Other features include
higher Points Per Second and safety certification for systems that operate amongst
humans. In Figure 2.11, the simplified LiDAR architecture is presented, with the
basic components, as well as the data processing systems required.

Figure 2.11: Simplified LiDAR sensor diagram [17]

Evidently, the LiDAR technology is very similar to radar’s, but it is essential to
identify their differences. While their purpose is the same, LiDAR uses light waves
and RADAR systems use radio waves. The main advantage of radio waves is their
capacity to easily reflect on surfaces and are not as easily absorbed, and ergo can
work on long distances unaffected by fog or clouds. On the other hand, LiDar sensors
use shorter wavelength of light waves, they are very effective in shorter distances and
offer very high accuracy. But the light beam can be easily absorbed and reflected
by small particles, thus LiDARs cannot see through fog, dust, rain or snow. Figure

18

2.12 illustrates the differences between a LiDAR and a high resolution Radar in
clear-day conditions.

Figure 2.12: LiDAR and Radar accuracy [18]

2.1.7 Ultrasound

Sound Navigation and Ranging (Sonar) technology is usually adopted for underwa-
ter applications, such as navigation, distance measuring, object detection or even
communication with other vessels. It is similar to Radar and LiDAR techniques, but
is based on sound propagation instead of emitting electromagnetic waves. Although
a great number of animals use sound for communication and detection, it was first
used by humans in 1490 in an experiment designed and recorded by Leonardo da
Vinci. The first listening device based on Sonar was invented in 1906 and was used
to detect icebergs. A few years later, the design was revised and a Sonar based sys-
tem to detect submarines was invented. The wave frequencies used in these systems
vary from low (infrasonic) to very high (ultrasonic). Ultrasonic sensors work by
transmitting a sound pulse at a specific frequency, which propagates through the air
and will eventually bounce of an object back to the sensor. Figure 2.13 demonstrates
modern ultrasonic sensors used in automotive industry.

Nowadays, vehicles are equipped with ultrasonic sensors primarily used to cover
driver’s blind spots as well as for parking assistance. With the rise of research and
development of autonomous vehicles, ultrasonic sensors are used alongside other
sensors to create a full picture of the vehicle’s surroundings. Due to the way sound
waves travel, even with directional transmitters, all we can do is limit the spread but
not eliminate it completely, and thus their resolution is limited. They are mainly
used for close proximity object detection and usually placed around the vehicle to
provide 360 degree coverage. Tesla uses twelve ultrasonic sensors in their vehicles
that allow detection of objects up to five meters. Data from these sensors, fused
with information gathered from other available sensors, such as Cameras and Radar,
as illustrated in Figure 2.14, is fed to autopilot and driver assistance systems.

19

Figure 2.13: Automotive Ultrasonic Sensors
Source: BOSCH

Figure 2.14: Tesla configuration: Radar(Green), Camera(Blue), Ultrasonic sen-
sors(Yellow) [19]

A significant drawback with this technology is that sound does not propagate in
the air as good as in water, especially when a vehicle travels at high-speed gener-
ating vortexes. This, combined with noise pollution found in urban areas, reduces
the system’s accuracy and range. On the contrary, sonars are a low-cost option
that almost all modern vehicles use and are not effected by color or transparency
of nearby objects, or by environmental conditions, such as dust, moisture or low
visibility.

2.2 Communication Protocols

In the earlier days, the car radio was the only electronic equipment present in most
vehicles. As technology advanced and safety requirements roll out, vehicles call for
multiple and complex electronic modules often designed and manufactured by dif-
ferent companies. Modules, like Engine Control Unit, Transmission Control Unit,
Anti-Lock Braking System and much more, are constantly monitoring the vehicle’s
state and communicate with each other. The Automotive Industry, needed a way
to avoid connecting each sensor to every other module, with a low cost and reliable

20

solution. Thus, a local network was developed, with high and low speed bus pro-
tocols, such as CAN bus, LIN bus and FlexRay. This allows multiple modules to
be plugged in the network, using the standardized connections without additional
planning and development.

2.2.1 CAN

Controller Area Network (CAN) [20] is a powerful bus standard, mainly used in au-
tomotive applications, designed to allow micro-controllers and devices of any kind
to interact with each other, without the need of a host computer. Over the years,
with the exponential increase of sensor and control units in a vehicle, the need to
keep wiring cost low lead to the invention of this message-based protocol, designed
for multiplex electrical wiring. Every device is connected to a mutual bus, data is
transmitted sequentially in a way that, when multiple devices transmit at the same
time, the one with the highest priority will continue and the rest will back off. Ad-
ditionally, this standard can aid the fault diagnosis throughout the vehicle through
an On-board diagnostics (OBD) port. A typical CAN configuration connecting all
the important nodes in a car, is illustrated in Figure 2.15.

Figure 2.15: Simplified CAN configuration in a modern vehicle [21]

With as many as 70 electronic control units for numerous devices, forming indepen-
dent subsystems, most of the time communication between them is essential. The
biggest processor usually is the engine control unit, while others, used for autonomy
driving, airbags, anti-lock braking, cruise control, transmission etc, are also present.
A subsystem may require information from a sensor typically used by another sys-
tem, or take over a control unit, and thus, the CAN standard can fill this need.
The interconnection between all subsystems of a vehicle contributes to safety and
economy, as well as the advantage of upgrading/updating features using software
alone.

CAN is a serial bus standard in which multiple master nodes can be present. These
nodes are usually electronic control units, requiring at least two for a CAN network

21

to operate. A node type may vary from a simple digital logic chip up to a pow-
erful embedded computer and can also provide a gateway allowing a computer to
communicate with the CAN network through a USB port. The bus consists of a
two-wire (CAN high and CAN low) twisted pair with characteristic impedance of
120 Ohms. When the bus is in idle mode, both lines convey 2.5 Volts. During data
transmission, CAN high line rises to 3.75V and CAN low line dips to 1.25V to create
a 2.5V voltage difference between the two lines. Communication, with a maximum
rate of 1 Mbit/s, is established by measuring voltage differential, so electrical fields
and noise do not affect CAN bus’ reliability and performance.

2.2.2 LIN

Local Interconnect Network (LIN) [22] is an automotive specific serial network pro-
tocol used in communication between various components. This protocol supports
data transmission of 19.2 Kbit/s, a maximum bus length of 40 meters and operates
using a single wire technology. As new technologies were equipped in vehicles, the
cost to implement CAN bus on every component was too high. Thus, automakers
needed a cheap alternative and founded LIN Consortium in the late 1990s, with the
first LIN version released in mid-2002.

Figure 2.16: Simplified LIN configuration for component control in car door [23]

LIN is a network consisting of 16 nodes one of which acts as the master node and
typically up to 15 slave nodes. Only the master can initiate messages, hence a colli-
sion detection system is not required. It is adopted by combining multiple LIN-based
sensors and components to create small subsystems, that ultimately communicate
with other subsystems using another network, such as CAN (Figure 2.16).

It is widely used in applications where low cost is essential and bandwidth is not
important, such as climate or illumination control, door, seat and roof component
control and much more. It reduces the number of required harnesses throughout
the vehicle and offers reliable, easy to use and most importantly cheap alternative
to other communication busses.

22

2.2.3 FlexRay

FlexRay is another network communications protocol for automotive applications,
developed by the FlexRay Consortium. It is a communications bus designed to de-
liver top performance with data rates of up to 10 Mbit/s in a rugged environment,
while it can continue to operate properly in the presence of a fault in one or more of
its components. FlexRay supports single and dual channel configurations consisting
of one or two unshielded twisted pair cables respectively to connect nodes with each
other. It is used to reliably connect multiple electronic control units (ECU) in a ve-
hicle, mainly in highly demanding applications, such as anti-lock braking, electronic
power steering, advanced driver assistance systems and more. In Figure 2.17, we
can see a car configuration example utilizing CAN, LIN and FlexRay communication
protocols.

Figure 2.17: Car configuration utilizing CAN, LIN and FlexRay [24]

23

2.3 Nvidia Drive Platform

The DRIVE family of Nvidia products [25] is an open autonomous vehicle develop-
ment platform available to software developers. It includes various DRIVE software
and libraries that allow developers to join their innovations with a DRIVE system.
Aimed at providing the means to power deep learning and artificial intelligence
applications, some of its use cases include active safety, automated driving and
parking, AI cockpit capabilities that can enhance autonomy characteristics of an
AV to at least Level 2, all the way to Level 5. Drive platforms are designed to pro-
vide high processing power to utilize all possible sensors a vehicle could use. They
offer network connectivity features and can acquire and process data from GPS,
Radar, LiDAR, Cameras, ultrasound sensors. Additionally, with powerful dedicated
GPUs, many autonomy features can be developed and efficiently executed. Finally,
they provide means to connect a variety of sensors, controllers or displays together
through communication protocols such as CAN, LIN and FlexRay busses.

2.3.1 Hardware for Self-Driving Cars

Nvidia’s first autonomous systems, Drive CX and Drive PX, were announced at
CES 2015. Drive CX is powered by a single Tegra X1 System on a Chip (SoC),
while Drive PX is equipped with two chips in order to increase performance. Tegra
X1 is a chip developed by Nvidia that features four 64-bit ARM cores, a Maxwell
based 256 core GPU, various video encoding/decoding capabilities and a maximum
power consumption of 15 Watts. They were Nvidia’s first platforms destined for
semi-autonomous vehicles.

A year later, a new version of the platform, the Drive PX2 was announced at
CES 2016. It came in two possible configurations, the Drive PX2 AutoCruise and
Drive PX2 AutoChauffeur, with one or two Tegra X2 SoCs respectively and discrete
Graphics Processing Units (GPU) based on the Pascal micro-architecture. Since its
release, all Tesla Motors vehicles manufactured from October 2016 were equipped
with a Drive PX2 AutoCruise [26] system with a modified chip, with liquid cool-
ing capabilities. The platform’s processing power was used in Tesla’s autopilot and
self-driving functionalities.

(a) Tesla Modified Drive PX2 [26] (b) Nvidia Drive PX Pegasus

Figure 2.18: Drive PX2 and AGX Platforms

24

Xavier AI Car Supercomputer was the new Drive system powered by Volta micro-
architecture that was announced at CES 2017 and was re-branded as Drive PX
Xavier at CES 2018. The performance boost compared to its predecessor, the Drive
PX2 AutoChauffeur, was approximately 50% greater, with a theoretical limit of 30
INT8 TOPS and a power consumption of only 30 Watts. Nvidia’s Drive PX Pegasus
system (Figure 2.18b), was announced at GTC Europe in October 2017, and was
developed to power fully-autonomous robo-taxis. Based on two Xavier CPU/GPU
devices and two Turing generation GPUs able to deliver over 320 trillion operations
per second, with ten times higher computing capabilities than the Drive PX2, it
would be able to supervise and operate Level 5 autonomous vehicles.

The DRIVE Orin SoC, a result of four years of R&D investment, is Nvidia’s next
generation chip for automotive applications announced in late 2019. Due to current
demand for lower-end systems targeted at level 2+ vehicles Nvidia recognized that
fully autonomous level 5 robo-taxis are years away from achieving significant volume.
This will enable scalable deployment of software for self-driving vehicles as well as
the advantage of smooth transition to newest platforms of the DRIVE family. The
Orin family of SOCs production will start from late-2022 or early 2023 and will be
utilizing the new Ampere GPU micro-architecture.

2.3.2 Software for Self-Driving Cars

In order to efficiently harvest a powerful hardware’s true potential, an equally pow-
erful and sophisticated Operating System is needed. As a consequence, the need
for a reliable in-vehicle Operating System, that provide developers with the neces-
sary tools, support for real-time data processing and multiple sensor data fusion is
raised. Nvidia offers a complete software suite with all the building blocks required
for autonomous application development, assisting developers to efficiently design
and deploy perception, planning, mapping algorithms. These tools are explained in
the following paragraphs and are illustrated in Figure 2.19.

DRIVE OS Nvidia DRIVE OS [27] is an operating system designed for Nvidia
DRIVE systems with support for GPU accelerated computing. It includes NvMedia
API for hardware accelerated sensor data processing, CUDA and cuDNN libraries
for efficient parallel computing implementations, Nvidia TensorRT for real-time deep
learning applications with a hardware-dependant optimizer for low latency inference,
graphics APIs (OpenGL, OpenGL ES, EGL), and many other developer tools and
modules to access hardware engines. This operating system was specifically devel-
oped for creating and deploying Autonomous Vehicle applications for DRIVE-based
systems. With features like secure boot, firewall and over-the-air (OTA) updates,
it becomes a secure execution environment ideal for safety-critical applications. Its
Software Development Kit (SDK) equips developers with all necessary libraries, soft-
ware and tools to design, build, debug and ultimately deploy parallel computing and
deep learning applications for self-driving, autonomous vehicles.

DriveWorks Nvidia’s DriveWorks [28] is the Software Development Kit acting
as the groundwork for autonomous vehicle software development providing all pro-
cessing modules, frameworks or tools required. Its Sensor Abstraction Layer (SAL)
aids the introduction of various sensor configurations, including radars, LiDARs,

25

Figure 2.19: Nvidia DRIVE Software Stack
Source: Nvidia DRIVE OS Documentation [27]

cameras, GPS and IMU devices, and the tools for data processing acceleration. De-
velopers can integrate automotive sensors withing their software, accelerate data
processing or neural network inference for AV perception, efficiently track and pre-
dict a vehicle position and orientation.

DRIVE AV DRIVE AV [29] is a software stack that offers perception, mapping
and planing capabilities, as well as diverse DNNs trained on real world data. The
DRIVE Perception layer can detect, track and estimate distances from objects,
using data gathered from various sensors. DRIVE Mapping localizes the vehicle
to a continuously updated high-precision map. DRIVE Planning is responsible of
controlling the vehicle’s motion and planning its path and behavior through the
environment.

DRIVE IX DRIVE IX [30] is an open software platform that delivers interior
sensing and driver monitoring for innovative cockpit solutions with advanced artifi-
cial intelligence features. The AI CoPilot module uses driver-facing camera, infrared
LEDs and deep learning algorithms to ensure the driver is alert at all times or even
take action, if the driver is distracted or drowsy.

With advanced face tracking technology, monitors and analyzes blink frequency to
estimate fatigue or drowsiness levels. The Visualization module receives data from

26

multiple sensors through DRIVE AV and provides real-time information on the
instrument cluster for the driver and represents what the sensors or driver monitor-
ing systems are viewing using visual information. This representation is achieved
through Confidence View, a virtualized view for the instrument cluster. Finally, a
powerful interface for human-machine interaction is the AI Assistant that utilizes
voice recognition through natural language understanding models, face identification
and emotions detection.

27

Chapter 3

Related Work

3.0.1 Nvidia Drive Hyperion

One of the Autonomous Vehicle platform currently leveraging Nvidia Drive tech-
nology is the Drive Hyperion. Consisting of a completely optimized and tuned sen-
sor suite, along with high performance computed platform powered by AGX Orin,
AGX Pegasus and Hyperion 8.1 Developer kits, fused together into a single Drive
Orin system-on-a-chip (SoC), it functions as the reference architecture aiming to aid
the development of Level 2+ and Level 3 autonomous vehicle systems.

Figure 3.1: Nvidia DRIVE Hyperion [31]

The Orin SoC is the main processor paired with an Ampere architecture integrated
GPU, capable of delivering up to 254 TOPS of processing power, also combined
with other high performance components, such as Programmable Vision Accelera-
tors (PVA), Image Signal Processor (ISP), video encoder and decoder. The DRIVE
Hyperion 8.1 Development Kit solution includes three AGX Orin Kits with interfaces
to connect multiple sensors, such as cameras, LiDAR and Radar modules. It is also
paired with two DRIVE Recorder modules and two Smart Network Attached Stor-
age (NAS). The recorder modules offer very high speed connectivity with multiple

28

interfaces, such as Mellanox ConnectX6-DX adapters, 100 Gbit Ethernet network-
ing and vehicle IO harness for CAN, FlexRay, GPIO protocols. Additionally, up to
4 M.2 NVMe SSDs can be connected to each NAS module, offering 2GB/s lossless
data recording.

Nvidia’s Level 2+/Level 3 sensor set include 12 exterior cameras, six short-range
and three long-range radars, one LiDAR sensor and 12 ultrasonic modules. For
vehicle dymanics and location detection, two IMUs and one GPS module, as well
as three interior cameras, are included for driver and passenger monitoring systems.
Finally, Nvidia DRIVE Sim is an end-to-end simulation platform that offers accurate
ray tracing virtual sensor and vehicle simulation, a tool designed to test and profile
autonomous systems using synthetic data before real world deployment.

3.0.2 Yamaha Motobot

Yamaha’s completely autonomous racing motorcycle project is the Motobot. It is
a humanoid robot, that from a distance is indistinguishable from a human rider,
designed to ride a vehicle unmodified for autonomous use around a racetrack. All
processing systems and sensors are integrated inside the robot’s body with simple
connections to the motorcycle in order to acquire data about vehicle’s speed, engine
RPM, attitude etc. The Motobot is placed on the Yamaha YZF-R1M super-bike
capable of more than 200 km/h of top speed. This super-bike is usually seen in
motorcycle racing, as well as the top choice for bike enthusiasts. To perfect the
bike’s design and ensure the rider’s safety, motorcycles need to be thoroughly tested,
but during extreme conditions, using a human driver can be dangerous and risky.
This autonomous system was initially developed as a smart ’crash test dummy’ in
order for Yamaha to test its high-performance super-bikes.

Figure 3.2: Yamaha Motobot YZF-R1M [32]

Motobot receives data from the motorcycle and controls six actuators operating
steering throttle, front and rear brake, clutch and gearshift pedal, and fully operates
the vehicle autonomously. It uses GPS and IMU sensors in order to navigate, but
does not require Cameras, LiDARs or Radars, since it is designed to run on an empty
racetrack and not for public roads with other vehicles and traffic. The first challenge
their engineers encountered was the balance controller and to teach the Motobot
how to balance the motorcycle at lean angles of more than 50 degrees at various
speeds reaching 200 km/h. It should be capable of rapidly and reliably make precise

29

bank angle changes and identify the motorcycle limits without crashing. Another
challenge was the process of analyzing vehicle and sensor data, and using a path-
following algorithm to take advantage of the circuit’s characteristics, including high
speed-straights, a variety of turn types, and when to accelerate or decelerate.

The Motobot was put to the test against Valentino Rossi, a former professional mo-
torcycle road racer and nine-time Grand Prix motorcycle racing World Champion.
Rossi managed to lap 32 seconds faster than his autonomous rival in a 3.2 km cir-
cuit with a 1:25.740 lap, compared to a 1:57.501 lap of the Motobot. Although the
difference might seem colossal, a 1:57 lap is considered an average trackday pace,
with the exceptional 1:25 achieved by one of the most successful racers that only a
handful of people are able to compete with. With future time and money invest-
ing, Yamaha could ultimately create a system that could post decent lap times and
compete with a few of the best drivers.

3.0.3 BMW R 1200 GS

At CES 2019, BMW demonstrated its self-driving motorcycle, able to balance itself,
start or stop to a standstill and turning without requiring a driver. It was developed
under a secret, five year project carried out by BMW Motorrad. Considering the
evolution of autonomous cars, and internet of things (IoT), they are aiming to involve
motorcycles in the conversation of the Autonomous Future. This motorcycle is a
stock-looking R 1200 GS model, with three hard pack cases equipped on the back of
the bike, that contain all the necessary electronics for autonomous applications and
radio communications. A rear-mounted antenna receives commands from a human
operated controller about when to start or stop, and instructions about wide or tight
turns. Its system, translates these commands and using its road-reading and path
finding capabilities, actively controls the throttle, brake and steering inputs, just
like a human driver would. The motorcycle, actively balances itself while moving
using steering, but does not use a gyroscopic system to keep the bike upright while
stationary.

Figure 3.3: BMW R1200GS self-driving motorcycle

At the moment, BMW does not have a consumer plan for this project, as it is
not designed to replace the classic motorcycle’s in our roads. The current focus is

30

designing a platform for testing and evaluating new innovations. Technology that
can help accelerate the training of new drivers on how to approach various types of
corners, or support riders that do not pay attention to their surroundings.

3.0.4 Waymo Urban Driver

Waymo Urban Driver is am autonomous vehicle solution available in Phoenix, Ari-
zona and now expanding to San Francisco. Numerous of these driverless vehicles
can be found around the city twenty-four hours a day, seven days a week, avail-
able to anyone that can simply book a ride using an app on their phone. It is
acknowledged as the world’s most experienced driver by Alphabet AI, with over 32
billion kilometers of distance traveled and a mission of making driverless and au-
tonomous traveling saver and more reliable in the future. The fleet currently consists
of thousands of these vehicles equipped with multiple LiDAR and camera sensors
and Radars in order to sense a 360 degree view around the vehicle in any weather
condition, day or night.

Figure 3.4: Waymo autonomous Vehicle sensor configuration [33]

After years of research on AI and machine learning, Waymo created a strong training
and evaluation infrastructure aimed towards their ML-basted driving system. Every
aspect of the software, including perception, semantic understanding, path planning
and behavior prediction both adapt to the city’s characteristics and complexities
while driving, while also contributing to the research community with the Waymo
Open Dataset [34]. The aim is to develop fully-autonomous vehicles that do not rely
on human interaction, with the engineering team focusing on the hardest parts of
this challenge. Meaning, that in order to achieve true autonomy, the system must
be able to handle extremely rare events, while putting the safety of its passengers,
as well its surroundings, at the highest priority.

31

Chapter 4

Platform Description

4.1 Electric Motorcycle

The proposed system is intended for a prototype three-wheeled electric motorcycle
designed and under development at Technical University of Crete. It features a
lightweight aluminum chassis, which offers high strength to weight ratio, while still
being reasonably affordable and corrosion resistant. The total weight without a
driver is 240 kilograms and its dimensions measure 2.1 × 0.8 × 1.2m (LxWxH).
The motorcycle is powered by a 100 KW (134.1 HP) brushless electric motor with
a maximum torque of 230 Nm and 5200 maximum RPM.

Figure 4.1: Bike concept

The proposed final version of this autonomous motorcycle features actuators for
throttle, break and steering control handled by the Drive PX2 system for advanced
driver assistance technologies. One forward facing and one rearward facing camera,
as well as Odometry, IMU, GPS and Radar sensors. Additionally, all the necessary
information will be displayed through the touch screen display to the user, and data
can be transmitted to the web through a CISCO 4G modem.

32

4.2 Platform and Sensors

4.2.1 Nvidia Drive PX2

The Nvidia Drive PX2 platform has two variants based on one or two Tegra X2 SoCs,
where each SoC contains 2 Denver cores, 4 ARM A57 cores and a dedicated GPU
from the Pascal generation. The configuration we have available is the AutoChauf-
feur, that features two Tegra X2 SoCs and two dedicated Pascal GPUs. It supports
up to 12 cameras, plus connectivity for perception modules such as LiDAR, Radar
or Ultrasonic sensors. Its general purpose IO includes separate Ethernet, USB and
HDMI output ports for each Tegra sub-system, connectivity that can be very usefull
in our proposal. Finally, designed for automotive use, interfaces such as CAN, LIN,
FlexRay are available through the vehicle harness connector and can be used to wire
sensors all around the motorcycle.

Figure 4.2: Drive PX2 Platform - top view

Figure 4.3: Drive PX2 Platform - side view

Nvidia’s mechanical installation guide for the Drive PX2 specifies all the dimensions
required to safely mount the device to a vehicle as well as the pinout of every
connector and harness. This way, we can develop our custom harness and design

33

how the system will be connected to every part of the motorcycle. The device
requires 12 Volts to operate, with a max power consumption of 300 Watts. As the
included power supply cannot be used on a vehicle, it is necessary to implement an
adapter that allows us to power the device from the vehicle’s battery pack.

4.2.2 SEKONIX SF3324-100 Cameras

This camera model is a GMSL standard (Gigabit Multimedia Serial Link), meaning
that the video signal is digitally transmitted without compression via a coaxial cable.
Thanks to this higher resolution, the image is sharper than with an analog system.
The cameras we have available are SEKONIX’s SF3324-100 that feature a 2 Mega-
pixel Red Clear Clear Blue (RCCB) sensor. It consists of a 14 bit parallel pixel
interface with a 27MHz input clock and effective pixel resolution of 1928×1208 and
a framerate of 30 FPS. This sensor needs a color balance and color correction matrix
in order to compensate for the lack of green filtered pixels and obtain an ordinary
RGB image. RCCB sensors are usually designed for automotive use and offer better
signal to noise ratios (SNR) and high contrast on both daytime and nighttime.

Figure 4.4: SEKONIX SF3324-100 GMSL Camera

The SF3324-100 model is equipped with the NA1262 lens that meets automotive
qualification and provide 120 degree horizontal and 75 vertical viewing angles. With
a very compact size of 26 × 26 × 30.7 mm (including the lens) it can be easily
mounted in tight spaces. Additionally, it provides protection against ingress of dust
and high temperature as well as high pressure water with an IP rating of IP69K. All
the products of this family are designed and natively supported by Nvidia DRIVE
systems.

Figure 4.5: SEKONIX SF3324-100 block diagram [35]

34

4.2.3 Grayhill 3D70 Display

The electric motorcycle’s will be equipped with the Grayhill series 3D70 display [36]
to be used as its main dashboard. Below, the hardware architecture including its
available features and ports will be described in detail, as well as the development
kit and the way it will be deployed on the motorcycle. The display will provide the
rider all necessary information about the motorcycle’s state, include a front and rear
camera feed, and basically serve as an advanced dashboard.

(a) 3D70 Display Front Side (b) 3D70 Display Back Side

Figure 4.6: Grayhill 3D70 Display

This 7.0-inch backlit WVGA LCD with a resolution of 800 × 480, 16 bit color
and a peak brightness of 1000 nits provides excellent readability during daylight.
Additionally, the LED backlighting can be software controlled and adjusted during
nighttime. It features a responsive projected capacitive (PCAP) touchscreen that
can recognize both bare and gloved fingers even if the screen display is wet. A
cover glass is bonded to the LCD display offering scratch resistance and anti-glare
properties, making it ideal for extreme environments. Provides easy GUI Design and
application creation and integration with VUI Builder, Qt and more. The display
module comes equipped with an ARM based embedded computer running Linux
operating system that can monitor and display many events simultaneously. The
system’s boot up time is three seconds and can be set up to automatically load the
intended program requiring no user input. It can function in both 12 and 24 Volts
making it compatible with every vehicle type. A numerous options of IO are present,
such as CAN-bus ports, camera input ports, digital and analog input, digital output,
USB, Ethernet and audio ports. This Grayhill display series is intended for many
agriculture and construction vehicle applications, such as virtual gauges, diagnostics,
fault indicators and many more, since it is fully programmable.

Development Kit

Grayhill offers the 3D70Dev-100 Kit which apart from the screen, includes a de-
velopment stand with a breakout board, two 18-pin cables to connect the display
to the board, USB to Can adapter, 12V power supply and more. This kit enables
us to experiment with the display and the features it provide, as well as design,
test and optimise a functional Graphical User Interface for our end product. The
breakout board design is illustrated in Figure 4.7, with additional information about
the display and its development kit available in the quick-start guide [37] by Gray-
Hill.

35

Figure 4.7: Grayhill 3D70 Development breakout board

This breakout board is designed with the necessary connections to make all ports
available to the developer. In the middle of the board, we can see two 18-pin
harness connectors that link to the display. On its sides, power, video, CAN, GPIO
connectors are available, in addition to various switches and LED indicators used
in some conditions. Although connection between the display and breakout board
is achieved through two 18-pin cables, the end user is free to design an application
specific harness for their needs using Grayhill’s wiring diagram included in the quick
start guide. This board will act as the foundation for software development and will
aid in the testing of the various inputs this display supports.

36

Chapter 5

Offline Programming

This work focuses on directions and tactics commercial vehicles follow, in order to
design and implement an autonomous-ready system for our electric motorcycle. The
recognition of traffic signs using a camera in order to assist the driver, as well as the
ability to safely follow a vehicle through urban areas with a fixed distance are two
of the goals of this project. Our platform of choice is the Drive PX2 system along
with two high-resolution cameras. Thus, our solutions are based on data input from
camera sensors and data processing on an ARM based portable system.

Figure 5.1: Flowchart of the proposed network

The aim of this section is to design a network that can offer autonomous capabilities
to our system using real-time visual information gathered by the vehicle cameras.
Figure 5.1, analyzes the data workflow of our proposed network. The object de-
tection and recognition procedure is explained in Section 5.1, that uses the visual
information from the camera sensor to produce a list of detected objects of various
types. Following that, in Section 5.3, we demonstrate the Adaptive Cruise Control
system that isolates the desired vehicle we wish to track, and constantly calculates
its distance based on its bounding box. The data and calculations yielded from the
Adaptive Cruise Control system will be later used as input to the control unit that
will handle the motorcycle. Section 5.2 explains the way we take advantage of the
detected traffic sign during the previous step, in order to analyze its type and figure
out its meaning, in order to provide the driver additional visual information through
the display. Finally, in Section 5.4, we use the CARLA simulator in order to test
and evaluate our ACC system on real world scenarios.

37

5.1 Object Detection and Recognition

For the development of an object detection system we started by adopting a Haar
Cascade Classifier with an existing model, pre-trained on car detection (as suggested
in [38]) using only the OpenCV libraries. The working principle of a Cascade Clas-
sifier Pipeline is illustrated in Figure 5.2; it uses edge or line detection algorithms
across the frame in order to detect the desired object (face detection in Figure 5.2).
The Frame images are divided to sub-windows of 24 × 24 resolution that get fed
into multiple cascade stages. The first few stages are trained to reject negative
sub-windows, and keep most candidates with face-like content. A stage is only ac-
tivated for a sub-window, only if the previous stages yields a positive result. The
total number of stages can vary from as low as 7 to more than 20. A sub-window
that passes all the stages of the cascade classifier, is labeled as a face detection.
Haar Cascade Classifiers are commonly used in object detection [39] [40], with high
speed being the result of their simplicity. The primary advantage of Haar cascades
is that they can be faster than many modern algorithms. Our classifier analyzes the
camera footage frame by frame and creates an array with the pixel coordinates of
all the detected vehicles and later draws rectangles around them as a visual aid for
the user.

Figure 5.2: Cascade Classifier Pipeline [41]

This method of vehicle detection is very fast and does not require GPU acceleration.
Such low-processing power requirements make it ideal for low-end or mobile systems,
surveillance or traffic cameras, its main disadvantage being their tendency towards
false-positive detections. Thus, the overall accuracy and consistency is reduced,
raising a significant problem. For the ACC to work effectively in our use case, we
must always be aware of where the vehicle being followed is located. This classifier
is highly sensitive to lighting and vehicle angle, and as a result it often lost track of
the vehicle we were trying to follow. Subsequently, the most significant factor of the
ML model we need to adopt for image clustering, object detection and classification
is its accuracy and not its speed. The training of a new ML model can be completed
on the premise that a large enough dataset suitable for our use case can be found.
Unfortunately, this process, especially on the automotive industry can cost a few
days or even weeks, in order to deliver a model with high accuracy. Having said
that, TensorFlow’s object detection API is an open source framework that aids the
construction, training and deployment of object detection models.

TensorFlow Model Garden [42] provides a wide selection of models pre-trained on

38

Figure 5.3: Tensorflow Model Garden Example [42]

the COCO dataset, Kitti dataset, and more. There are multiple models to chose
from, depending on the use case. In our case, we need a model that offers high
accuracy without taking a big hit on speed. The average frame processing time of
the available models varies from 26ms to 2 seconds with a mean Average Precision
(mAP) metric in the range (16, 43) ms. Our model of choice is the Region Proposal
Network “Faster R-CNN resnet50 coco”[43] trained on Microsoft’s Comon Objects
in Context[44] (COCO) dataset, a large-scale object detection, segmentation, key-
point detection, and captioning dataset. This deep learning based object detection
system with a decent performance of 5-17 frames per second (average frame time
of 89ms), provides high quality region proposal (mAP metric of 30) and enhances
the overall object detection accuracy. During testing with the recorded video, we
noticed substantial improvement, and a consistent detection of pedestrians, traffic
signs, and multiple vehicles throughout a crowded area. It is important to note
that, as this model is trained to classify a plethora of objects, we only chose to
make use only the ones that are of interest to our use case. Additionally, we can use
this model in order to detect traffic signs and their location on the frame, but not
interpet their meaning. This procedure will be explained in Section 5.2.

5.2 Traffic Sign Recognition

A practical feature for every autonomous vehicle is their ability to recognise traffic
signs, interpret their meaning and present them to the driver if necessary. A typical
traffic sign recognition system [45] [46] reprocesses an image frame in order to extract
regions of interest. Then, a feature descriptor algorithm, such as the histogram of
oriented gradients (HOG), is performed, a variety of machine learning algorithms,
such as SVM, KNN or Random Forest [47], followed by a context-aware filter in
order to localise and recognize the traffic sign meaning. This approach includes a
primitive model training based on [48], using TensorFlow and Keras libraries.

Advanced traffic sign recognition models [49], perform both object recognition, in
order to localize traffic signs in camera frames, and analysis, to detect the sign’s
meaning. In our proposed network, the detection process is undertaken by the
previous stage discussed in Section 5.1. Thus, we implemented a simplified yet
functional sequential Convolutional Neural Network model, whose input is not the

39

entire camera frame. Instead, we use the bounding box for every detected traffic
sign in the previous stage, to crop the part of the frame and use it as the input.
It consists of the convolution layer as its major building block that performs con-
volution operation on the input image down-sampled to a 32 × 32 resolution with
a bi-linear interpolation method, as illustrated in Figure 5.4. The resolution of the
bounding box of the detected traffic sign can vary, depending on distance and angle
from our camera sensor.

Figure 5.4: Convolutional Neural Network input resizing

This is succeeded by a Pooling Layer responsible for reducing dimensionality of the
image, but preserving important features. We can chose Max Pooling or Average
Pooling depending on our use case. For this instance, the selected layer was Max
Pooling, that selects the maximum value from a feature map in contrast to Average
Pooling that calculates the average for each patch of the feature map. The layer
that helps the decision process about the information that needs to be processed
further and those who do not is the Activation Function. Essentially, it defines
how the weighted sum of the input is transformed into an output and introduces
non linear properties to the network. Different types of activation functions include
Sigmoid, Tan H, ReLU, Binary Step function and more. The most popular, and
the one we adopted, is the ReLU function with a range of [0,+∞]. Finally, in the
output layer, the softmax function is used as the activation function that predicts a
multinomial probability distribution and essentially classifies the input image over 43
different classes. In Figure 5.5, the overall stucture of the sequential neural network
is presented. In Figure 5.6, a sample of the data used in the training process is
illustrated which was was split for train and test with a 80% train and 20% data
ratio.

Figure 5.5: Neural Network Structure

40

Figure 5.6: Convolutional Neural Network training data sample

For testing purposes, in order to evaluate the model’s training result, we gathered
multiple traffic signs photos using Google Maps and Google Street View of various
angles and resolutions, with environment typically present behind traffic signs, and
introduced them as input to our model. For outlier rejection, a confidence threshold
of 75% was set, and the recognition results are depicted in Figure 5.7.

(a) 20km/h Limit (b) No Overtaking Sign

(c) Stop Sign (d) Work Ahead Sign

Figure 5.7: Traffic Sign Recognition Test Results

This model was developed using Python 3.9 along with Machine Learning libraries,
such as TensorFlow, Keras, OpenCV, and although they are supported in the latest
releases of the DRIVE platform, Drive PX2 has no official support for python pro-
gram execution. In order to deploy our project to this platform, our saved model,
which is stored in Keras format, must be converted and serialized into a common
UFFMetaGraph format using Nvidia’s official converter. This process also optimises

41

the model for Nvidia’s TensorRT engine for higher efficiency and speed and can be
executed on the PX2 platform using the included C++ Application Programming
Interface.

5.3 Adaptive Cruise Control

One of the autonomy features we aim to develop, is the adaptive cruise control
(ACC), that is an enhancement of conventional cruise control. An ACC system
regularly calculates the distance to the vehicle in front and automatically adjusts
the speed in order to maintain a fixed distance. Regular cruise control systems
are useful on highways for maintaining constant speed. ACC systems provide more
flexibility, as they can also be deployed on urban areas with relatively slow speeds,
as they can adapt to the traffic environment.

Before we develop the ACC module for the Drive PX2 platform, a proof of concept
had to be designed to be executed and tested offline using pre-recorded camera
footage obtained using a GoPro mounted on a car. This was developed using the
Python programming language along with its Computer Vision (CV) and Machine
Learning (ML) libraries, such as OpenCV, TensorFlow, Keras and more.

In order to test the working of this proof of concept, we need data as realistic
as possible. In order to gather meaningful data, a GoPro camera was mounted
on top of a car and recorded a high resolution video. This type of camera was
chosen thanks to its very similar characteristics with the Drive PX2 cameras we
were planning to use, such as 120◦degree Field of View, high frame-rate and similar
resolution. The experiment took place at the Technical University of Crete, with a
car normally driving, braking and steering around the campus and the second car
with the GoPro mounted on it, following closely behind and recording the whole
process.

Our Adaptive Cruise Control software is designed and built upon the Object detec-
tion and recognition system described in the previous section. It starts by reading
a video file located in its path, the same recorded video described earlier. Then, the
model’s name is declared along with its URL address. Afterwards, the frozen Tensor-
Flow model’s parameters and metadata are loaded into memory, if it already exists
in our work-space, or gets downloaded based on the variables mentioned above. A
few additional elements must also be imported, such as model specific label maps
that match indices to category names, as well as other object detection libraries and
helpful visualization utilities. After that, the program sequentially prepares every
video frame and parses it through our model for the detection step. Its output is a
number of various detections along with their confidence level (score), their bound-
ing box coordinates and size, and lastly the class index that indicates what each
prediction corresponds to. It is worth mentioning that for each detection, a confi-
dence level threshold is applied, to ensure only high-score predictions are visualized
and handled by the ACC system. In our case, we selected a confidence threshold
with a value of 0.86 (86%) that is highly dependant on the object detection model
used. This number was heuristically chosen in order to reject as many false positive
detections as possible. By observing the detection confidence level of our vehicle of
interest during both normal and extreme lighting and angles, we ensured that our
threshold would only reject outliers and detection out of our interest. Two other

42

fundamental variables that the system needs are the distance and horizontal angle of
the vehicle we aim to follow. In our use case, the only perception sensor we have in
our disposal is a camera, ideally pointing straight towards our vehicle’s heading. In
order to accurately calculate the distance to the leading vehicle, a depth perception
sensor, such as a stereo camera setup, a Radar or LiDAR sensor, is necessary. In
single camera setups, the distance calculation can only be done using the bounding
box size and will be measured in pixels. Thus, the bounding box diagonal was cho-
sen, as it includes both the width and height of the detected object’s bounding box.
Thus, we estimate a detected vehicle’s distance by using the following equation:
size =

√
width2 + height2. Each vehicle’s angle is dependent on the horizontal

center of the camera frame (Equation 5.1), meaning that when an object is dead
ahead, the angle will be zero, on the right edge the angle will be +1, and on the left
edge it will be -1 as visualised in figure 5.8.

ACCangle =
boxx − framewidth/2

framewidth/2
(5.1)

Figure 5.8: Visualisation of how angle is calculated

where boxx is the horizontal coordinate of a vehicle’s bounding box, and framewidth

is the camera’s frame maximum horizontal size, measured in pixels. Eventually, the
moment we chose to initialize the Adaptive Cruise Control system, the algorithm
analyzes the camera feed and detect all possible vehicles. It then isolates the detected
objects inside a pre-defined threshold described in equation 5.2, and finally selects
and stores the calculated distance and angle of the vehicle that is closest to the
center of the video frame as the vehicle the system is now tracking.

− 2 ∗ anglethresh < ACCangle < 2 ∗ anglethresh (5.2)

where anglethresh in our case has a value of 0.08. For the ACC system to work
efficiently, it needs to maintain contact with the specific vehicle that has started

43

tracking. After it “locks” on the desired vehicle, it continuously analyzes the camera
frames in a stricter manner. The vehicle’s bounding box location in the previous
frame is now considered the frame center, and is distinguished at the current frame
using a similar procedure but with a smaller threshold (Equation 5.3). The one
vehicle with an angle delta (∆Anglen) that satisfies the inequality in Equation 5.3,
is the one we continue to track.

− anglethresh < ∆Anglen < anglethresh (5.3)

∆Anglen = Anglen−1 − Anglen (5.4)

where n is the frame number. The angle delta between frames is expected to be
reasonably small and for that reason, each boundary’s multiplication by a factor
of 2, featured in Equation 5.2 is not present in Equation 5.3. In the event that
more than one vehicles are detected in the window, our algorithm will calculate
their bounding box angle and continue to track the one with the smallest angle
deviation. This ensures that our motorcycle will follow a vehicle smoothly and
abrupt maneuvers caused by suddenly tracking another vehicle, will be avoided.
During the process of tracking the specific vehicle of interest, its bounding box color
is altered to white (as seen in Figure 5.9), as a visual indicator of our system’s
behaviour. In rare occasions that our object recognition model fails to detect the
vehicle we are following, the last known position and distance is stored, and after
a reasonable number of frames, the algorithm can still resume tracking if the car’s
angle has not changed drastically.

Figure 5.9: Sequence of frames during testing of Vehicle Tracking in a crowded area

44

In order to validate the systems performance, the GoPro footage was used that
contained slow and high speed turns, areas with multiple vehicles present, and both
low and high lighting conditions. In Figure 5.9, a sequence of frames are presented,
that show how our system keeps track of the desired vehicle (white bounding box),
while ignoring the other detected vehicles on the side of the road. Calculated vehicle
angle and distance data are also printed on the system console, to verify the correct
operation of the ACC system. During the frames in Figure 5.9, the bounding box
size was in the range [0.2, 0.29] that translates to [6, 10] meters. Our solution proved
to be able to successfully track the leading vehicle throughout the experiment.

5.4 Simulation

An advanced driver-assistance system must be thoroughly tested, before it is released
and fitted on an actual vehicle for safety reasons. To validate our approach we
decided to employ a state-of-the-art simulator used by many automotive companies.
This way, parameters that control the way it operates, can be fine tuned to guarantee
its stability and performance. Additionally, the electric motorcycle we plan to deploy
this system to, is not mechanically ready at the time of writing and under these
circumstances, the Adaptive Cruise Control system will be independently simulated,
tested and fine tuned. This way, high testing cost and high risks present in real life
testing will be substantially reduced and the system will later be adjusted and fitted
into the vehicle easier. The proposed network is illustrated in Figure 5.10 below and
will be discussed in the following sections.

Figure 5.10: Proposed network for CARLA simulation

5.4.1 CARLA Simulator

We decided to simulate our object detection algorithm and the adaptive cruise con-
trol system described in Section 5.3 in a safe and controllable environment. The
simulator of our choice is CARLA [50], an open source simulator that runs on Un-
real Engine 4 and is developed with the aim to support implementation, training
and testing of various autonomous driving systems. This simulator is widely used to
evaluate sensor fusion, such as LiDARs [51], Radars, Cameras, etc, for object detec-
tion and recognition applications, custom dataset generation [52] and neural network

45

training. It includes a variety of digital assets, such as urban layouts (Towns), build-
ings, allowing us to design and simulate any desired scenario with multiple vehicles
and high-quality graphics and physics. The time of simulation, including sun az-
imuth and altitude, as well as weather, cloud, fog or rain are highly customizable
by the developer in order to simulate any scenario.

Finally, the built-in vehicles that vary from trucks to sedans and motorcycles, in-
clude all common sensors, such as depth and RGB cameras, GNSS, IMU, LiDAR
and Radar sensors, along with collision, lane invasion, obstacle detectors. Customiz-
ability concerning every aspect of the simulation is achieved through the provided
Python API. CARLA’s construction has a double-head form. To begin with, the
server side is in charge of everything related to the simulation itself, such as graphics
rendering, lighting and physics computation. On the other hand, the client-side is
responsible for the actor’s logic, path planning, sensor utilization, as well as setting
world conditions. As the number of simultaneous clients connected to the CARLA
server is not limited to one, one can simulate traffic and realistic conditions, in
parallel to an autonomous system.

Figure 5.11: Shots of CARLA Town 10

When spawning a vehicle through the Python API, every localization and perception
sensor is initialized automatically. This means that the developer has access to
sensor data, as well as to systems, such as collision and lane invasion detection,
along with semantic segmentation and 3D bounding box display. These systems are
useful for some applications, but in our case we need to manually perform the object
recognition in the manner that our system will work when deployed on a real life
vehicle. Therefore, only the real-time forward facing camera feed is accessed in our
implementation and our vehicle is being controlled only using this data.

5.4.2 Proposed Approach

In this section, we propose an autonomous control system capable of leveraging high
level software based on Artificial Intelligence and Deep Neural Networks to analyze
the motorcycle’s surroundings, in combination with a low level control system that
takes over throttle and steering input. The goal is to simulate a motorcycle equipped
with a front facing RGB camera, and perform the object detection process on its
feed in order to analyze the environment. Then, to test and evaluate the adaptive
cruise control by setting up a scenario in which our motorcycle follows a vehicle and
adapts its speed in an urban environment. CARLA consists of multiple towns of

46

different sizes to experiment in, and so, “Town10” was selected for this experiment
as illustrated in Figure 5.11. As the 3D motorcycle model of the actual vehicle
this project is intended for, was not available at that time, we opted for Yamaha’s
YZF R6 motorcycle with similar characteristics, such as weight and dimensions, as
its model is already included in the simulator. The way CARLA simulates two-
wheeled vehicles makes them impossible to tumble. In conditions, such as extreme
leaning angles, the motorcycle will just spin around. The overall performance con-
cerning steering and power behavior does not have considerable differences and can
be adopted to the our intended platform with minor changes.

Figure 5.12: Yamaha YZF model with camera placement

In Figure 5.12, the 3D motorcycle model is presented. The camera’s placement
corresponds to the actual position of the camera in the prototype motorcycle. It
is centered between the two headlights (y axis), and elevated to the middle of the
windshield by adjusting its x and z axis. In order to simulate this configuration,
after the motorcycle is spawned into the world in one of the available spawn points,
the sensor has to be initialized.

Figure 5.13: Yamaha YZF in Carla simulation

An RGB camera with a resolution of 960 × 540 and a 120 degree field-of-view is
set-up offsetted on the x and z axis by 0.7 and 1.6 meters respectively, is used.

47

This resolution and field of view were selected based on the SF3324-100 Camera
specifications, which is selected for the real prototype. The camera sensor yields an
image for every server tick - an update between the server and the connected clients.
The frame is then resized, according to the model’s input shape and the detection
process is next. This simulated sensor slightly differs from a real life camera, with a
minor blur in distant scenes, where we expect the object detection algorithm to have
reduced efficiency. As illustrated in Figure 5.14, its effectiveness on nearby objects,
such as cars and traffic lights, is at the desired level. As described in Section 5.3, it
produces a list of bounding boxes (BBs) containing all the detected objects, therefore
we can initiate the Adaptive Cruise Control system.

Figure 5.14: Object Detection in Carla

In Figures 5.15 we can see two frames with the results of object detection while
tracking the white vehicle with two cars behind it. The two cars eventually get in
the tracking window limits in Equation 5.3, but by analyzing the angle deviation of
each car between frames, the system does not lose track.

Figure 5.15: Object tracking with cars surrounding the desired vehicle

In order to debug and study the system’s behavior, a data logging tool was imple-
mented using Python’s logging libraries [53]. A sample table taken from one of our
experiments is displayed in the Figure 5.16.

48

Figure 5.16: Data log sample during experiment in CARLA

The calculated bounding box size and angle are being recorded on every server tick,
in the first and second columns respectively. The following three columns contain
our motorcycle’s X,Y,Z coordinates that CARLA returns. As we can see, the Z
coordinate which is the altitude, remains constant because the town we are using is
flat, but will be useful for the path drawing in order to track the motorcycle’s steps.
CARLA also provides three dimensional velocity vectors of the vehicle’s current
speed in meters per second. We calculate and log its magnitude in km/h using the
following expression.

V el = 3.6 ∗
√
V elx

2 + V ely
2 + V elz

2 (5.5)

Where V elx, V ely, V elz are the velocities of the motorcycle in each one of the 3D
axis, measured in m/s.

5.4.3 Simple P Controller for Throttle Control

The goal of this experiment is to analyze the system’s behavior and the way it
translates camera feed data and using bounding box information to actively pro-
duce throttle and steering commands. Our motorcycle, as well as every CARLA
“actor” can be controlled using the three control functions: control.throttle(th), con-
trol.brake(br) and control.steer(st) with th, br ∈ [0, 1] and st ∈ [−1,+1]. First, we
spawned the leading car, and then, a few meters behind, the motorcycle. The ACC
system is initialized the moment the motorcycle spawns, therefore it immediately
starts tracking and following the car with a desired distance of about 6 meters. The
car was manually controlled using the keyboard arrow keys through a script included

49

in CARLA’s Python API, while the motorcycle’s control was completely taken over
by the Adaptive Cruise Control system. The path illustrated in Figures 5.17a and
5.17b, was the one that the motorcycle traversed and logged throughout the experi-
ment. It included a slow speed sharp turn and two complete stops, one in the middle
of the run and one at the end. These extreme maneuvers where performed in order
to check the stability of the system and rule out a possible vehicle collision.

(a) Top view of motorcycle’s path (b) Side view of motorcycle’s path

Figure 5.17: Motorcycle’s path during ACC test

The ACC system calculates the angle of the bounding box in relation to the camera
frame center in the range of [−1,+1] from left to right respectively. The motorcycle’s
steering in CARLA is handled using a floating number in the range of [−1,+1] as a
command. As our proposed ACC system in its final form is only in control of throttle
and brake, the calculated angle is directly used as a steering command, in order to
keep the car straight in front. TensorFlow and ObjectDetection APIs use image
frame coordinates to refer to bounding boxes coordinates in form of percentages,
in the range [0, 1] for both x and y. This means that the coordinates (0,0) are the
start of an image (at the top left side of the frame) and (1,1) coordinates point to
the bottom right side of the frame, no matter what the resolution or aspect ratio
is. Therefore, a typical bounding box size is in the [0, 0.45] range and during this
test, its deviation to the desired box size was multiplied with a weight in order to
transform it to the [0, 1] range and produce the throttle command, thus acting as a
simple P controller.

In the Figure 5.18, we can view the bounding box size of the detected leading car
that was logged during the test along with the desired size, portrayed by a dashed
line. The bounding box size represented in the y axis is inversely proportional to
the distance, therefore the bigger the value, the smaller the distance to the car in
front. In Figure 5.19 we observe the bounding box angle values during the test, with
positive values indicating right turns and negative values left turns.

The results from the distance graph look promising considering the use of the bound-
ing box as a distance reference. The motorcycle traversed the path illustrated in
Figure 5.17 and followed the vehicle in front through the urban area. The oscillations
visible in the distance plot were also noticeable through the on-board camera and
were the result of abrupt acceleration and braking. One large spike along with a few
smaller ones are spotted that indicate the motorcycle came very close to colliding

50

Figure 5.18: Distance plot during ACC test

Figure 5.19: Angle plot during ACC test

with the car it was trying to follow, but it successfully braked and avoided contact.
A bounding box size of 0.4 is equivalent to around 1 meter gap between the two
vehicles. In the angle graph we can notice the sharp left turn at the beginning of the
test and the blunt right turn later. This way of translating the bounding box angle
to a steering input yielded acceptable results by consistently keeping the following
car to the center of the frame. It is important to note that during steering, the
motorcycle’s velocity plays an important factor. Our low speed during the first turn
let the leading vehicle gain some distance throughout the turn with the motorcycle
having no time to react and accelerate, thus producing high negative angle values
in the first left hand turn.

An important factor that lowers the ACC system’s reaction time, is the low frame-
rate of the simulation (2-3fps) derived from the CPU execution of the object de-
tection and recognition model. Finally, we conclude that the disadvantages of this

51

approach, such as the oscillation featured in all P controllers, will produce insta-
bility to our system. A controller that acts only based on the distance variation is
not suitable for this use case. In Subsection 5.4.4, we redesigned the experiment
path and propose a PID controller as a solution, that is not only proportional to the
distance error, but also sums up the errors over time and tries to predict the future
trend of the error with the Integral (I) and Derivative (D) term respectively.

5.4.4 PID Controller for throttle control

In order to control the throttle efficiently, we investigated the use of a simple, yet
efficient, methodology compared to the simple P controller. Several approaches
were found in the literature [54], that include self-tuning fuzzy controllers, model
reference adaptive systems, etc. We decided to use the basic, but highly effective,
concept of a PID controller that constantly checks and corrects the bounding box
size of the leading vehicle using throttle and brake commands. Using Python’s
“simple-pid” libraries [55], the throttle control was replaced by a fully customizable
PID controller. Its input (error) is the difference between the current bounding box
size calculated by the detection model and the desired size that is set by the user.
This setpoint as well as the P, I and D variables are initialized at the ACC system
starting point. CARLA vehicle control is achieved with floatin numbers in the [0, 1]
range for both throttle and brake. Therefore, the PID controller’s output limits
are also set to our acceptable range [−1,+1] with positive values corresponding to
throttle control and negative values to brake control. Finally, during each server
tick, after object detection and recognition, the calculated distance (bounding box
size) acts as the negative feedback signal, so the controller corrects its output based
on the new conditions and the yielded throttle/brake command is applied to our
vehicle. The block diagram of our configuration for the PID controller is presented
in Figure 5.20.

Figure 5.20: Throttle control PID diagram

The PID testing procedure included a path consisting of one wide turn and then
mostly of a straight line. The traversed path during this test is presented in Figure
5.21. A constant velocity of 22 km/h was applied to the vehicle in front in order to
prevent fluctuations between tests. Next, the system’s performance with different
PID values was evaluated on the exact same conditions. Four test are completed with
the respective distance plots presented in the Figure 5.22. Although not optimal,
the PID controller values were selected heuristically, with a goal of producing a

52

stable system that can be easily re-configured based on the actual motorcycle model,
throttle and brake actuators, as well as object detection and tracking efficiency of
the Drive PX2 platform.

Figure 5.21: Motorcycle path for the second experiment

The first test with a PID configuration (KP = 20, KI = 0.1, KD = 10) yielded
improved results over the previous version of throttle control. Sharp and slow-speed
turns that could shift our system’s response are avoided in these tests. In the first
distance graph (Figure 5.22a) we observe oscillations around the desired point, that
are derived from high acceleration during a negative error value and braking during
positive error. During that test, the motorcycle was spotted coming to a complete
stop in order to avoid a collision. This was due to a low KD value, responsible
for monitoring the rate of change in the error process that can be quite useful in
situations that we are near the desired set-point but still accelerating. Additionally,
the integral part of the controller, that sums the instantaneous error over time and
gives the accumulated offset that should have been corrected previously would yield
negative results in cases with prolonged stops (e.g. during traffic or red traffic light).
Thus, it would be best for the KI value to be assigned a low value, if not zero.

PID Controller Fine Tuning

For the next experiment presented in Figure 5.22b, with values KP = 25, KI =
0, KD = 15, the Integral part of the controller was eliminated and the Derivative
parameter was increased to counterbalance the oscillations presented in the previous
figure. Additionally, it helped make our system more responsive to sudden speed
changes of the leading vehicle, offering a more pleasant ride. As illustrated in Figure
5.22b, this decision greatly improved our results with the motorcycle falling slightly
behind the desired distance and the fluctuations were entirely eliminated. The next
experiment with slightly higher KP and KD values of (KP = 28, KI = 0, KD = 17)
returned similar results with the deviation of the set-point further reduced. On the
4th attempt, illustrated in Figure 5.22d, the KP variable’s raise was higher than

53

the raise of KI , which ’broke’ the balance we had earlier between these two values
and resulted in the reintroduction of oscillations late in the experiment, although
improving the error at the start. This, confirms that the two variables KP , KD

need to be counterbalanced and generate a stable system that offers safety and a
comfortable trip to the rider.

(a) Throttle PID test (25, 0.5, 10) (b) Throttle PID test (25, 0, 15)

(c) Throttle PID test (28, 0, 17) (d) Throttle PID test (35, 0, 20)

Figure 5.22: Throttle PID control test results

The data gathered by these experiments, helps fine tune the PID parameters and
understand their behavior. In cases where the car we are following is stationary,
due to a red traffic light, or a “STOP” sign, and our motorcycle is closer to it than
desired, the controller is unable to reverse in order to fix that error, and all it can
do is brake. In this, or similar cases, a positive KI value, that serves as the memory
of the controller, is going to result in either very sudden and hasty or delayed and
slow response to a change of speed of the car in front. It also has a big impact
in situations when the vehicle in front is further away than desired, and thus we
accelerate more than the optimal, and abrupt oscillations appear. For this reason
we decided to set the KI value of the controller to zero.

The parameter KD defines the system’s ability to predict a change of state. It
proved to be very effective in situations where the vehicle in front make sudden
speed changes, and a high value manages to prevent possible collision by keeping the
motorcycle in a safe distance. For our configuration the PID parameters that were

54

found to perform quite well are KP = 37, KI = 0, KD = 25, and our motorcycle
consistently and smoothly follows the car, in conditions that it keeps a constant
speed, such as highways. The experiment results using these parameters and the
same path shown earlier in Figure 5.21, are illustrated below in Figure 5.23.

Figure 5.23: Distance plot during ACC test with the fittest PID parameters

The actual vehicle distance throughout this test was slightly higher than desired,
as a result of the low frame-rate of the simulation and the bounding box size value
being in the compact range of [0, 0.05] and thus, small-scale size differences are
overlooked by the system. This is one of the reasons, further fine-tuning of the PID
controller parameters is troublesome. A more effective object-detection model, able
to increase the processed frames per second to at least 10, as well as a more efficient
way to calculate the distance to the leading vehicle, such as Radar or LiDAR sensor,
and of course, the model of the actual motorcycle it will be deployed on, are expected
to yield better results.

5.4.5 Extensive PID Experiments

In order to assess the system through various conditions, we conducted an extensive
experiment that covers a great portion of the town and included random stops of
the leading vehicle to simulate traffic or red traffic lights. Its speed was manually
controlled varying from 0 to more than 60 km/h. The motorcycle was automatically
following the car using the ACC system and its traversed path is shown in Figure
5.24. As in the previous experiments, the motorcycle does not have a lane following
algorithm and acts only as commanded by the Adaptive Cruise Control system, that
has a target of staying at a pre-defined distance from the leading vehicle. Thus, rules
concerning lane following and compliance to traffic laws are not followed.

The results are displayed in Figure 5.25, and include the bounding box size and angle

55

Figure 5.24: Motorcycle path during the extensive experiment

as well as motorcycle speed that were recorded during the experiment. As expected,
the angle was kept in the tight range of [−0.4, 0.4] which means the leading car
did not maneuver away from the motorcycle’s field of view. Combining the BB
size with the speed graph, we can deduct the reason of oscillation reappearance
in the distance graph. At around 250 server ticks, where the motorcycle’s speed
is at the maximum recorded, the leading car performs a sudden stop, that leads
the motorcycle to brake, and results in the spike seen in the BB size plot. It is
noteworthy that the 0.10 value of size is translated to about 4 meters of distance
between the two vehicles. Furthermore, in the speed plot, we can distinguish the
high speed portions of the experiment, as well as the parts where the leading car
completely stopped.

For the entire experiment duration, the results indicate a satisfactory system be-
havior. Looking at the BB size graph, despite the reappearance of mild oscillations,
the distance between the two vehicles is constantly at a safe level, that excluding
the exception at 250 server ticks, its maximum value is at 0.05. This occurs, while
the motorcycle’s speed is constantly changing in order to adapt to the leading car.
Finally, using the bounding box angle data, the motorcycle consistently corrects its
path in order to follow the car during a turn.

56

(a) Extensive test, BB size graph

(b) Extensive test, BB angle graph

(c) Extensive test, motorcycle speed graph (km/h)

Figure 5.25: Extensive PID test results

57

Chapter 6

Platform Programming

6.1 Nvidia Drive PX2 Software

6.1.1 Software Development

The software development for the Drive PX2 platform requires a cross-compilation
workflow, meaning a 3rd party Linux host system equipped with an Nvidia graphics
card is needed. Although, each of the Tegra sub-systems of the platform can act
as a separate ARM-based computer, alongside its peripherals (monitor, Ethernet,
keyboard, mouse), it lacks the capability to compile source code intended for itself.
For this reason, in order to test and debug programs that use Drive PX2 features
and its connected sensors, a host system with all Nvidia DRIVE and CUDA SDKs
installed, is needed. Using arm64 packages, Nvidia libraries and the DRIVE PX 2
toolchain, we cross-compile our software on the host system and make the binaries
available to the target system (Drive PX2) by copying them to its working directory.

Figure 6.1: Source compilation workflow
Source: Nvidia Developer Blog

6.1.2 Object Detection

The ability of an autonomous vehicle to detect and track surrounding objects is
essential to its safety. In this work, it is achieved using a single forward-facing, high
field-of-view camera. Nvidia’s DriveWorks SDK includes object detection and object
tracking models trained for DRIVE platforms. DriveNet is a sophisticated, multi-
class, higher-resolution sampling classifier that uses a trained proprietary deep neural
network (DNN) to perform object detection. It is designed to perform inference on

58

either RAW camera stream or pre-recorded RAW video, making it ideal for testing
before its actual deployment. Other models included in DriveWorks SDK are lane
detection sample (LaneNet) and free-space detection (FreeSpaceNet). It is worth
noting that the source code for these samples is available to every DRIVE platform
developer.

The motorcycle’s driver should have the option to view the real-time analysed cam-
era feed through the display. The DriveNet version that is provided to us by the
Drive system, is used as groundwork to detect and localise cars, bicycles, pedes-
trians, traffic signs and traffic lights. By default, all object detection models are
executed on the system’s dedicated GPUs in real-time with a constant performance
of 23-29 frames per second. Detections coming from DriveNet are associated with a
confidence value in the (0,1) range, an urgency value (1/s), which is the inverse of
time to collision, and a distance value (m). The urgency value and distance estima-
tion, are not released by Nvidia for Drive PX2, and are destined for future models.
For this reason, each detection’s distance is estimated by the size of its bounding
box similarly to Section 5.3, as the square root of the sum of its dimensions squared
(size =

√
width2 + height2). The only difference with our ACC system described

in Section 5.3, is that the bounding box position and size in the camera frame
is interpreted by pixel coordinates, and not via a normalized vector in the range
[0, 1] × [0, 1] regardless of the frame size, featured in section 5.3. After modifying
DriveNet’s source code, we isolate the low-confidence and demonstrate the high-
certainty detections, so the system and the user will not see ambiguous predictions.
Lastly, the user is given the option to turn on or off the drawing of bounding boxes
for each detection category (traffic sign, vehicles, pedestrians) separately to match
their preferences.

DriveNet is trained and optimised for daytime and clear weather, and its perfor-
mance may differ under dark or rainy conditions. Additionally, we have to consider
that the training data collected came from the United States and might have differ-
ent performance in other locales.

(a) Car detection example (b) Traffic sign detection example

Figure 6.2: Modified DriveNet running on Drive PX2 with pre-recorded video

The way this algorithm works is by cropping and down-scaling each image by half
so the resulting frames have a resolution of 960 × 540. Additionally, we have the
option to enable foveal detection mode, which increases detection rate and works
by further cropping the center region of the original image, while maintaining its

59

aspect ratio. Then, a follow-up algorithm clusters detections from both images to
compute a more stable response. The foveal detection region is shown by the yellow
box in Figures 6.2.

6.1.3 Rear Facing Camera

The proposed configuration of this vehicle includes one forward and one rearward
facing camera. As the motorcycle features no rear view mirrors, the rear camera will
assist the driver’s situational awareness through the on-board display. The camera
feed will not get analyzed by an object detection algorithm during this work and will
only be used to provide a view of what is happening on the back of the vehicle. An
included program along with its source code, leveraging DriveWorks SDK libraries
to provide real-time footage of cameras, is adopted for this use case. It is modified
to select the camera connected to the correct port of the Drive PX2 system, (in our
case, port A1) and displays the 30 frames per second feed in full screen.

6.1.4 Autonomy and Adaptive Cruise Control

The object detection system described in Section 6.1.2 serves as the groundwork of
the motorcycle’s autonomous capabilities. It is used to observe the environment in
front of the vehicle through the camera, and serves as a driver assistance system. The
source code is modified to provide the option for the drivers to personalise what they
want to view through the display. They can chose to enable the drawing of regions of
interest (ROIs) of the different types of detected objects or disable them selectively.
They can specifically choose the ROI display of detected cars, motorcycles, traffic
signs or pedestrians. Additionally, for each one of those detected types, a different
type of functionality is implemented for a different use case.

When traffic signs are detected, their bounding box is highlighted to the driver if the
respective setting is enabled, and their coordinates in the picture frame are stored.
This is done, because the detection algorithm is trained to detect where a traffic sign
is located, but not its meaning. Therefore, we use the information about the location
and size of the bounding box to provide a cropped image containing only the traffic
sign and not the rest of the camera frame to the traffic sign recognition algorithm.
This way, we avoid additional image segmentation, clustering and detection that
a typical traffic sign detection and recognition algorithm would normally do, thus
conserving computation power and resources.

On pedestrian detection, apart from the display of the ROI for every spotted pedes-
trian, a safety functionality was also implemented. Using the coordinates of the
bounding box, we can determine if the pedestrian is in the vehicle’s path and warn
the driver. This is achieved by calculating the bounding box’s angle in relation
to the horizontal center of the camera frame, similarly to the angle calculation in
Section 5.3 using the following equation.

Pedestrianangle =
boxx − framewidth/2

framewidth/2
(6.1)

Then, we determine if the person is on our path using Equation 6.1, with a higher
threshold of anglethresh = 0.12 that widens the inspection area and thus improves

60

safety.

− 2 ∗ anglethresh < Pedestrianangle < 2 ∗ anglethresh (6.2)

Finally, the bounding box display of detected vehicles can also be controlled by the
user. Detected vehicles are taken into account in the adaptive cruise control process.
When initialized, we start tracking the vehicle closest to the center of the camera
frame, or wait until one moves near it and then track it, exactly like we do in the
proof of concept in Section 5.3. The bounding box properties of the tracked vehicle
are sent separately to Nvidia’s render engine, so we draw it using a different color.
Results from offline testing using the same pre-recorded video as in section 5.3 are
illustrated in Figure 6.3.

(a) ACC tracking in crowded area (b) ACC tracking with high relative angle

Figure 6.3: ACC tracking on Drive PX2 using a pre-recorded video

The vehicle being tracked by the algorithm is in the yellow bounding box, while those
in red box are the remaining detected vehicles. We can confirm the effectiveness of
the designed system in a crowded area with vehicles on both sides of the road, as
well as in an extreme condition that the tracked car deviates from the center of the
camera frame.

Final step for the adaptive cruise control system is to adjust the motorcycle’s speed
in order to maintain a constant distance from the vehicle in front. At the moment,
there is no implemented system fitted on the motorcycle that controls the throttle
and braking systems, neither a sensor for the Drive PX2 system that accurately
calculates distances like a LiDAR or Radar. Thus, the metric we use as a distance
measurement is the size of the bounding box’s diagonal measured in pixels, just like
we do in Section 5.3. Then, a simple P controller continuously compares the current
distance to the desired distance and yields an output that is destined for throttle
and brake control.

Control =
distdesired − distcurrent

100
(6.3)

where distances are currently the box diagonals, and can later be replaced by values
measured from sensors. Future work can use this system as groundwork, as it can
be later fine tuned based on data gathered from simulation of systems controlling

61

throttle and braking, as well as how the motorcycle responds to different kinds of
inputs.

6.2 Grayhill 3D70 Display

Qt is widget toolkit widely used in automotive systems for designing and develop-
ing graphical user interfaces, as well as cross-platform software intended for various
system configurations and operating systems such as Linux, Windows, Android and
many more. Numerous car manufacturers have introduced Qt in digital instrument
cluster design. Qt integrates C++ programming logic with QML applications. QML
is versatile modeling language for designing user interface–centric applications and
allows them to be described in terms of their visual components and how they inter-
act and relate with one another. It allows complicated designs to be split down in
to multiple components and offers complex animations and effects without compro-
mising performance. Grayhill offers installation instructions, as well as libraries and
support files required by Qt IDE, in order to develop, build and deploy applications
for their 3Dxx display models.

6.2.1 Graphical User Interface

The designed Graphical User Interface consists of three different display arrange-
ments, each for a different driving scenario. The “Main View”, is illustrated in
Figure 6.4, and consists of an analog speedometer and a battery level indicator, and
a variety of other indicators in the form of the traditional “light bulb”. Due to the
fact that the motorcycle has no rear view mirrors, the driver must have a view of the
situation behind the vehicle at all times, so the camera mounted on the rear is always
shown at the top half of the screen. The driver can swap between display arrange-
ments using the two touch buttons on the bottom left. All data displayed (speed,
battery level, indicators, etc), are implemented to acquire information through the
CAN bus connector in the future, requiring minimal development, except the camera
feed that utilizes the display’s analog video input.

The analog speedometer is a built-in QML component called “Circular Gauge” and
can be customized according to our needs. For instance, the size and color of the
needle can be redesigned, the maximum speed value and step between subdivisions
can be adjusted according to the vehicle’s specifications and many parameters more.
The battery level indicator is a similar QML component called “Gauge” with similar
customizable parameters as before. To create the two buttons used to select view
modes, we used the QML component called “Button” that natively works on systems
with either a touchscreen or a mouse cursor. Their text size, font and color, as well
as the text content itself, can be personalized. When pressed, they change the
state variable, which is responsible for shifting to a different view mode. Finally,
the “light bulb” indicators are simulated using an “Image” QML component for
each indicator that are contained in two “Row” components in order to keep them
leveled and in order. Their active and inactive states are simulated by changing
their opacity between 100 and 15 percent respectively.

The camera feed is set to be permanently displayed in the background in full-screen.
This means that we have to keep a transparent portion of the rest of the design,

62

Figure 6.4: Main display view, designed on Qt Creator

the top half portion of the screen in the “Main View” instance, in order for the
camera feed to be visible. Unfortunately, during development in the Qt IDE, it is
impossible to simulate the display’s inputs and that includes the camera, and hence
we assigned a placeholder in its place. In the following chapter, that discusses the
experiments and how the whole system is connected together, the “Main View”
mode with camera feed directly from Drive PX2 is included.

Figure 6.5: Rear View Screen Arrangement

The next two arrangements available, are called “Rear View” and “Autonomy
Mode”. The “Rear View” mode (illustrated in Figure 6.5) is essentially a full screen
view of the rear camera feed and was designed to provide as much information as
possible about the situation in the rear of the vehicle. In this mode, only essential
information is displayed to the rider, such as the current speed and battery level,
in digital representation rather than analog. This is accomplished using custom
transparent images (a battery shape and a rounded rectangle) to surround the text

63

that contains battery and speed data. This way, we avoid the bigger and space-
consuming gauges we have in “Main View” and still provide the same information.
Naturally, the driver can exit this mode using the virtual “back” button and return
to “Main View”.

Autonomy Mode (illustrated in Figure 6.6) is similar to the previous mode. It
contains a maximized view of the front camera feed. This feed also contains infor-
mation from the autonomy software described in Section 6.1.4. All detected objects
are highlighted with bounding boxes to the driver, along with the option to control
the display for each type of detection (pedestrian, vehicle or traffic sign) giving them
the freedom to personalise this mode however they want. This is achieved using a
built-in “Toggle Switch” QML component for each option and the corresponding
image next to it. Also, in Figure 6.6 an alert is shown that warns about pedes-
trian in our path, which will be raised if Drive PX2 software discussed in Section
6.1.4 yields it. Additionally, while the adaptive cruise control system is active, the
rider can monitor the vehicle we are following as well. Finally, just like the previ-
ous mode, information concerning battery level and the motorcycle’s speed is also
digitally displayed.

Figure 6.6: Autonomy View Screen Arrangement

6.2.2 Connectivity

With this GUI design in mind, the connectivity ports that are required will be a
single CAN port, two camera connectors, one for the front and one for the rear
view camera, and of course the power supply port. USB and Ethernet ports are
also used for software development, debugging and the upload of binaries to the
display, but they are not needed while deployed on the motorcycle. Due to the size
of the development board and the fact that it does not have any kind of weather or
temperature protection, we must replace it with a more elegant solution that suits
our needs. In order to replace the development board, a circuit that converts the
single 18-pin input cable to the ports we need in our application is designed. The
display will be powered through this cable, which is the official cable provided to
us by the manufacturer, and it will also be used to transfer data for the rest of the
ports discussed earlier.

64

6.3 Experiments

The target of this project is to provide a functional platform running driver-assistance
features on the Drive PX2 platform, an interactive and customizable dashboard us-
ing the touchscreen 3D70 display, as well as ensure the communication between these
two sub-systems. In Section 6.1.4 we discussed the use of a pre-recorded video for
object detection and tracking testing purposes. Our software successfully tracked
the desired vehicle throughout a lap around the Technical University of Crete cam-
pus and reported the calculated distance and angle of the car in the terminal. These
values would be used in the PID controller responsible for throttle, brake and/or
steering control when it is deployed on the actual motorcycle, similar to our simu-
lated approach in Section 5.4.2. In Figure 6.7 we can see the proposed configuration
featured in this experiment.

Figure 6.7: Main Display View experiment configuration

The designed dashboard GUI for our display was cross-compiled for the ARM pro-
cessor used by the display. The binary files were transferred to the display system
through an Ethernet connection to a Windows system using the WinSCP applica-
tion that allows SSH file transfer. In order to execute commands like shutdown,
restart or execute the GUI software in the display’s operating system we connect
to the device through SSH with the PuTTY program. Touch input data is natively
supported in this display, and thus the GUI’s functionality was exactly as simulated
in the Qt IDE during development.

Similarly, the Object detection and recognition algorithms, as well as the Adaptive
Cruise Control and PID systems, were as seen in Figure 6.7 cross-compiled for
execution on the target device (Drive PX2) and transferred to it over the network.
The experiment illustrated in Figure 6.8, was run in order to demonstrate how the
HDMI display output of Drive PX2 Tegra A is portrayed on our display.

We observe how our system components connect to each other. Using an HDMI to
AV adapter, the digital display signal is converted to the analog format our display
requires. For the current testing purposes, the ACC system was running on the
Drive PX2 with the pre-recorded front camera video and the dashboard GUI was
running on the display, as seen in Figure 6.9. Normally, in the illustrated page of the
dashboard GUI, the rear camera is shown, but since it was not simulated, we opted

65

Figure 6.8: Main Display View with front camera feed and ACC system

for the forward facing camera. Additionally, this experiment helped us verify that
the GUI mostly obstructs viewing angles on the bottom corners and the important
information present in the middle of the camera frame is still visible to the rider.
Additionally, since the Drive platform is not set up to transmit data concerning
the vehicle speed or battery level to the display, the dashboard functionality is
limited.

Figure 6.9: Close up of the Main Display View

66

Chapter 7

Platform Deployment

Due to manufacturing constraints, our configuration, including the power supply,
Drive PX2 and camera mounting and wiring as well as the display’s deployment
board, were not produced and tested on the actual motorcycle. This Chapter dis-
cusses our proposed subsystems for the final system, that are designed but not
manufactured. A power supply that could handle both Drive PX2 and 3D70 dis-
play’s power requirements while offering high efficiency and small form factor is
selected and proposed in Section 7.1. In Section 7.2, we explain the Drive sys-
tem powering and wiring, which is designed based on detailed guidelines offered by
Nvidia to ensure the equipment’s safety. Additionally, we designed a deployment
board schematic with the corresponding Printed Circuit Board design, based on the
display’s development kit circuit board that was provided by Grayhill. Finally, in
the final section of this chapter, the proposed system is illustrated in a diagram that
provides both data and power flow information and shows how the sub-systems will
communicate with each other.

7.1 Power Supply

Due to the motorcycle’s compact body configuration, an auxiliary 12 Volt battery is
not a viable solution. Our proposed solution utilizes the existing battery pack used
by the electric motor in order to power other sub-systems, such as the display and
Drive PX2 system. This solution comes with the complication of dealing with the
variation in battery’s voltage level (40 to 50Volts DC) depending on the battery’s
level percentage, as well as the motorcycle’s motor different power requirements
based on different driving conditions. Additionally, we must meet the theoretical
maximum and typical power requirement of 300 Watts and 90 Watts respectively
for the Drive PX2 system, and 7 Watts for the 3D70 Display. In practice, we will
not reach the theoretical maximum power requirements of the Drive PX2 system
as the system would need to operate constantly at 100% and that would cause a
complication with its cooling and high-power draw that could pose a problem with
the battery life and motorcycle’s range. The proposed solution is the MEAN WELL
RSD-300C-12 isolated DC/DC converter [56] with a maximum output power of 300
Watts.

Its input includes an EMI filter, isolation resistance of 100 MOhms / 500Volts DC,

67

Figure 7.1: MEAN WELL RSD-300C-12 Isolated DC/DC Converter

along with short-circuit, overload, over-voltage and over-temperature protections
making it an excellent choice for protecting the valuable and costly systems it will
power. With an operating input Voltage range of 33.6 to 62.4 Volts, it can deliver
regardless of the battery’s voltage level with 91% efficiency. Other important factors
include its wide supported working temperature in the range of −40 to +70 ◦C
with adequate cooling, 5% to 95% non-condensing humidity as well as a maximum
operating altitude of 5000 meters. Finally, its small form factor of 216×96.5×40
mm and weight 1.19Kg will play a big part in deploying and mounting it to the
motorcycle’s chassis.

Figure 7.2: MEAN WELL RSD-300C-12 Isolated DC/DC Converter Block Diagram
[56]

7.2 Drive PX2

The Drive PX2 system’s bigger dimensions of 303×213×84.3 mm along with the
recommended minimum keep-out zones of 35mm on each side and 63.6mm on the
top to avoid obstructing the connectors and cooling, are challenge for its position-
ing. The system is destined to be mounted beneath the driver’s seat. In order to
offer protection against moisture and dust, as well as to provide adequate fresh air
for effective cooling, an enclosure case is necessary. This enclosure case must be
dependant on the Drive PX2 system’s dimensions as well as the free space available
beneath the driver’s seat, and is not designed or developed in our work.

The included power supply delivers 12Volts to the system via a simple 10-pin Molex

68

connector with part number 39-01-2101 [57] shown in Figure 7.3a. Its wiring is
as follows: the first five pins along with the pin number 10 are used for ground
connection, with the remaining four pins (pins 6 to 9) supplying 12Volts. Pins 6
and 7 are used for the Tegra 1 and 2 subsystems respectively, and pins 8 and 9 are
used to power the two dedicated GPUs (dGPU) installed. Pin 10 is not used. In
cases where we have no dGPUs installed in the system, these two pins are optional
and the whole system would require a maximum power of 150 Watts. In our case
we are using both subsystems along with their dGPUs. This Molex connector has
a current rating of 13Amps and 600Volts.

(a) Drive PX2 Power Supply Molex (b) Drive PX2 Molex wiring

Figure 7.3: Drive PX2 Power supply

For use in vehicles with internal combustion engine, the Drive System is powered by
the 12Volt battery, and during cold crank cases, battery voltage could drop as low
as 4.5Volts. For 300Watts of power Drive PX2 might draw, it would require 67Amps
and thus Nvidia recommends an 80A fuse to be used. In electric vehicles were there
is no case of cold engine crank, as well as in our case, the system is powered by the
DC/DC converter with either 12Volts or 0Volts output in case its input conditions
are not met. 300Watts at 12Volts require 25Amps and adding 20% variation, a
30Amp fuse will be used alongside the TP6KE33A [58] TVS diode placed in parallel
to our circuit to protect the sensitive electronic equipment from voltage transients.
The proposed circuit used to power the Drive system is portrayed below in Figure
7.4.

Figure 7.4: Drive PX2 Power Circuit

69

7.3 Camera Mounting and Wiring

The motorcycle is planned to feature two camera sensors in its configuration. Their
small factor allows them to be easily mounted and concealed, while maintaining good
view of the vehicle’s surroundings. The front facing camera is mounted between
the two headlights and the second one, on the rear section of the motorcycle’s
body to provide the rear view feed to the driver. As these camera models are
intended for automotive use and feature IP69K protection, a sealed enclosure is not
required.

Figure 7.5: Camera SMK CRS9001 Connector

Additionally, as illustrated in Figure 7.5, these sensors only require a two-wire con-
nection, that acts both as a power input and data output. The cable connector SMK
CRS9001 (FAKRA type) is all we need between the camera sensor and the Drive
PX2 system and also supports IP69K protection. These qualities, featured in both
the camera and its connection that eliminate the need for complex harnesses, provide
an extra level of freedom for the mounting and wiring on the motorcycle.

7.4 Display

As previously mentioned, Grayhill’s development kit for the 3D70 display is only
utilized for laboratory use and will be replaced upon deployment. For the display
mounting on the motorcycle, the included mounting frame is used. It can be per-
manently mounted on any surface using four screws and with minimal clearance
behind it we can secure the display and access the two wire harness connectors. The
mounting frame along with the display are presented in Figure 7.6.

As discussed earlier, a board that converts the two 18pin display connectors to the
correct port for inputs or outputs that the display support is designed. The included
GrayHill quick start guide includes a detailed schematic of the development board,
which was used as foundation on designing our replacement board. It is designed
using KiCad, an open source software suite, to be a small-factor alternative that
consists of only the necessary connections for this project. That includes two analog
video inputs for the two cameras, its 12Volt DC power source and a CAN bus
connector. These specific connections happen to make use only of a single 18-pin
Harness connection (DT Connector A) and the second one (DT Connector B) can be

70

Figure 7.6: 3D70 Display and its mounting frame

ignored. Naturally, if the need arises in the future, the board can be easily redesigned
to additionally include an Ethernet, USB or general purpose IO port, although it
might require the utilization of the second 18-pin harness. The proposed schematic
is presented below in Figure 7.7. It is important to state that all connectors used
in this design (CAN, Video input, power input etc) are recommended by GrayHill
and are also present on the development board. This means that depending on the
deployment scenario and the conditions the board might encounter (humidity, dust
etc), some of these connections will be reconsidered, in order to ensure the correct
operation of this system for all possible conditions.

Figure 7.7: 3D70 Deployment board schematic

71

In the following Figures (7.8a and 7.8b), the connector types used in the developer
kit for the 18-pin harness connection between display and board, as well as the CAN
bus connector are illustrated.

(a) DEUTSCH DT16-18-SA-K004 18-Pin
Harness

(b) TYCO 747844-6 CAN
Connector

Figure 7.8: Display connectors used in the proposed board

The 18-pin connector is a Deutsch type connector manufactured by TE Connectivity.
These types of connectors are environmentally sealed and designed for use in harsh
conditions and built in a way that they can be disconnected and reconnected a mul-
titude of times. They are ideal for numerous applications including automotive. The
one Grayhill is using for its displays, has a 13 Amp current rating with an orientation
of 3 rows of 6 pins each and provide IP6K9K protection. This protection standard
ensures that dust does not enter the interior (6K-Dustproof) and protection against
high-temperature, high-pressure water jet washing (9K-Waterproof). The CAN bus
connection utilizes a four-wire system, that in our case occurs through a 9-pin D-Sub
connector as we can see in Figure 7.8b, that offers a locking mechanism using screws
to prevent disconnection, but does not offer high dust or water resistance.

7.5 Interconnection

For the final deployment, a few changes concerning the display deployment board are
proposed. First, the board is directly powered by the DC/DC converter described
in Section 7.1. The simple DC connector previously proposed is not suitable for
outdoor use with conditions such as moisture. Additionally, vibrations during the
vehicle’s movement could cause it to disconnect and shut down the display. The
proposed replacement, is the Molex 19429-0041 female connector (Figure 7.9a that
can be directly mounted on the board enclosure. It is paired with the corresponding
cable connecting it to the DC/DC converter 12Volt output and a Molex 19418-
0008 male connector (Figure 7.9b. This industrial sealed connector pair offers IP67
protection and prevent disconnection with its locking mechanism.

72

(a) Display board female
power connector

Molex 19429-0041

(b) Display board male power
connector

Molex 19418-0008

Figure 7.9: Display board Molex power connectors

Due to the fact that DRIVE PX2 only outputs video through HDMI ports, HDMI
to RCA composite video adapters will be used, as they have small form factor and
efficiently convert HDMI’s digital signal to analog required by the display. Thus, the
two RCA connectors featured in our initial design and in the development board,
are proposed in this design, to be used for the two camera feed inputs. Finally,
7Watts of power at 12Volts require 0.58 Amps, and considering a 20% variation,
we added a 1Amp fuse after the power input connection to protect the components
from possible electrical overloads caused by a faulty component in this board or the
DC/DC converter. In Figures 7.10 and 7.11, the final version of the board schematic
as well as the designed two-layer PCB are illustrated, both designed using the KiCad
software suite.

Figure 7.10: Final 3D70 Deployment board schematic

73

The socket in the top left part of the board in Figure 7.11a houses the safety fuse,
and the two through-hole pads below are intended for the 12Volt and ground wires
to be directly soldered. This removes the need for a separate connector for the power
input. The 9-pin d-sub connector on the bottom side of the board is used for CAN
bus link and the two placeholders on the right side labeled “CAM1” and “CAM2”
are used for the two camera RCA socket inputs. They could alternatively be used
to directly solder wires on them, in order to avoid using sockets. Finally, a 2×9
Pin grid is located in the middle of the board, intended for the display’s harness to
either connect to or directly soldered on.

(a) Deployment board Designed PCB
front side

(b) Deployment board Designed PCB
back side

Figure 7.11: Deployment board Designed PCB

The complete proposed pipeline concerning the component power and camera data
transfer between devices, as well as how they are connected together, is illustrated
in Figure 7.12. Both DRIVE PX2 and the 3D70 display are powered by the 12Volt
output of the DC/DC converter, and both cameras are connected directly to the
DRIVE system for real-time processing. Tegra A, the main sub-system of our plat-
form, utilizes the forward facing camera’s feed, passing it through object detection
and localization algorithms, as well as other driver assistance modules, such as the
Adaptive Cruise Control. Tegra B, has access to the rear facing camera, with the
aim of providing the driver a view of the environment behind, whenever is needed.
As the two Tegra sub-systems have the same processing power capabilities, the rear
camera feed can also be utilized for early warning systems that could offer greater
safety characteristics. The display outputs of both Tegra units, are directed to the
display board through two HDMI to RCA converters, so both front and rear camera
views can be available at the same time to the user. As the display’s deployment
board is specifically designed to our use case, camera feed, CAN bus and power is
connected directly to it and the only connection between the board and the display
is the 18-pin harness. The display GUI can be later redesigned or improved, without
the need to revise the deployment board.

The proposed diagram shows how our systems communicate with each other and ex-
change data for the autonomous and rider assistance applications. Both Drive PX2
and 3D70 display have CAN bus capabilities that are not utilized in this project. In

74

Figure 7.12: Proposed Pipeline of our system

future work, additional communication between the Drive platform and the display,
using CAN bus protocol, is proposed, so the user can control the Drive’s functional-
ities by enabling or disabling certain features. Additionally using the multiple CAN
bus connectors Drive PX2 offers, it can draw information from sensors all around
the motorcycle regarding battery level, DC/DC converter state, vehicle speed and
many more.

75

Chapter 8

Conclusion and Future Work

This thesis describes the first step of implementing an autonomous ready electric
motorcycle prototype. We discuss the simulation of the proposed systems such
as object detection and adaptive cruise control in CARLA’s virtual environment,
as well as their adaptation on the Drive PX2 platform. The introduction of a
PID controller for throttle control, will also act as a stepping stone upon which
further development and fine tuning can take place using an accurate motorcycle
model. Furthermore, the design and development of a Graphical User Interface of a
digital dashboard intended for the 3D70 touchscreen display is analyzed. Finally, we
proposed a deployment plan consisting of a DC/DC converter that powers Nvidia’s
Drive PX2 and the display, in addition to a PCB design that enables us to utilize
the various inputs and outputs of the display.

As technology advances, more systems designed for similar applications are devel-
oped with higher processing power. The significantly smaller form factor of the
newest DRIVE systems could make a big difference in our application considering
the already low free space a motorcycle has. For example, Drive PX Xavier, a com-
pact solution with nearly half the size of DRIVE PX2, and 50% greater performance,
could be a beneficial upgrade in this case. Additionally, offering the same connectiv-
ity options, and a power consumption of 30Watts, it could make a compelling choice.
Most importantly, and exactly as Nvidia intended, transitioning software from one
Drive platform to another, requires insignificant changes to the source code.

In order to complete the autonomous motorcycle proposal, the ACC system must
be simulated with a accurate motorcycle model in order to develop an ideal PID
controller. This controller would directly regulate the motorcycle’s speed through
stepper motors for throttle and brake control via the high speed CAN bus interface,
as proposed in Figure 8.1. As camera sensors are commonly used for semantic
segmentation and object detection rather than distance calculations, the system’s
accuracy can be further increased by utilizing a second perception sensor such as
a LiDAR or Radar, to continuously calculate distances between leading vehicles.
An Adaptive Cruise Control system that utilizes LiDAR or Radar sensors can be
further upgraded for lane detection using camera sensors. It can be used to help
identify and track a vehicle in the same lane as the motorcycle or switch track to the
appropriate vehicle after we perform a lane change. Additionally, by understanding
and analyzing the behavior of two-wheeled vehicles [59], a steering system model

76

can be developed and integrated into the ACC system, that would ultimately take
full control of the motorcycle. The CAN bus interface that offers the freedom to
connect every electronic unit placed in the motorcycle can be convenient for this
use case. Additionally, high priority data from the Electronic Control Unit (ECU),
battery cell, bank angle sensors and any other safety equipment will be transferred
through the common bus. It also allow us to share information between nodes such
as the Drive PX2 and the display, or enable the ECU to actively communicate with
Drive PX2.

Figure 8.1: CAN bus wiring Proposal

Modern vehicles utilize camera feed in order to provide autonomous features, such as
path finding and lane following in urban areas and highways. Deep neural networks
can be trained and used in our project similar to [60], and could offer advanced
vision system for navigation in crowded situations and urban areas. With the high
processing power capabilities of Drive PX2 and newer platforms, machine learning
and vision algorithms are easily deployable.

77

Bibliography

[1] Asif Iqbal Mohammad Faisal et al. “Understanding autonomous vehicles: A
systematic literature review on capability, impact, planning and policy”. In:
Journal of Transport and Land Use 12 (Jan. 2019). doi: 10.5198/jtlu.2019.
1405.

[2] Society of Automotive Engineers. Levels of Driving Automation (May 3, 2021).
url: https://www.sae.org/blog/sae-j3016-update.

[3] H. Durrant-Whyte and T. Bailey. “Simultaneous localization and mapping:
part I”. In: IEEE Robotics Automation Magazine 13.2 (2006), pp. 99–110.
doi: 10.1109/MRA.2006.1638022.

[4] Waymo. Waymo Driver. url: https://waymo.com/waymo-driver/.

[5] Chris Clark. Autonomous vehicles build on better sensor tech (August 12,
2021). url: https://www.embedded.com/autonomous-vehicles-build-
on-better-sensor-tech/.

[6] Ivan Krešo and Sinisa Segvic. “Improving the Egomotion Estimation by Cor-
recting the Calibration Bias”. In: VISAPP 2015 - 10th International Confer-
ence on Computer Vision Theory and Applications; VISIGRAPP, Proceedings
3 (Jan. 2015), pp. 347–356. doi: 10.5220/0005316103470356.

[7] Vectornav. What is an intertial measurement unit? url: https : / / www .

vectornav.com/resources/inertial-navigation-articles/what-is-

an-inertial-measurement-unit-imu.

[8] Thinklucid. Understanding The Digital Image Sensor. Tech Brief (2020). url:
https://thinklucid.com/tech-briefs/understanding-digital-image-

sensors/.

[9] EdmundOptics. Understanding Camera Sensors for Machine Vision Appli-
cations. Imaging Electronics 101. url: https://www.edmundoptics.eu/
knowledge-center/application-notes/imaging/understanding-camera-

sensors-for-machine-vision-applications.

[10] Realizator. Stereo camera with CM3 inside for OpenCV learners drones and
robotics. RaspberryPi Forum (June 2018). url: https://forums.raspberrypi.
com/viewtopic.php?t=216940&sid=2fa548df6511298ce838dbdf067d5788.

[11] Vision team. What is a stereo vision camera? Technology Deep Dive (October
2018). url: https://www.e-consystems.com/blog/camera/technology/
what-is-a-stereo-vision-camera-2/.

[12] Stefan Norman and Liam Shelby-James. “Reliability and Trust in Global Nav-
igation Satellite Systems”. PhD thesis. University of Adelaide, Apr. 2020.

78

https://doi.org/10.5198/jtlu.2019.1405
https://doi.org/10.5198/jtlu.2019.1405
https://www.sae.org/blog/sae-j3016-update
https://doi.org/10.1109/MRA.2006.1638022
https://waymo.com/waymo-driver/
https://www.embedded.com/autonomous-vehicles-build-on-better-sensor-tech/
https://www.embedded.com/autonomous-vehicles-build-on-better-sensor-tech/
https://doi.org/10.5220/0005316103470356
https://www.vectornav.com/resources/inertial-navigation-articles/what-is-an-inertial-measurement-unit-imu
https://www.vectornav.com/resources/inertial-navigation-articles/what-is-an-inertial-measurement-unit-imu
https://www.vectornav.com/resources/inertial-navigation-articles/what-is-an-inertial-measurement-unit-imu
https://thinklucid.com/tech-briefs/understanding-digital-image-sensors/
https://thinklucid.com/tech-briefs/understanding-digital-image-sensors/
https://www.edmundoptics.eu/knowledge-center/application-notes/imaging/understanding-camera-sensors-for-machine-vision-applications
https://www.edmundoptics.eu/knowledge-center/application-notes/imaging/understanding-camera-sensors-for-machine-vision-applications
https://www.edmundoptics.eu/knowledge-center/application-notes/imaging/understanding-camera-sensors-for-machine-vision-applications
https://forums.raspberrypi.com/viewtopic.php?t=216940&sid=2fa548df6511298ce838dbdf067d5788
https://forums.raspberrypi.com/viewtopic.php?t=216940&sid=2fa548df6511298ce838dbdf067d5788
https://www.e-consystems.com/blog/camera/technology/what-is-a-stereo-vision-camera-2/
https://www.e-consystems.com/blog/camera/technology/what-is-a-stereo-vision-camera-2/

[13] Wan Rahiman and Zafariq Zainal. “An overview of development GPS naviga-
tion for autonomous car”. In: 2013 IEEE 8th Conference on Industrial Elec-
tronics and Applications (ICIEA). 2013, pp. 1112–1118. doi: 10.1109/ICIEA.
2013.6566533.

[14] Masinde Muliro University. Course: Itroduction To Radar Systems. url: http:
//mmust.elimu.net/BSC%28ELEC_COMM%29/Year_4/ECE%20451%20L_Radar_

Eng_and_Facsimile/Introduction_to_Radar/Introduction_to_Radar.

htm.

[15] Everything RF editorial team. Automotive radar systems. Technical Articles
(August 13 2019). url: https : / / www . everythingrf . com / community /

automotive-radar-basics.

[16] Wikipedia. Yandex self-driving car. url: https://en.wikipedia.org/wiki/
Yandex_self-driving_car.

[17] Yan Shiyu et al. “Distance–Intensity Image Strategy for Pulsed LiDAR Based
on the Double-Scale Intensity-Weighted Centroid Algorithm”. In: Remote Sens-
ing 13 (Jan. 2021), p. 432. doi: 10.3390/rs13030432.

[18] Intellias Automotive. The Ultimate Sensor Battle: Lidar vs Radar. Medium
Forum (August 9 2018). url: https : / / medium . com / @intellias / the -
ultimate-sensor-battle-lidar-vs-radar-2ee0fb9de5da.

[19] Tesla.com. Future of Driving. Tesla Autopilot. url: https://www.tesla.
com/autopilot.

[20] Wikipedia. CAN bus. url: https://en.wikipedia.org/wiki/CAN_bus.

[21] DevCom Electronics Manufacturing. CAN BUS Analysis. Automotive Sys-
tems (December 2, 2020). url: https://www.devcom.cz/en/automotive-
systems/can-bus-analysis/.

[22] Wikipedia. LIN bus. url: https : / / en . wikipedia . org / wiki / Local _

Interconnect_Network.

[23] Martin Falch. LIN bus configuration. (April 2022). url: https : / / www .

csselectronics.com/pages/lin-bus-protocol-intro-basics.

[24] Haichun Zhang et al. “CANsec: A Practical in-Vehicle Controller Area Net-
work Security Evaluation Tool”. In: Sensors 20.17 (2020). issn: 1424-8220.
doi: 10.3390/s20174900. url: https://www.mdpi.com/1424-8220/20/17/
4900.

[25] Nvidia. Nvidia Drive Platform. NVIDIA DRIVE - Autonomous Vehicle De-
velopment Platforms. url: https://developer.nvidia.com/drive.

[26] Fred Lambert. Drive PX2 on Tesla cars. Electrek News Articles (Oct 21 2016).
url: https://electrek.co/2016/10/21/all-new-teslas-are-equipped-
with-nvidias-new-drive-px-2-ai-platform-for-self-driving/.

[27] NVIDIA. Nvidia Drive SDK. url: https://developer.nvidia.com/drive/
drive-sdk.

[28] Nvidia. Nvidia DriveWorks. url: https://developer.nvidia.com/drive/
driveworks.

79

https://doi.org/10.1109/ICIEA.2013.6566533
https://doi.org/10.1109/ICIEA.2013.6566533
http://mmust.elimu.net/BSC%28ELEC_COMM%29/Year_4/ECE%20451%20L_Radar_Eng_and_Facsimile/Introduction_to_Radar/Introduction_to_Radar.htm
http://mmust.elimu.net/BSC%28ELEC_COMM%29/Year_4/ECE%20451%20L_Radar_Eng_and_Facsimile/Introduction_to_Radar/Introduction_to_Radar.htm
http://mmust.elimu.net/BSC%28ELEC_COMM%29/Year_4/ECE%20451%20L_Radar_Eng_and_Facsimile/Introduction_to_Radar/Introduction_to_Radar.htm
http://mmust.elimu.net/BSC%28ELEC_COMM%29/Year_4/ECE%20451%20L_Radar_Eng_and_Facsimile/Introduction_to_Radar/Introduction_to_Radar.htm
https://www.everythingrf.com/community/automotive-radar-basics
https://www.everythingrf.com/community/automotive-radar-basics
https://en.wikipedia.org/wiki/Yandex_self-driving_car
https://en.wikipedia.org/wiki/Yandex_self-driving_car
https://doi.org/10.3390/rs13030432
https://medium.com/@intellias/the-ultimate-sensor-battle-lidar-vs-radar-2ee0fb9de5da
https://medium.com/@intellias/the-ultimate-sensor-battle-lidar-vs-radar-2ee0fb9de5da
https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
https://en.wikipedia.org/wiki/CAN_bus
https://www.devcom.cz/en/automotive-systems/can-bus-analysis/
https://www.devcom.cz/en/automotive-systems/can-bus-analysis/
https://en.wikipedia.org/wiki/Local_Interconnect_Network
https://en.wikipedia.org/wiki/Local_Interconnect_Network
https://www.csselectronics.com/pages/lin-bus-protocol-intro-basics
https://www.csselectronics.com/pages/lin-bus-protocol-intro-basics
https://doi.org/10.3390/s20174900
https://www.mdpi.com/1424-8220/20/17/4900
https://www.mdpi.com/1424-8220/20/17/4900
https://developer.nvidia.com/drive
https://electrek.co/2016/10/21/all-new-teslas-are-equipped-with-nvidias-new-drive-px-2-ai-platform-for-self-driving/
https://electrek.co/2016/10/21/all-new-teslas-are-equipped-with-nvidias-new-drive-px-2-ai-platform-for-self-driving/
https://developer.nvidia.com/drive/drive-sdk
https://developer.nvidia.com/drive/drive-sdk
https://developer.nvidia.com/drive/driveworks
https://developer.nvidia.com/drive/driveworks

[29] Nvidia. Nvidia Drive AV. url: https://developer.nvidia.com/drive/
drive-sdk#driveav.

[30] Nvidia. Nvidia Drive IX. url: https://developer.nvidia.com/drive/
drive-ix.

[31] NVIDIA. Nvidia Drive Hyperion. url: https://developer.nvidia.com/
drive/drive-hyperion.

[32] Wikipedia. Yamaha Motobot. url: https://commons.wikimedia.org/wiki/
File:Yamaha_Motobot_Ver.2_Tokyo_Motor_Show_2017_PB031807.jpg.

[33] Satish Jeyachandran. Waymo EV sensor Configuration. Waymo Blog (March
4, 2020). url: https://blog.waymo.com/2020/03/introducing- 5th-
generation-waymo-driver.html.

[34] Pei Sun et al. “Scalability in Perception for Autonomous Driving: Waymo
Open Dataset”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). June 2020.

[35] SEKONIX Image Solution Team. Sekonix SF332X-10X product family. url:
http://sekolab.com/wp-content/uploads/2020/02/SF332X-10X_2Mega-

LVDS-Automotive-Camera-Datasheet_Ver-2.2.5_190726.pdf.

[36] GrayHill. 3D70 Display, GrayHill Documentation. url: https://www.mouser.
de/datasheet/2/626/3D70-datasheet-1138565.pdf.

[37] GrayHill. 3D70 Quickstart Guide. GreyHill Documentation. url: https://
www.grayhill.com/documents/3D70-Quick-Start-Guide.

[38] Learning About Electronics. How to Detect Cars in a Video in Python using
OpenCV. Programming Articles. url: http://www.learningaboutelectronics.
com/Articles/How-to-detect-cars-in-a-video-Python-OpenCV.php.

[39] Sander Soo. “Object detection using Haar-cascade Classifier”. In: Institute of
Computer Science, University of Tartu. (2014), pp. 1–12.

[40] Li Cuimei et al. “Human face detection algorithm via Haar cascade classi-
fier combined with three additional classifiers”. In: 2017 13th IEEE Inter-
national Conference on Electronic Measurement and Instruments (ICEMI).
2017, pp. 483–487. doi: 10.1109/ICEMI.2017.8265863.

[41] Mooseop Kim, Deok Gyu Lee, and Ki-Young Kim. “System Architecture for
Real-Time Face Detection on Analog Video Camera”. In: International Jour-
nal of Distributed Sensor Networks 2015 (May 2015), pp. 1–11. doi: 10.1155/
2015/251386.

[42] Hongkun Yu et al. TensorFlow Model Garden. https://github.com/tensorflow/
models. 2020.

[43] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: Advances in Neural Information Process-
ing Systems. Ed. by C. Cortes et al. Vol. 28. Curran Associates, Inc., 2015. url:
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-

Paper.pdf.

[44] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In:
Computer Vision – ECCV 2014. Ed. by David Fleet et al. Cham: Springer
International Publishing, 2014, pp. 740–755. isbn: 978-3-319-10602-1.

80

https://developer.nvidia.com/drive/drive-sdk#driveav
https://developer.nvidia.com/drive/drive-sdk#driveav
https://developer.nvidia.com/drive/drive-ix
https://developer.nvidia.com/drive/drive-ix
https://developer.nvidia.com/drive/drive-hyperion
https://developer.nvidia.com/drive/drive-hyperion
https://commons.wikimedia.org/wiki/File:Yamaha_Motobot_Ver.2_Tokyo_Motor_Show_2017_PB031807.jpg
https://commons.wikimedia.org/wiki/File:Yamaha_Motobot_Ver.2_Tokyo_Motor_Show_2017_PB031807.jpg
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
http://sekolab.com/wp-content/uploads/2020/02/SF332X-10X_2Mega-LVDS-Automotive-Camera-Datasheet_Ver-2.2.5_190726.pdf
http://sekolab.com/wp-content/uploads/2020/02/SF332X-10X_2Mega-LVDS-Automotive-Camera-Datasheet_Ver-2.2.5_190726.pdf
https://www.mouser.de/datasheet/2/626/3D70-datasheet-1138565.pdf
https://www.mouser.de/datasheet/2/626/3D70-datasheet-1138565.pdf
https://www.grayhill.com/documents/3D70-Quick-Start-Guide
https://www.grayhill.com/documents/3D70-Quick-Start-Guide
http://www.learningaboutelectronics.com/Articles/How-to-detect-cars-in-a-video-Python-OpenCV.php
http://www.learningaboutelectronics.com/Articles/How-to-detect-cars-in-a-video-Python-OpenCV.php
https://doi.org/10.1109/ICEMI.2017.8265863
https://doi.org/10.1155/2015/251386
https://doi.org/10.1155/2015/251386
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

[45] Samuele Salti et al. “A traffic sign detection pipeline based on interest region
extraction”. In: The 2013 International Joint Conference on Neural Networks
(IJCNN) (2013), pp. 1–7.

[46] Vaibhavi Golgire. “Traffic Sign Recognition using Machine Learning: A Re-
view”. In: INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH
& TECHNOLOGY (IJERT). Vol. 10. 2021.

[47] Degui Xiao and Liang Liu. “Super-Resolution-Based Traffic Prohibitory Sign
Recognition”. In: 2019 IEEE 21st International Conference on High Perfor-
mance Computing and Communications; IEEE 17th International Conference
on Smart City; IEEE 5th International Conference on Data Science and Sys-
tems (HPCC/SmartCity/DSS). 2019, pp. 2383–2388. doi: 10.1109/HPCC/
SmartCity/DSS.2019.00332.

[48] Puneet Piyush Malhotra and Tanishq Chamola. Traffic sign recognition using
deep neural networks. url: https://towardsdatascience.com/traffic-
sign-recognition-using-deep-neural-networks-6abdb51d8b70.

[49] A. de la Escalera, J.M Armingol, and M. Mata. “Traffic sign recognition and
analysis for intelligent vehicles”. In: Image and Vision Computing 21.3 (2003),
pp. 247–258. issn: 0262-8856. doi: https://doi.org/10.1016/S0262-
8856(02) 00156 - 7. url: https : / / www . sciencedirect . com / science /
article/pii/S0262885602001567.

[50] Alexey Dosovitskiy et al. CARLA: An Open Urban Driving Simulator. Pro-
ceedings of the 1st Annual Conference on Robot Learning. 2017. arXiv: 1711.
03938 [cs.LG].

[51] Daniel Dworak et al. “Performance of LiDAR object detection deep learning
architectures based on artificially generated point cloud data from CARLA
simulator”. In: 2019 24th International Conference on Methods and Models in
Automation and Robotics (MMAR). 2019, pp. 600–605. doi: 10.1109/MMAR.
2019.8864642.

[52] Jean-Emmanuel Deschaud. “KITTI-CARLA: a KITTI-like dataset generated
by CARLA Simulator”. In: CoRR abs/2109.00892 (2021). arXiv: 2109.00892.
url: https://arxiv.org/abs/2109.00892.

[53] Python. Python logging. url: https : / / docs . python . org / 3 / library /
logging.html.

[54] Anil Yadav and Prerna Gaur. “Robust adaptive speed control of uncertain hy-
brid electric vehicle using electronic throttle control with varying road grade”.
In: Nonlinear Dynamics 76 (Apr. 2013), pp. 305–321. doi: 10.1007/s11071-
013-1128-9.

[55] m-lundberg. simple-PID (Oct 8, 2022). url: https : / / github . com / m -

lundberg/simple-pid.

[56] MEAN WELL. RSD-300C-12 DC/DC Converter Datasheet (September 20,
2022). url: https : / / www . meanwell - web . com / content / files / pdfs /
productPdfs/MW/RSD-300/RSD-300-spec.pdf.

[57] Molex. Molex 39-01-2100 Datasheet (October 11, 2021). url: https://gr.
mouser.com/datasheet/2/276/3/0039012100_CRIMP_HOUSINGS-2841684.

pdf.

81

https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00332
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00332
https://towardsdatascience.com/traffic-sign-recognition-using-deep-neural-networks-6abdb51d8b70
https://towardsdatascience.com/traffic-sign-recognition-using-deep-neural-networks-6abdb51d8b70
https://doi.org/https://doi.org/10.1016/S0262-8856(02)00156-7
https://doi.org/https://doi.org/10.1016/S0262-8856(02)00156-7
https://www.sciencedirect.com/science/article/pii/S0262885602001567
https://www.sciencedirect.com/science/article/pii/S0262885602001567
https://arxiv.org/abs/1711.03938
https://arxiv.org/abs/1711.03938
https://doi.org/10.1109/MMAR.2019.8864642
https://doi.org/10.1109/MMAR.2019.8864642
https://arxiv.org/abs/2109.00892
https://arxiv.org/abs/2109.00892
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html
https://doi.org/10.1007/s11071-013-1128-9
https://doi.org/10.1007/s11071-013-1128-9
https://github.com/m-lundberg/simple-pid
https://github.com/m-lundberg/simple-pid
https://www.meanwell-web.com/content/files/pdfs/productPdfs/MW/RSD-300/RSD-300-spec.pdf
https://www.meanwell-web.com/content/files/pdfs/productPdfs/MW/RSD-300/RSD-300-spec.pdf
https://gr.mouser.com/datasheet/2/276/3/0039012100_CRIMP_HOUSINGS-2841684.pdf
https://gr.mouser.com/datasheet/2/276/3/0039012100_CRIMP_HOUSINGS-2841684.pdf
https://gr.mouser.com/datasheet/2/276/3/0039012100_CRIMP_HOUSINGS-2841684.pdf

[58] Littelfuse. TVS Diode TP6KE33A Datasheet (October 6, 2021). url: https:
//gr.mouser.com/datasheet/2/240/Littelfuse_TVS_Diode_TP6KE_

Datasheet_pdf-587274.pdf.

[59] Mohamed El Amine Khettat et al. “Autonomous motorcycles: Towards be-
havioral modeling of steering systems”. In: 2012 International Conference on
Multimedia Computing and Systems. 2012, pp. 1103–1108. doi: 10.1109/
ICMCS.2012.6320211.

[60] Mohammad Ali Mohammadkhani, Babak Majidi, and Mohammad Taghi Manzuri.
“Deep Vision for Navigation of Autonomous Motorcycle in Urban and Semi-
Urban Environments”. In: 2019 5th Iranian Conference on Signal Processing
and Intelligent Systems (ICSPIS). 2019, pp. 1–5. doi: 10.1109/ICSPIS48872.
2019.9066130.

82

https://gr.mouser.com/datasheet/2/240/Littelfuse_TVS_Diode_TP6KE_Datasheet_pdf-587274.pdf
https://gr.mouser.com/datasheet/2/240/Littelfuse_TVS_Diode_TP6KE_Datasheet_pdf-587274.pdf
https://gr.mouser.com/datasheet/2/240/Littelfuse_TVS_Diode_TP6KE_Datasheet_pdf-587274.pdf
https://doi.org/10.1109/ICMCS.2012.6320211
https://doi.org/10.1109/ICMCS.2012.6320211
https://doi.org/10.1109/ICSPIS48872.2019.9066130
https://doi.org/10.1109/ICSPIS48872.2019.9066130

	List of Figures
	Acronyms and Abbreviations
	Introduction
	Thesis Motivation
	Thesis Contribution
	Thesis Outline

	Background
	Sensors
	Odometry
	Inertial Measurement Unit
	Camera
	GNSS
	Radar
	LiDAR
	Ultrasound

	Communication Protocols
	CAN
	LIN
	FlexRay

	Nvidia Drive Platform
	Hardware for Self-Driving Cars
	Software for Self-Driving Cars

	Related Work
	Nvidia Drive Hyperion
	Yamaha Motobot
	BMW R 1200 GS
	Waymo Urban Driver

	Platform Description
	Electric Motorcycle
	Platform and Sensors
	Nvidia Drive PX2
	SEKONIX SF3324-100 Cameras
	Grayhill 3D70 Display

	Offline Programming
	Object Detection and Recognition
	Traffic Sign Recognition
	Adaptive Cruise Control
	Simulation
	CARLA Simulator
	Proposed Approach
	Simple P Controller for Throttle Control
	PID Controller for throttle control
	Extensive PID Experiments

	Platform Programming
	Nvidia Drive PX2 Software
	Software Development
	Object Detection
	Rear Facing Camera
	Autonomy and Adaptive Cruise Control

	Grayhill 3D70 Display
	Graphical User Interface
	Connectivity

	Experiments

	Platform Deployment
	Power Supply
	Drive PX2
	Camera Mounting and Wiring
	Display
	Interconnection

	Conclusion and Future Work
	References

