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Abstract: The Architecture, Engineering and Construction (AEC) industry has been utilizing Decision
Support Systems (DSSs) for a long time to support energy efficiency improvements in the different
phases of a building’s life cycle. In this context, there has been a need for a proper means of
exchanging and managing of different kinds of data (e.g., geospatial data, sensor data, 2D /3D models
data, material data, schedules, regulatory, financial data) by different kinds of stakeholders and
end users, i.e., planners, architects, engineers, property owners and managers. DSSs are used to
support various processes inherent in the various building life cycle phases including planning,
design, construction, operation and maintenance, retrofitting and demolishing. Such tools are in
some cases based on established technologies such Building Information Models, Big Data analysis
and other more advanced approaches, including Internet of Things applications and semantic web
technologies. In this framework, semantic web technologies form the basis of a new technological
paradigm, known as the knowledge graphs (KG), which is a powerful technique concerning the
structured semantic representation of the elements of a building and their relationships, offering
significant benefits for data exploitation in creating new knowledge. In this paper, a review of the
main ontologies and applications that support the development of DSSs and decision making in the
different phases of a building’s life cycle is conducted. Our aim is to present a thorough analysis of
the state of the art and advancements in the field, to explore key constituents and methodologies, to
highlight critical aspects and characteristics, to elaborate on critical thinking and considerations, and
to evaluate potential impact of KG applications towards the decision-making processes associated
with the energy transition in the built environment.

Keywords: knowledge graphs; Decision Support System; semantic web; ontologies; energy efficiency;
buildings

1. Introduction

During the past decades, the Architecture, Engineering and Construction (AEC) industry
has seen the utilization of digital tools for planning, designing, constructing/deconstructing,
operating, maintaining and recycling buildings. These tools, which are often categorized
under the generic term Decision Support Systems (DSSs), aim to help stakeholders and
professionals alike to collaborate in a timely, effective and co-creative manner to avoid
future issues and ensure the success of a building’s energy targets [1]. In this respect, and
given the present and foreseeable state of the climate crisis, the building sector is defined
as being critical for the implementation and adoption of climate mitigation and energy
transition measures towards the statutory framework and targets set by policy initiatives
and instruments worldwide, such as the Paris Agreement and the UN SDGs [2,3]. Research
in this field is constantly expanding and constitutes a vast number of applications capturing
different environmental conditions and needs, case studies, technologies, methodologies,
optimization targets and criteria, problem solving methods and algorithms, etc.

The main role of the DSSs is to increase efficiency and identify optimum solutions by
assisting all life cycle stages [4]. This also applies when renovating existing buildings. DSSs
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aim to assist stakeholders to select the optimum steps, to target the best energy efficiency in
a building, while taking into consideration factors such as Indoor Environmental Quality,
intervention costs and the environmental impact of the construction as a whole. In order to
improve the energy efficiency in a building, it is argued that there are offline and online ap-
proaches [5]. The first, the offline approach, includes discrete decision problem approaches,
such as simulation-based, multi-criteria decision analysis (MCDA) and multi-objective
programming (MOP) approaches. This approach targets measures such as components,
materials and equipment integration, to improve energy and environmental performance,
and is applied during the design or retrofit phase. One important DSS tool that is in-
cluded in the offline approach is Life Cycle Analysis (LCA). LCA is used in buildings to
calculate the main environmental impact of the building’s components and operational
energy. Simple LCA methodologies are used to support decision-making processes for
building management, comparing resource efficiency for more sustainable production
selection and minimization of costs and GHG emissions [6-8]. The second, the online
approach, includes automation and control, and decision support. This approach utilizes
real-time data to interact with setpoints, and energy management and control strategies to
maximize the energy efficiency of a building during the operational phase [5]. To support
the decision-making process for energy efficiency improvement, many algorithms are used
for advanced control architectures, data-mining techniques and optimization processes [9].
These algorithms include artificial neural networks (ANNSs), fuzzy logic (FL) modeling
and evolutionary algorithms (EAs) [10,11]. ANNSs imitate the human brain and, during
the training process, adjust different weights to the various neurons, thus reducing the
potential error. FL optimization is undertaken based on human experience. There, some
rules are set and the main characteristic of FL is that there is an apportioning of the system
into regions, in order to imitate the decision-making process [12]. EAs are direct parallel
search techniques, which utilize greedy creation in order to decide their next steps. They
are also known for their prevention of mis-convergence through built-in safeguards [13].

The main decision support tools in the AEC industry concerning buildings include
BIM, Big Data analysis, IoT and semantic web technologies [4]. The utilization of digital
tools is led by the need for data management, analysis and knowledge extraction in various
fields [14]. Information and Communication Technologies (ICTs) drive the example of
knowledge extraction from Big Data analysis in the AEC industry, where different fields
exist [4]. Furthermore, the Internet of Things (IoT) also relies on information stored in
BIM. The development of semantic web technologies combined with the support provided
by Big Data infrastructure is leading to the semantic advance of IoT data and BIM data
exchange, in addition to cloud-based analysis and storage [4].

Building Information Models (BIMs) are digital models of a built structure that use
various technologies for data collection. These were first introduced in the 1970s and in
the last decades have greatly influenced the AEC industry [15-18]. The National Building
Information Model Standard (NBIMS) defines BIMs as a “digital representation of physical
and functional characteristics of a facility. As such it serves as a shared knowledge resource
for information about a facility forming a reliable basis for decisions during its life-cycle
from inception onward” [19]. BIM supports data storage, management of information in a
specific model, and different data exchanges between different users and different tools
such as Industry Foundation Classes (IFCs) and green building XML (gbXML) [20-22].
The concept of BIM has as its main principle the continuous use of digital information
throughout the life cycle of a built structure [18]. Moreover, BIM provides an effective tool
for data sharing and exchange amongst various collaborating stakeholders, surpassing
the document-centric method that was previously used. In addition, BIM is capable of
modeling Building Automated System (BAS) devices and functions, as well as upgrading
the semantic interoperability by integrating a common information model [20]. BIM is
used for FM, as it is an advancement in commissioning and the operational phases of a
building [23,24]. Facility managers can use BIM in operational and maintenance phases,
which is an improvement from unstructured information exchange, which can result
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in information loss [17]. Another use of BIM is that it can be used to integrate domain
knowledge and specific methodologies for intelligent applications based on automation [25].
Many data platforms have been created based on BIM systems to help the AEC industry
access these more organized data [26]. Furthermore, studies have shown that data coming
from several BIM models can be integrated and fully utilized when combined with semantic
technologies [27]. Furthermore, it is suggested that BIM can be used in ontology-based data
management and sharing [28]. Moreover, the combination of different knowledge domains
and reasoning with BIM can result in a knowledge graph.

The digital twins’ concept is similar to BIM, as it represents the physical structures of
a building in a digital copy, but the IoT application in the former separates it from the latter.
These differences between BIM and DT are also noted in a previous publication, where they
are categorized based on application focus, users, supporting technology, software, stages
of the life cycle and origin [29]. Data coming from sensors installed in buildings provide
up-to-date information, based on the technology of the Internet of Things (IoT), which are
then used to create a virtual representation of the building called a Digital Twin (DT) [30,31].
BIM is used in most cases to avoid errors during the design phase of a building, provide
better communication between stakeholders, enhance construction efficiency and follow
the construction’s time and cost plan [32]. A DT is used to provide predictions in the
maintenance phase, enhance resource efficiency, improve occupants’ comfort, optimize the
design of the building and communicate learnings from the building to a future one [33,34].
Moreover, the BIM’s users are architects, engineers and constructors in the design and
construction phase, and facility managers during the maintenance planning, and the BIM
can hold useful information for the demolition processes [35-37]. DTs are mostly used by
facility managers in the operational phase of the building to provide useful information to
architects by pinpointing issues of the current building and avoiding them in the next one.
However, more features have been explored lately.

Overall, such tools create a vast amount of data, either from procedures of planning,
design, construction, operation, maintenance and destruction/recycling of buildings, or
from sensors installed in the building, which are exchanged in various ways between the
stakeholders and aim to improve the energy efficiency of the building [17,38,39]. One
challenge related to the use of these tools is that a vast amount of different types of
data, which cannot be easily traded and handled, are used for knowledge extraction
by stakeholders of different backgrounds [30]. Incompatible software and proprietary
information between the stakeholders are also some reasons for this issue [30]. The different
types of data relate to geolocation data, 2D/3D models, plans, semantic data, system
data, material data, sensor data, etc. Stakeholders vary through the different phases of
a building’s life cycle and can include architects, engineers, construction teams, facility
managers, occupants, policymakers and governance.

The use of the semantic web, based on knowledge graphs and linked data, has been
proposed and studied to support data exchange and multi-stakeholder decision-making
challenges, and to achieve an improved level of communication and coordination [40].
Ontologies are at the core of semantic web design, and are characterized as formal, due to
their ability to be read by machines and their explicit nature and interoperability [41].

This section briefly introduced the field’s main issues and current situation. Section 2
provides information about the knowledge graphs and their connection with the DTs,
in addition to the adoption of semantic web technologies and KGs to solve the stated
data problem. Next, in Section 3, the methodology of this review paper is described. In
Section 4, the existing ontologies for buildings are presented and, in Section 5, some of their
applications are introduced. Section 6 presents a discussion based on the findings and, in
Section 7, the conclusions of this paper are presented. In Appendix, Table A1l contains all
the abbreviations that are mentioned in this review.
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2. Knowledge Graphs
2.1. Definition

Knowledge graphs are still evolving today, yet many different attempts have been
made to provide thorough and concise definitions [42,43]. According to a commonly used
definition, a knowledge graph acquires and integrates information into an ontology and
applies a reasoner to derive new knowledge [42]. This definition was given after research
was conducted, in order to produce a working definition based on examples. As noted by
Ehrlinger and Wolfram, considering that there are many diverse applications, a KG is more
likely to be similar to an abstract framework than to a mathematical structure [42]. Another
approach is that a knowledge graph describes real-world entities and their interrelations,
organized in a graph. It does so by defining possible classes and relations of entities in a
schema. In addition, it allows for other potentially interrelating arbitrary entities connection
with each other, and covers various topical domains [44]. Similarly, a KG can be viewed as
a graph of data intended to accumulate and convey knowledge of the real world, whose
nodes represent entities of interest and whose edges represent relations between these
entities [45]. Knowledge graphs were first introduced in 1973; however, they were not used
in a useful way until 2012, when Google announced its KG, which was the starting point
for many other companies to introduce their own [46,47]. Many applications have been
developed since then and many papers have been published, all aiming at the core idea,
which is to represent data using graphs in a manner to represent knowledge [48]. Graphs,
contrary to a relational model or NoSQL approaches, are more coherent and direct, using
edges to represent the relations between entities, and apply to various domains [45,49]. A
further aspect of a graph is that it provides the creator with the ability to delay the definition
of its schema. In this way, the graph is more flexible to evolve and obtain more incomplete
knowledge, resulting in a continuously updated database schema, or serving under an
organization or a community as an ever-evolving shared form of knowledge [48,50].

2.2. Data Graphs

One of the first principles of a KG is the graph abstraction to data. Graphs are able
to create primary data graphs, be represented by data models and be processed by query
languages. Modeling a graph differs in every situation, although some graph data models
can be adapted and customized. For example, a directed edge-labeled graph is compiled
from a set of nodes and a set of directed labeled edges that connect these nodes [51,52].
In KGs, nodes stand for entities and edges stand for the binary relations between them.
This way of modeling a graph is more appropriate when adding new sources of data. The
Resource Description Framework (RDF) is a model based on directed edge-labeled graphs
and uses a variety of nodes [53,54]. The most important nodes are the Internationalized
Resource Identifiers (IRIs), which give access to entities through the Web. Other important
nodes are literals, which represent strings and other datatype values. Finally, blank nodes
are used in RDF graphs, which are anonymous nodes that are not assigned an identifier. In
addition to literals, Uniform Resource Identifiers (URIs) can be used to uniquely identify all
nodes and edges in a graph [55]. The simplicity of an RDF is based on the triplets it consists
of, which are three-part statements that represent a relationship of subject, predicate and
object (Figure 1) [56].

When querying a graph, many languages have been introduced, including SPARQL
for RDF graphs [57]. Graph patterns are stationed at the center of a query language, which
uses the same models as the data graph that is being queried [58]. Furthermore, graph
patterns also add variables as terms, which are divided into constants [58]. Next, mappings
are generated from the variables and constants of the data graph; thus, the graph pattern
is included in the data graph. Moreover, since a graph pattern exports a table of results,
and due to the need for relational algebra to work with these tables, more complex queries
are being created [58]. Another aspect of graph query languages is that navigational graph
patterns add path expressions in queries. This allows the matching of arbitrary length
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paths between two nodes, which are expressed as a regular path and are used in graph
patterns to express navigational graph patterns [58].

predicate (—1 predicate
l Object =< | Subject | =i Object I
predicate

Figure 1. Structure of an RDF graph.

2.3. Deductive Knowledge

A KG can be identified as a data graph enhanced with representations of schema,
identity, context, ontologies and rules [45]. Schemata are used to mark the structure and
semantics that a KG will be based on. However, it has been mentioned that the definition
of a schema can be delayed even after the KG’s configuration [45]. One type of graph
schemata is the semantic. Semantic schemata are used as a vocabulary for understanding
terms used in a KG, while using these terms for reasoning the KG [45]. RDF Schema (RDFS)
is an example of a semantic schema, which introduces subclasses, sub-properties, domains
and ranges for the classes and properties in an RDF graph [59]. Many more details and
content about the semantics of KG terms is provided by the Web Ontology Language (OWL)
standard for RDF graphs [60]. Contrary to semantic schemata, validating schemata certify
existing graph data, using shapes. Shapes are responsible for targeting a set of nodes in a
data graph and identifying their constraints [61,62]. Both types of schemata need a domain
expert to identify definitions and constraints. However, in a data graph, latent structures
can be exported as an emergent schema. An emergent schema uses graphs as frameworks
to separate quotient groups of nodes, while maintaining some structural properties of the
graph [63,64].

It is necessary to know the meaning of the terms that are used in order to apply
entailment. This is achieved using ontologies, which provide a formal depiction of the
meaning of the terms. A common definition of ontologies also states that an ontology is a
“formal, explicit specification of a shared conceptualization” [41]. Web Ontology Language
(OWL) is recommended by the W3C and is compatible with RDF graphs [45,60]. In the
process of interpretation, the data graph is changed to a domain graph. There, real-world
entities and real-world connections are included and connected with the nodes and edges
of the data graph, in addition to those of the domain graph, thus following the same
model as the data graph [45]. Linking particular patterns in the data graph with semantic
conditions results in the features of an ontology language [45]. These features result in
entailments. Each axiom that is introduced from an ontology imposes some conditions on
the interpretation of the graph that satisfies it, which are called graph models. One graph
entails another if and only if the first is also a model of the last one or alternatively the
former graph entails the latter [45]. In this context, there is not an algorithm that can decide
the correct true/false answer to the question of which graph entails the other [65]. Another
approach is to always halt false with the correct answer, only receiving input ontologies
with specific features, and the final approach is to only reply with correct answers for any
input ontology, risking never halting on some inputs [66].

2.4. Inductive Knowledge

In contrast to deductive knowledge, which follows specific logical consequences,
inductive knowledge is based on generalized patterns from input observations, which are
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used to produce new but vague predictions. An overview of popular inductive techniques
is shown in Figure 2.

Inductive Knowledge

Numeric Symbolic
| | |
Unsupervised Self-supervised Supervised Self-supervised
|
I ]
Graph Analytics Embeddings GNNs Rule Mining ‘ Axiom Mining

Figure 2. Conceptual overview of popular inductive techniques for knowledge.

Analytics are based on discovering, interpreting, and communicating important pat-
terns innate to data collections. So, graph analytics are the use of analytical processes to
graph data [45]. Graphs apply specific types of analytics that result in a deduction, where
nodes and edges are based on the topology of the graph and gain their techniques from
graph theory and network analytics [67].

Machine learning, which has made a significant amount of progress in the past few
years, can be used to directly refine a KG [68]. The aim of KG embedding methods is to
condense the graph in a continuous, low-dimensional vector space, where machine learning
tasks can be embedded, making it possible for embeddings to execute some low-level tasks
around nodes and edges [45].

Another method is to compile a custom machine learning model modified for graph-
structured data, with the majority of them depending on artificial neural networks [69]. A
graph neural network (GNN) compiles a neural network depending on the topology of a
data graph, and is even capable of replacing algorithms [70-72].

A different method is to use symbolic learning to gain knowledge about hypotheses
in a symbolic language that clarifies some positive and negative edges. These nodes are
automatically produced from the KG, and the hypotheses are then used as interpretable
models, capable of additional reasoning [45].

2.5. Knowledge Graphs and Digital Twins

The issue established in Section 1 referred to the need for sustainable data management
and an exchange technology for buildings. DTs, described in Section 1, play the role
of DSS for buildings and can integrate knowledge graphs to solve this problem. This
integration is argued to be the border between the physical and cyber layers of a DT-KG
architecture [73]. The connection between these two layers is the runtime data and the
environmental parameters that are fed from the physical to the cyber layer. Both internal
and external system parameters must be taken into consideration in such an architecture in
order to either adjust them automatically, or act like a DSS and be adjusted by the user. A
service interface is suggested to be used in order to access the digital models, which are
synchronized with the data from the physical asset and hold a Digital Twin- Physical Asset
(PA) Awareness module, which enables the ongoing parameter changes.

Furthermore, a metamodel such as an ontology is an important part of the DT-KG
architecture. An ontology in such a structure establishes the static and dynamic relation-
ships between entities, and connects them to their respective data, accessed by the physical
asset. Thus, this ontology can be used to create the knowledge graph and run it with the
DTs’ digital data and models [73]. A proposed adoption of KGs in DTs consists of internal
linking and referencing, knowledge completion, error detection, collective reasoning and
semantic query, which is also supported by other papers [45,73]. After establishing the
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background of why KGs are important and their role in DTs and buildings, in the next
section some of the most prominent ontologies based on buildings are presented, with the
most important ones being explored further.

3. Methodology

The data exchange and management issue that was discussed in Section 1 is depicted
in Figure 3 and functions as an overview of the work undertaken in this paper. This issue
occurs among various stakeholders through the different life cycle stages of a building in
the AEC industry and is proposed to be tackled with the use of DSS. The methodology
that was followed is depicted in Figure 4. The different ontologies used in buildings
and their applications are reviewed in this paper and categorized into design and related
operational phases. The ontologies linked to the operational phase can be further classified
as smart building-oriented, occupant behavior-centric, and asset management-related.
The most prominent ontologies are further explored and categorized as being associated
with IFC, W3C, smart buildings and occupant behavior. Next, applications are examined
based on their focus on building performance improvement and facility management.
Finally, conclusions are drawn based on the advantages and disadvantages of the reviewed
ontology and applications. The limitations of this study and prospects are also discussed.

Data Exchange
& Management

Stakeholders/ Different Life-cyc'le
End-users v Phases of a Building
in AEC Industry

Decision
Support
Systems

Figure 3. Data exchange and management in buildings.

Knowledge Graphs
based on Ontologies

Building
Design Phase
v
Most Review of Ontologies
Prominent for Buildings L

Building
[ IFC-related ] [ W3C-related ] Operatlonal Phase

| ' y

[ Smart Building- ] [ Occupant ] l Smart Bulldmg l [ Occupant Behavior ]
A

related Behavior-centric

A

Review of Ontology
Appllcatlons in Buildings

] [ Asset Management ]

Performance Improvement [ Facility Management ]

[ Building Energy ]

Figure 4. Methodology schema followed for the review.
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4. Existing Ontologies for Buildings

In this section, the most important ontologies for buildings are introduced and cat-
egorized, according to the phase they refer to, i.e., design or operational. An in-depth
analysis of some of these key ontologies is conducted as it is necessary for the objectives of
the review.

4.1. Ontologies in Building Design Phase

One of the most important tools, if not the most important, that is used as a base
for many ontologies is the IFC schema, which has been combined in an approach with
OWL, creating the ifcOWL ontology [74,75]. ifcOWL ontology’s complexion has driven the
introduction of SimpleBIM, which is a much more simplified but powerful ontology [76].
These initial ontologies are further discussed in Section 4.3.1. Another ontology is Green
Building XML (gbXML), for which the main scope is the information exchange between
BIM and AEC analysis software [22]. With streamlining, gbXML transfers BIMs from and
to AEC models, aiming to design sustainable and energy-efficient buildings [22]. Another
is Tubes, which supports a high-level description of building service systems and utilizes
data principles to extract their topology from IFC models [77]. Two more ontologies are
SimModel Ontology and Energy ADE, which focus on exchanging energy simulation data
and are an extension to CityGML [78-80].

4.2. Ontologies on Building Operational Phase

An ontology that focuses on sensor networks is Semantic Sensor Network/Sensor,
Observation, Sample, and Actuator (SSN/SOSA), which is not only specific to building sen-
sors [81]. Other ontologies, such as Web of Things Model (WoT), oneM2M BaseOntology’s
and One Data Model (OneDM), focus on the representation of IoT objects [82-84]. WoT is
a model used to describe the virtual counterpart of physical objects in the Web of Things;
oneM2M BaseOntology provides syntactic and semantic interoperability between oneM2M
and external systems; and OneDM is a model used to support a common language for
the Internet of Things. More ontologies that focus on smart buildings are Smart Energy
Aware Systems (SEAS), ThinkHome, Building Ontology for Ambient Intelligence (BOn-
SAI), DogOnt, Ontology of Smart Building (5SBOnto) and Smart Applications REFerence
(SAREF) [85-90]. SEAS ontology represents entities in a smart building. ThinkHome is
an ontology that includes concepts needed to realize energy-efficient and intelligent con-
trol mechanisms. BOnSAl is a smart building ontology for ambient intelligence, whereas
DogOnt is a model for all devices being part of IoT inside a smart environment. SBOnto
is a smart building ontology and SAREF matches existing assets in the smart application
domain. SAREF ontology has many extensions that differentiate the classifications and
concepts, which are able to be used together for a more specific approach. These extensions
include SAREF4BLDG, a building domain extension. SAREF4ENER, an energy domain
extension, SAREF4CITY, a smart cities domain extension, SAREF4ENVI, an environment
domain extension, SAREF4INMA, an industry and manufacturing domain extension,
SAREF4AGR], a smart agriculture and food chain domain extension, SAREF4AUTO, an
automotive domain extension, SAREFAEHAW, an e-health/ageing-well domain extension,
SAREFAWEAR, a wearables domain extension, SAREFAWATR, a water domain extension,
and SAREF4LIFT, a smart lift domain extension [90].

Next, some ontologies have building automation and monitoring as the center of their
attention. These ontologies are Project Haystack 3, BASont, Project Haystack 4, HTO, Brick
Schema, Google Digital Building Ontology, Semantic BMS ontology (SBMS), CTRLont and
Green Button [91-99]:

e  Project Haystack 3 and 4 focus on the representation of buildings entities and concepts
utilizing tagsets.
BASont focuses on building automation and monitoring.
HTO focuses on streamlining data from IoT based on Project Haystack.
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e  Brick focuses on metadata and data points from building advancement and needs to
be based on end-use applications.

o  GDBO represents structured information about buildings and building-installed equip-
ment.

e SBMS is a BAS-protocol-independent model of intelligent building systems, and
CTRLont is a model of control logic in BAS.

Another ontology that falls in the same category is that proposed by E. Meshkova,
which has as its scope the representation of relations between devices and services regarding
home automation [100]. Other ontologies have a broader perspective, such as RealEstate-
Core (REC), Building Topology Ontology (BOT), Building Automation and Control Systems
(BACS), Knowledge Model for City (KM4City) and EM-KPI Ontology [101-105]. REC fo-
cuses on usage analysis and optimization and presence analysis of a building structure;
BOT focuses on the representation of physical and conceptual objects of a building and
the connections between them; BACS supports the modeling control behavior in a BAS,
physical devices of a BAS, and their location in the building and connection to technical
equipment and appliances; KM4City is a representation model for a city and mobility; and
EM-KPI focuses on the enhancement of energy management at district and building levels.

Furthermore, other ontologies target their scope towards grid-interactive efficient
building applications. These ontologies are Facility Smart Grid Information Model and
RESPOND [106,107]. FSGIM is an abstract information model representing a Smart Grid’s
perspective of a facility. RESPOND reuses BOT, SAREF and SEAS ontologies to create its
ontology. Its main scope is to manage the dispatch of real-time optimal energy, considering
both supply and demand, while considering all energy assets on-site [107].

Moreover, some ontologies concentrate on occupants’ behavior, such as DNAs Frame-
work (obXML), Occupancy Profile (OP) Ontology, Onto-SB and OnCom [108-111]. DNAs
Framework explains that, in order to describe the impact of the behavior of occupants on
energy use in building, there has to be four core components i.e., drivers, needs, actions and
systems. These components interact with the outside world and the inside world as human
beings [112]. Onto-SB is a human profile ontology for energy efficiency in smart buildings,
OP ontology is a semantic model for occupancy profile, and OnCom is an ontology for
occupant thermal comfort and energy efficiency optimization.

Finally, ontologies that emphasize asset management and audits are Building Energy
Data Exchange Specification (BEDES), Virtual Buildings Information System (VBIS) and
Ontology of Property Management (OPM) [113-115].

All the ontologies are gathered in Table 1, and the most prominent are discussed in
Section 4.3.

Table 1. Reviewed ontologies for buildings.

Category Name Scope/Description Year  Ref.
Industry Foundation Classes (IFC) Gives spatial ?;1(:.1 o’Fher pr9pert1es to every 2013 [21]

uilding entity
ifcOWL Descriptive OWL representation of IFC schema 2016 [75]
o . simpleBIM Simplified version of ifcOWL 2017  [116]
Bu11dI1)r}11%1 l)ees1gn Green Building XML (gbXML) Information exchange between BIM and Models 2000  [21]

High-level description of building
service systems [
SimModel Ontology Exchange of energy simulation data 2014 [
EnergyADE Exchange of energy simulation data 2014 [

Tubes 2020
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Table 1. Cont.

Category Name Scope/Description Year  Ref.
Semantic Sensor Network/Sensor,
Observation, Sample, and Actuator Focuses on sensors in buildings 2011 [81]
Smart Buildings (SSN/SOSA)
. Model to describe the virtual counterpart of
Web Thing Model (WoT) physical objects in the Web of Things 2015 [82]
, Provide syntactic and semantic interoperability
oneM2M BaseOntology’s between oneM2M and external systems 2016 [83]
One Data Model (OneDM) Model to support a common language for the 2018 [84]
Internet of Things
Smart Energy Aware Systems 2016 [85]
Ontology that includes concepts needed to realize
ThinkHome energy efficient and intelligent 2011 [86]
control mechanisms
Building Ontology for Ambient A smart building ontology for 2012 [87]
Intelligence (BOnSAI) ambient intelligence
DogOnt Model for all devices be}ng part of IoT inside a 2008 [88]
smart environment
Ontology of Smart Building (SBOnto) Smart Building Ontology 2017 [89]
Smart Applications REFerence (SAREF) Matches ex1§tlng assets in .the smart 2014  [90]
applications domain
Project Haystack 3 Hierarchical representatlc.)r} 9f buildings entities 2014 [91]
and concepts utilizing tagsets
BASont Building Automation and Monitoring 2012 [92]
. Hierarchical representation of buildings entities
Project Haystack 4 i 2019  [93]
and concepts utilizing tagsets
. Streamlining Data from IoT based on
Haystack Tagging Ontology (HTO) Project Haystack 2016 [94]
Metadata and data points from building
Brick Schema advancement and needs based on 2016 [95]
end-use applications
- a1 Represent structured information about buildings
Google Digital Building Ontology and building-installed equipment 2020 [96]
Semantic BMS ontology (SBMS) BAS-protocol—md?pgndent model of intelligent 2016 [97]
building systems
CTRLont Model of Contrql Logic in Building 2017 [99]
Automation Systems
Green Button Building Automation and Monitoring 2011 [98]
RealEstateCore (REC) Usage ana1y51§ and opt%ml.zahon and presence 2017 [101]
analysis of a building structure
g1 Representation of physical and conceptual objects
Building Topology Ontology (BOT) of a building and the connections between them 2019 11021
Supports the modeling control behavior in a BAS,
Building Automation and Control physical devices of BAS and their location in the 2017 [103]
Systems (BACS) building and connection to technical
equipment and appliances
Knowledge Model for City (KM4City) Representation model for city and mobility 2014 [104]
Enhance energy management at district
EM-KPI Ontology and building levels 2017 [105]
. . . An abstract information model of what the Smart
Facility Smart Grid Information Model Grid looks like from the perspective of a facility 2014  [106]
RESPOND Manage real-time optimal energy dispatching, 2020 [107]

considering all energy assets on site
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Table 1. Cont.

Category Name Scope/Description Year  Ref.
DNAs Framework (obXML) Represent the impact of the behavior of 2015 [112]
occupants on the building’s energy efficiency
Occupant Occupancy Profile (OP) Ontology Semantic model for occupancy profile 2020 [109]
Behavior -Centric i ici i
Onto-SB Human Profile Ontology ff)r Energy Efficiency in 2018 [110]
Smart Building
OnCom Occupant Thermal Comfort Optimization 2019 [111]
Building Energy Data Exchange Data information gathering and storing based on 2014 [113]
Specification (BEDES) building’s systems
Audits and Assets Virtual Buildings Information Classifies and connects asset data 2020 [114]
Management System (VBIS) sources and systems
Ontology of Property Vocabulary for modeling complex assets in a 2018 [115]
Management (OPM) building design environment

4.3. Prominent Ontologies for Buildings
4.3.1. Industry Foundation Classes (IFC) Related Ontologies

To every entity, an IFC schema gives spatial properties, and various other properties that
are classified. ifcOWL is a complex ontology language, which is a translation from the IFC
schema through the EXPRESS data modeling language into an OWL representation [21,75].
The complexity is shown as a property set that assigns the properties using relational nodes.
Two intermediate nodes are needed to insert the name and the value of the property. The
EXPRESS datatype is used to express literals. SimpleBIM is an attempt to simplify this
ifcOWL as it uses the most straightforward approach. Figure 5 shows the difference between
them, as they represent the same entities. SimpleBIM also uses the Turtle serialization
format for RDF data models [76].

true
ifcowl:Ifcldentifier

s-hasString npleBiM:isLoadBearing

.lnsltlchIab_37864

LoadBearing

ifcowl:ifcRelDefinesByProperties
@ inst:Ifcidentifier_43912

P ifcowi:IfcSlab
@ nstiicsian 37864 | SimpleBIM.
f i ) 4 » 1 fcP r n
ifcowl:IfcPropertySingleValue
_ @ insticRelDefinesByProperties_37867 @

@ ifcowt:lfcSlab
sk .mst;tchmpertySingleValua_dMS
p
R yPr 2 =
@ instIfcPropertySet_37866
true
.inserOOLEAN739949
. ifcowt:IfcPropertySet
ifcOWL @ express:BOOLEAN
lass nstance Literal
@c @

Figure 5. Visual complexity comparison of representing property assignment using ifcOWL and
simpleBIM [74] (Reprinted from Elsevier Automation in Construction, Volume 108 /December 2019,
102956, Mads Holten Rasmussen, Maxime Lefrangois, Pieter Pauwels, Christian Anker Hviida Jan
Karlshgj, “Managing interrelated project information in AEC Knowledge Graphs”, Pages No. 4 and 13,
Copyright (2019), with permission from Elsevier [OR APPLICABLESOCIETY COPYRIGHT OWNER]).
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4.3.2. World Wide Web Consortium (W3C) Related Ontologies and Extensions

Due to IFC’s extensive use, a less complex, extensible and modular ontology was
required, and hence the World Wide Web Consortium (W3C) Linked Building Data (LBD)
community group was first created in order to provide solutions for these needs [117].

The main solution was Building Topology Ontology (BOT), introduced by Rasmussen
in 2016. It constitutes a simple ontology based on the topology of a building and its physical
and conceptual objects and the connections between them [118]. For this to happen, BOT
sets some rules that subdivide the building into stories and spaces. Spaces are bound by
building elements and spaces can contain building elements. It is an ontology that focuses
on the building as a structure and does not cover the needs of the whole AEC domain, but
can be used as a central ontology to link others [118]. As a result, BOT is a simple base
ontology for building structures that can be easily connected with other ontologies to add
more information, making the procedure more customizable and malleable in different
situations. Having BOT as their core, many extensions to this ontology have been developed.
Examples include domain ontology for building elements (BEO) and distribution elements
(MEP); ontologies for damage monitoring of buildings and built structures (DOT); ontology
for bridges (BrOT); a flow systems ontology (FSO); an ontology for building products (BPO);
an ontology for geometry formats (FOG); an ontology for managing properties (OPM); and an
ontology for managing geometry (OMG) [115,119-125]. Moreover, extension ontologies such
as QUDT, SSN/SOSA, O&M and time can be combined with BOT, enabling adaptation to
specific needs [81,126-128].

Ontology for Property Management (OPM), which is of great interest among the rest
of the extensions, offers the vocabulary for modeling complex entities in a design envi-
ronment, and was proposed by Rasmussen in 2018 [74,129]. These entities are defined as
complex because they can alter through time. Their reliability can be based on assumptions
and on other entities that can also change, causing an effect on them. OPM uses SEAS,
schema.org and PROV-O ontologies as extensions, and can work alongside BOT, PROPS
and PRODUCT ontologies of the W3C LBD Community Group [130]. To test OPM, a case
study was developed to calculate the heating demand in a building through the ontology
(Figure 6) [74]. An OPM-REST application on the AEC-KG was then developed as a generic
approach [74]. The case study showed that OPM is a different way of working with build-
ing data and paves the way to access and utilize BIM models, exchanging information
between stakeholders using the same tool [74].
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Figure 6. Visualization of the AEC-KG model for the heat-loss calculation case study [74] (Reprinted
from Elsevier Automation in Construction, Volume 108/December 2019, 102956, Mads Holten
Rasmussen, Maxime Lefrangois, Pieter Pauwels, Christian Anker Hviida Jan Karlshej, “Managing
interrelated project information in AEC Knowledge Graphs”, Pages No. 4 and 13, Copyright (2019),
with permission from Elsevier [OR APPLICABLESOCIETY COPYRIGHT OWNERY]).
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4.3.3. Smart Building Related Ontologies

The first smart building-related ontology to be discussed is Brick [131]. Brick’s main
goal is concentrated on metadata and data points from building advancement and needs.
These data points are based on end-use applications and consist of the main ontology
that establishes the core concepts and the connections between them, in addition to a
typology that enlarges the building’s concepts [95]. Brick is a schema that addresses the
problem of heterogeneity of building representation, and adds a quick and non-costly
reaction to energy efficiency measures [132]. The concept of tags is adopted, based on
Project Haystack, to add a more flexible means to annotate metadata. Then, these tags are
altered with an ontology that boosts its concepts, creating a framework that establishes
hierarchies, relationships and properties that are mandatory for building metadata [95,133].
Furthermore, using an ontology provides the schema with the ability to manipulate the
metadata using common tools. In the Brick schema, the tagset concept is introduced,
which groups tags with similar properties [132]. In Figure 7, the information concepts
and the relationship to a data point are shown. Relationships are qualities that connect
a point with other classes, with the major classes being the Location, the Equipment and
the Measurements, also shown in Figure 8, as well as their subclasses Figure 9 depicts the
example building. Base on this building, Figure 10 shows the relationships of it and it is
understood that it represents an early visual of a KG. Brick models are making it easier to
represent some subsystems in buildings, as they bypass their complex and heterogeneous
character, and support the composition and hierarchies in the building [95]. Furthermore,
Brick also stands out due to its ability to access open reference implementations on existing
buildings, in order to authenticate the effectiveness of the solution [95].

fieeds,
et isPartOf
=’ feeds,

- isLocationOf

Equipment

18PointOf

Resources

Figure 7. Information concepts in Brick and their relationship to a data point [132] (Reprinted from
Elsevier Applied Volume 226, Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao,
Joshua Gluck, Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, Mario
Bergés, David Culler, Rajesh K. Gupta, Mikkel Baun Kjeergaard, Mani Srivastava, Kamin Whitehouse,
Brick: Metadata schema for portable smart building applications, Pages No. 1273-1292, Copyright
(2018), with permission from Elsevier [OR APPLICABLESOCIETY COPYRIGHT OWNER]).
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v Equipment v Location
> 'Fire Safety System’ Building
v HVAC Floor
> AHU 'HVAC Zone'
> Fan 'Lighting Zone'
> Pump > Room
v 'Terminal Unit' v Point
'Fan Coil Unit' > Alarm
VAV > Command
> Valve > Sensor
'Lighting System’ > Setpoint
> 'Water System' > Status

Figure 8. A subset of the Brick class hierarchy [132] (Reprinted from Elsevier Applied Volume 226,
Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck, Dezhi Hong, Aslak
Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, Mario Bergés, David Culler, Rajesh K. Gupta,
Mikkel Baun Kjeergaard, Mani Srivastava, Kamin Whitehouse, Brick: Metadata schema for portable
smart building applications, Pages No. 1273-1292, Copyright (2018), with permission from Elsevier
[OR APPLICABLESOCIETY COPYRIGHT OWNER]).
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Figure 9. A simple example building that highlights the components to be modeled in a building
schema [132] (Reprinted from Elsevier Applied Volume 226, Bharathan Balaji, Arka Bhattacharya,
Gabriel Fierro, Jingkun Gao, Joshua Gluck, Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploen-
nigs, Yuvraj Agarwal, Mario Bergés, David Culler, Rajesh K. Gupta, Mikkel Baun Kjeergaard, Mani
Srivastava, Kamin Whitehouse, Brick: Metadata schema for portable smart building applications,
Pages No. 1273-1292, Copyright (2018), with permission from Elsevier [OR APPLICABLESOCIETY
COPYRIGHT OWNER]).

Haystack Tagging Ontology (HTO) is an “open-source initiative to streamline working
with data from the Internet of Things”, based on Haystack [94]. Haystack is responsible
for terminology and instance data representation. Its primary purpose is semantic data
representation using depositories of name and value relations [134]. These names are called
Tags and are used to describe instance data. The name—value pairs mentioned previously
are called Defs, and the repositories are called libraries, where a group of them is utilized
to describe instance data [134]. HTO is based on Haystack and utilizes semantic web
technologies and organizes the tags’ usage in parallel to enriching the current ontology [120].
HTO'’s structure is similar to the Brick ontology, and consists of site, equipment and points
classes, which are also connected with an external weather class [19]. The tags are utilized
to connect properties and product classes with any entity in the building structure [19].
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Figure 10. Brick classes and relationships for a subset of the example building in Figure 9 [132]
(Reprinted from Elsevier Applied Volume 226, Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro,
Jingkun Gao, Joshua Gluck, Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal,
Mario Bergés, David Culler, Rajesh K. Gupta, Mikkel Baun Kjeergaard, Mani Srivastava, Kamin
Whitehouse, Brick: Metadata schema for portable smart building applications, Pages No. 1273—
1292, Copyright (2018), with permission from Elsevier [OR APPLICABLESOCIETY COPYRIGHT
OWNER])).

Another important ontology is SAREF, which is “a tangible object designed to accom-
plish a particular task in households, common public buildings or offices and in order to
accomplish this task, the device performs one or more functions” [98]. SAREF4Building
Ontology is an extension of SAREEF, and is an ontology similar to BOT; however, the former
includes sites, stories and a class of devices, whereas the latter does not [121].

The last ontology to be mentioned is Real Estate Core Ontology (REC), which has as its
main role energy usage analysis and optimization, and the presence analysis of a building
structure [135]. The ontology is based on two main and four secondary modules. The two
main modules include the metadata and the core. The metadata module contains annotation
properties, used for ontology documentation. The core module gathers high- level classes
and properties that are frequently reused in REC modules. In addition, the core module
imports the metadata module. Energy usage analysis and optimization refer to the fact
that a facility that is more sustainable and planned energy usage is automatically applied.
REC can support a BMS in different ways [115]. One is by controlling and analyzing energy
usage by locating broken or misaligned sensors and by altering the HVAC and lighting
system to the users’ needs. Moreover, support can be given by anticipating future needs and
loads and using thermo-dynamic effects. Presence analysis refers to the ability of the system
to detect occupancy in the building. This detection is achieved with measurements such
as the actual number of people in different rooms, the people flows in a building and the
activity of these people [115]. REC’s structure is close to that of BOT and SAREF4Building,
except for some classes and a difference in component classification [13].

4.3.4. Occupant Behavior Related Ontologies

DNAs Framework is a powerful approach to represent the impact of occupants’
behavior on the building’s energy efficiency [112]. It separates that impact into four
components, i.e., drivers, needs, actions and systems, which comprise the outside and
inside world (see Figure 11). Drivers are the environmental elements that impact the
occupants’ psychological or physical needs in the inside world. The categories of this
topology include building (component, properties, location), occupant (attributes, attitudes,
location, state), environment (climate, indoor, outdoor, weather), system (properties, state)
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and time (day, week, month) (Figure 12). Needs refer to the physical and non-physical
necessities to satisfy the occupants in the inside world. Physical needs refer to biological
needs (food, drink, bathroom, hygiene, sleep) and the need for comfort (thermal, acoustic,
visual, IAQ) (Figure 13). Actions refer to the interactions between the occupant and the
systems or activities in which an occupant can participate to change environmental comfort.
These actions are interactions with the systems, movement, and reporting discomfort or
inaction. Finally, systems refer to equipment or mechanisms an occupant can interact with
to change environmental comfort (Figure 14). These systems are windows, shades/blinds,
lights, thermostats, space, equipment, clothing and prompts/feedback (Figure 15). The
overall field of DNAs Framework’s applications addresses questions regarding the types
of behaviors it covers, why this framework is valuable, in which types of buildings it can
be applied, who can use it, when it can be used and how it can represent energy-related
behavior (Figure 16).

human building
environment
S

inside world  outside world

Figure 11. DNAs Framework Components [112] (Reprinted from Elsevier Building and Environment,
Volume 92, Tianzhen Hong, Simona D’Oca, William J.N. Turner, Sarah C. Taylor-Lange, An ontology to
represent energy-related occupant behavior in buildings. Part I: Introduction to the DNAs framework,
Pages No. 764-777, Copyright (2015), with permission from Elsevier [OR APPLICABLESOCIETY
COPYRIGHT OWNER]).

Component Day
Properties }. Week
Location . 17 Month

Attributes Climate

Attitudes - Indoor

Location Outdoor
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| |
Properties State

Figure 12. Drivers that impact energy-related occupant behavior [112] (Reprinted from Elsevier
Building and Environment, Volume 92, Tianzhen Hong, Simona D’Oca, William J.N. Turner, Sarah
C. Taylor-Lange, An ontology to represent energy-related occupant behavior in buildings. Part I:
Introduction to the DNAs framework, Pages No. 764-777, Copyright (2015), with permission from
Elsevier [OR APPLICABLESOCIETY COPYRIGHT OWNERY)).
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Figure 13. Needs of occupants that can impact the building energy use [112] (Reprinted from Elsevier
Building and Environment, Volume 92, Tianzhen Hong, Simona D’Oca, William J.N. Turner, Sarah
C. Taylor-Lange, An ontology to represent energy-related occupant behavior in buildings. Part I:
Introduction to the DNAs framework, Pages No. 764-777, Copyright (2015), with permission from
Elsevier [OR APPLICABLESOCIETY COPYRIGHT OWNER]).

| | I I
Interaction with systems Movement Inaction Report discomfort

Figure 14. Actions taken by occupants to cover their needs [112] (Reprinted from Elsevier Building
and Environment, Volume 92, Tianzhen Hong, Simona D’Oca, William ].N. Turner, Sarah C. Taylor-
Lange, An ontology to represent energy-related occupant behavior in buildings. Part I: Introduction
to the DNAs framework, Pages No. 764-777, Copyright (2015), with permission from Elsevier [OR
APPLICABLESOCIETY COPYRIGHT OWNERY)).
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Figure 15. Systems that an occupant can interact with and change the building energy usage [112]
(Reprinted from Elsevier Building and Environment, Volume 92, Tianzhen Hong, Simona D’Oca,
William J.N. Turner, Sarah C. Taylor-Lange, An ontology to represent energy-related occupant
behavior in buildings. Part I: Introduction to the DNAs framework, Pages No. 764-777, Copyright
(2015), with permission from Elsevier [OR APPLICABLESOCIETY COPYRIGHT OWNER]).
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Figure 16. DNAs Framework Applications [112] (Reprinted from Elsevier Building and Environment,
Volume 92, Tianzhen Hong, Simona D’Oca, William J.N. Turner, Sarah C. Taylor-Lange, An ontology to
represent energy-related occupant behavior in buildings. Part I: Introduction to the DNAs framework,
Pages No. 764-777, Copyright (2015), with permission from Elsevier [OR APPLICABLESOCIETY
COPYRIGHT OWNER]).

obXML is an attempt to implement DNAs Framework in the form of an XML schema,
which resulted in a successful schema [94]. In its success, the obXML schema can describe
occupant behavior in a structured way, to researchers and different stakeholders. Moreover,
the schema provides a platform to describe the occupant behavior and assess the reaction
between occupant behavior and building energy modeling. Furthermore, its design means
it can be easily adapted and modified to include more elements in the schema. The DNAs
framework is implemented in the obXML schema, linking three core elements which refer
to the Building, the Occupants and the Behaviors. In addition to these core elements are the
elements of Time of Day and Seasons. obXML has in its core DNAs Framework. obXML’s
trees categorize the core elements and the drivers, needs, actions and systems [136]. In
Figure 17, an example of applying priority indicators for possible multiple actions taken in
a Drivers—Needs—Actions-System framework is shown [136]. In this example, the indoor
air temperature overheating is the driver and the thermal comfort is the need. Moreover,
the three actions to choose from are to close the blinds, turn on the HVAC, or open the
window, and the system that it reacts with is the HVAC system.
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Figure 17. Example of priority indicators in DNAs Framework [136] (Reprinted from Elsevier Build-
ing and Environment, Volume 94, Part 1, Tianzhen Hong, Simona D’Oca, Sarah C. Taylor-Lange,
William J.N. Turner, Yixing Chen, Stefano P. Corgnati, An ontology to represent energy-related occu-
pant behavior in buildings. Part II: Implementation of the DNAS framework using an XML schema,
Pages No. 196205, Copyright (2015), with permission from Elsevier [OR APPLICABLESOCIETY
COPYRIGHT OWNER]).

Next, another powerful ontology that considers human behavior is Onto-SB, which
is a domain ontology for smart buildings [110]. This ontology considers factors of a
smart building, namely humans, environment, services, devices, places, context-awareness,
energy sources, profiles, etc. One of the core concepts of this ontology is the building
concept. The building concept includes relationships with other concepts such as location,
environmental parameters, actors and energy sources. Moreover, the activity concept is
important and is divided into scheduled and inferred activities that a human can do in
a smart building. Consequently, the human concept is also important for this ontology
and includes characteristics such as name, age, weight, height and gender. Many concepts
are also connected to the human profile, to create a better representation of the human
concept in a smart building. This is rooted in the fact that human needs are responsible for
the comfort in the building, which alters the energy consumption. The actors” concept is
another and represents the residents of the smart building. The residents are divided into
groups (family, friends, brothers, etc.) and individuals (Human and Nonhuman (pet, robot))
categories. This concept is connected with others, such as the human profile. Moreover,
there is a service concept, which is connected with the appliances and devices concepts and
has a type, grounding and model. This concept relates directly to the appliance that the
user made the decision about. Furthermore, there is the time concept, which is divided
into three classes, namely time-temporal, time-instant and time-interval. These classes
include characteristics of time (hour, minute, second). Next, the concept of environmental
parameters is also important and every location in a smart building is connected with that
concept. Another important concept is the appliance concept. It includes categories of
different devices, sensors and actuators. All three of these are connected with their location,
the service they provide and the properties (ID, type, values, protocol) that defines them.
The source concept is also a core concept and refers to the energy sources (renewable and
nonrenewable) that can exist in a smart building. Finally, the place concept has a key role
and represents different places in a smart building. This concept connects places with
appliances, actors and the environment. It is also divided into indoor and outdoor places.
Many other concepts are included in this ontology, but these are mostly the concepts that
interact with human behavior.

5. Applications of Ontologies in Buildings

In this section, some applications of the ontologies reviewed in Section 4, as well
as their reuse to create new applications, are presented. First, applications focusing on
building performance improvement are discussed, followed by applications that target the
facility management perspective.
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Using KPIs to assess a building’s performance is common and that is why some
ontologies have been taken that into consideration. The first to be discussed was introduced
by Corry et al. [137]. In it, ifcOWL, SimModel and SSN ontologies are reused to create an
architecture that focuses on reducing the performance gap between the real and simulated
data. This case study considered the simulated and measured KPIs in order to assess the
thermal comfort conditions and the HVAC system performance. These considerations
were supported by the selected ontologies. However, this architecture did not manage
real-time data streaming. Hu et al. [138] took the previous work one step further by creating
an ontology-based architecture, which was based on two algorithms. The first gathers
and prepares data streaming from various sources and the second calculates the building
performance. Furthermore, a case study was examined with the use of the RDF schema
and SPARQL query language integrated with OpenMath and Linked Data. The difference
between these two cases is that the first did not use real-time data, whereas the second
did. It was proved in the second case that it is essential to use real-time data, as it supports
various procedures throughout the building’s life cycle. An ontology-based architecture
that focused on performance tracking at building and district levels was developed by
Li et al. [139], and tested in a case study of a microgrid comprising 19 solar houses. This
architecture consisted of the ifcOWL ontology, the SimModel ontology, for creating an
XML-based building simulation model (to be used in EnergyPlus and OpenStudio), and
the SSN ontology, which was used for semantically integrating sensor data [137-139]. In
addition, an ontology-based architecture for building energy savings was proposed by
Han et al. [140], which included the RDF schema, D2RQ ontology translator, OWLIM-RDF
database and EnergyPlus as a simulation tool [141,142]. The scope of the case study that
was conducted was to identify any energy waste in the office zone. In the same context,
InterfaceOnto was proposed by Kadolsky et al. [143]. Its main scope is to support the
selection of efficient and best-cost HVAC systems. In addition, it focuses on the evaluation
and prioritization of energy performance values (cooling/heating) consumption, through
a platform called MonitoringLab. The case study aimed at the design phase, while the
operational phase needs to be further researched. A more occupant-centric ontology is
OPTIMUS, which is used in an architecture to target the occupants in a building and makes
suggestions to reduce building energy by their behavior [144]. Two case studies were
explored, where the first used the architecture to provide solutions for energy reduction
and increased comfort based on the building’s assessment; in the second, the architecture
was applied in a lab in Athens where the building’s energy was reduced relative to the
year before the ontology was applied. The obFMU tool is a modeling tool that takes into
consideration occupant behavior, as it is based on DNAs framework and obXML schema,
which were discussed in Section 4.3.4 [145]. Moreover, these tools contain a co-simulation
interface, a data model and solvers. Three examples were examined, where the first coupled
obFMU with EnergyPlus to model occupant behavior lighting control; the second modeled
the occupant behavior window action; and the last modeled HVAC control. Onto-SB
ontology was used in another work, where an intelligent context-awareness Building
Energy Management System was proposed [146]. The scope of this mechanism is to reduce
building energy consumption by having occupant behavior changes as a top priority and
covering their thermal comfort needs. Their case study is a residential building with four
people, where they apply distinctive characteristics. After they integrate the proposed
mechanism, they achieve a 40% reduction in energy consumption. Furthermore, Onto-
SB ontology is also used in an approach where the main scope is the efficient control of
appliances and devices in smart buildings, targeting the occupants’ comfort and energy
consumption reduction [147]. Two experiments were conducted. The first aimed to reduce
the energy consumption by altering different characteristics in the scenario and the second
tried to make the simulation process quicker. Another occupant behavior-centric ontology
is OnCom, which combines a wireless sensor network and an emotional state analysis
from occupants to calibrate indoor thermal comfort [111]. A case study was conducted that
tested eleven participants with different characteristics. Each participant responded to the
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system’s actions in a different situation with respect to the indoor thermal comfort. The
results showed that the majority of users agreed with the system’s decisions.

In another work, gbXML was used in an attempt to create a BIM-based system that
automatically associates and updates thermal property measurements with BIM elements
in a gbXML schema [148]. Based on two case studies, this application showed that the
proposed method minimizes the gap between architectural information in BIM and the
real data used for energy performance simulation. Furthermore, another work used a
gbXML schema to convert semantic information from raw point cloud data and use it
in energy simulation tools [149]. The applications were made in five existing buildings
(three residential and two bank buildings) and, although some errors occurred, the overall
integration was successful. Similar work also used a gbXML framework to store data from
big buildings, such as factories, in gbXML format, to make it easier to import them into
simulation tools [150].

Another work was proposed by Bottaccioli, where an ontology was created by reusing
existing ontologies [151]. The architecture that was based on this ontology has the scope of
providing modification options to facility managers. These options are addressed to the
building, facility or energy managers. In addition, they include real-time visualization tools
for energy consumption information and simulation of temperature trends, in addition to
energy consumption tools. Moreover, the managers can access and assess the performance
efficiency of the building, the users’ energy behaviors and feasible refurbishment measures.
The case study in this situation was conducted in an educational building and was able
to apply real-time data in building energy simulation modifications. EESPA ontology is
another approach, which combines SSN/SONA and BOT ontologies, in order to create
semantic relationships between BMS data and building spaces [152]. The case study in this
paper was performed on an educational building and supported its data analysis, although
the lack of real-time data was found to be a challenge in HVAC system control. Another
work that used BIM and BMS data connected with the semantic web in order to assist
facility managers is ESIM ontology, but did not provide a case study [153].

Due to the problematic nature of creating ontologies that reuse a lot of complex existing
ontologies, Uribe et al. [154] proposed a simpler ontology to be used in a context-awareness
architecture for managing thermal energy in nZEBs. This ontology manages sensors and
knowledge-based information in an nZEB. A case study based on this architecture was
conducted, showing that SPARQL and Semantic Web Rule Language were compatible
with decision making in this building. Similar to this simplification, the BACS ontology
was proposed, based on EXPRESS, OSPH, SSN/SOSA, BOT and FSM ontologies, among
others [155]. These ontologies were reevaluated instead of just being reused. The case
study that was conducted for this work included a room and the automated control of the
windows’ shades using SPARQL queries.

In another approach, an ontology called SPORTE2 was created, which combined an
artificial neural network, genetic optimization algorithm, real-time sensors, actuator data
and SWRL rules to optimize the performance in a swimming pool [156]. Having as each
base the machine-readable semantics, Schachinger and Kastner put forward a similar work
with SPORTE2, with a common scope to optimize building energy [157]. As the core of the
ontology, both approaches had real-time sensors, numerical methods and actuators, which
integrated online simulation to improve building performance.

Having examined some notable applications of ontologies in buildings, other review
papers are brought into the spotlight. Bergmann et al. [158] gathered the scope from
different ontologies, including IFC, Brick, Project Haystack and other ontologies, having
in mind the energy efficient buildings. In another review, Benndorf et al. [20] focused on
semantic interoperability, fault detection and predictive control for energy performance
optimization in buildings. Moreover, a survey on information modeling and ontologies in
building automation was conducted by Butzin et al. [159]. Pritoni et al. [160] conducted
a review of metadata schemas and ontologies for building energy applications. Finally,
Gilani et al. [161] proposed a review of ontologies within the domain of smart and ongoing
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commissioning. Table 2 includes all the applications of ontologies in buildings that were
presented in this section.

Table 2. Applications of ontologies in buildings.

Category Scope Architecture Used Case Study Year  Ref.
Reduce the performance gap ifcOWL, Use of simulated and measured
. KPIs to assess the thermal
between the real and SimModel, SSN L. 2015  [137]
. comfort conditions and the HVAC
simulated data and custom
system performance
Energy Gather and prepare data Energy Performance assessment
Performance streaming from various sources RDF schema and  using real-time data streaming in
Improvement . . B 2017  [138]
and calculate the custom ontology  a university building, assessed by
building performance building managers and engineers
Performance tracking at building  ifcOWL, SimModel . . .
and district level and SSN ontology Nineteen solar houses microgrid 2019  [139]
Building energy savings RDEF schema Identify any energy wasteinan 55 [140]
office zone
Support of the selection for
efficient and best-cost HVAC
systems (the.evaluatlon and InterfaceOnto Design phase of an office building 2015  [143]
prioritization of energy
performance values
(cooling /heating) consumption
Building Energy Performance
o Optimization of a swimming pool
Optimize the energy performance SPORTE2 using ANN, Genetic Algorithms, 2014  [156]
real-time sensors and SWRL rules
Optimization problem generation
on minimizing comfort
dissatisfaction of building users Two office rooms are used to
regarding specific parameters and Custom Ontology evaluate the scope of the ontology 2017 11571
minimizing costs of
energy consumption
Creation of a BIM-based system Two case studies that the method
that automatically associates and they proposed minimizes the gap
updates thermal property gbXML between architectural information 2015  [148]
measurements with BIM elements in BIM and the real data for
in a gbXML schema energy performance simulation
Data Injection Uzirigiﬁéflﬁoiﬁjgloitgoﬁ?; . Five existing buildings (three
) - & gbXML residential and two bank 2015 [149]
from raw point cloud data and 1
. . . buildings)
use it into energy simulation tools
Use of gbXML framework to store
data from big buildings, like University’s manufacturin
factories, in gbXML format, to gbXML y 5o & 2018  [150]
. ; . . facility
make it easier to import into
simulation tools
Provide modification options to gbXML, Educatlonfil buﬂdm.g ap}.)hc.atlon
. of real-time data in building 2017  [151]
facility managers EnergyPlus . . e
energy simulation modifications
Educational building support of
Facility Creation of semantic relationships data analysis, lacking real-time
Management between BMS data and SBSgl{ (S)S*[I;I fg a;refl data that was found to be a 2018  [152]
building spaces & challenge in HVAC
system control
BIM and BMS data connected
with the semantic web to assist - - 2018  [153]

facility managers
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Table 2. Cont.

Category Scope Architecture Used Case Study Year  Ref.
Use of ontology to provide
solutions in energy reduction and
Targets the occupants in a OPTIMUS, comfort 1r|19clrlie1ads§1biissed on the
building and makes suggestions SSN/SONA, 5%
1 assessment/application of 2018  [144]
to reduce building energy by Urban Energy . :
. . ontology in a lab in Athens where
their behavior Ontology a1
the building’s energy was
reduced in contrary to the year
before the ontology was applied
Coupled obFMU with EnergyPlus
Modeling tool that takes into obFMU/DNAs, to.mo<.flel occupant behavior
- : . lighting control, to model 2016  [145]
consideration occupant behavior EnergyPlus . . .
occupant behavior window action
and to model HVAC control
Residential building with four
Occupant Reduce building energy people, where they apply
Behavior-Centric consumption by having as top distinctive characteristics and
priority occupant behavior Onto-SB after they integrate the 2019 [146]
changes and covering their mechanism that is proposed they
thermal comfort needs conclude with a 40% energy
consumption reduction
Efficient control of appliances and Reduce the energy consumption
devices in smart buildings, by altering distinctive
targeting the occupants’ comfort Onto-SB characteristics in the scenario and 2020  [147]
and energy make the simulation
consumption reduction process quicker
Assessing eleven participants
with distinctive characteristics
I . and each one responds to the
Combination of a wireless sensor B . . .
network and an emotional state system’s actions in a different
. OnCom situation with respect to the 2019 [111]
analysis from occupants to .
calibrate indoor thermal comfort indoor thermal comfort and the
results showed that the mean of
users agreed with the
system’s decisions
Context-awareness architecture SSI};?Z;Eng;;tRSEﬁ 11{211: ir;de
for managing thermal energy OWL, SWRL . . ghag 2017  [154]
in nZEBs were compatible with decision
. making in a building
Decrease in Supports the modeling control
Reuseq behavior in a BAS, physical BACS, Inclusion of a room and the
Ontologies devices of BAS and their location EXPRESS, OSPH, automated control of the 2017 [155]
in the building and connectionto ~ SSN/SOSA, BOT windows’ shades using
technical equipment and FSM SPARQL queries

and appliances

6. Discussion

Based on the research, it understood that the applications of knowledge graphs for
energy efficiency improvements are focused on the design and operational phases of the
building. However, many of them do not consider the whole building, but rather a small
zone or system. On the other hand, several of them were considered powerful enough
to cover various concepts and classifications in their core. By doing so, they provide a
more comprehensive approach to a building’s life cycle, considering both different kinds
of data and various stakeholders and end users. Based on this, the literature that was
reviewed showed the potential of using knowledge graphs as a part of a wider architecture,
to exchange and manage information and to structure and connect the different concepts in
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a building’s life cycle. An important role in these attempts was played by the data from the
buildings’ sensors. It is supported that real-time data streaming in the knowledge graphs
resulted in quicker and more accurate results, which can also be useful in later assessment.

Furthermore, most applications reused different existing ontologies, in order to apply
different and more specific features in a novel approach. This situation benefits both
the combined approach and the existing ontology. This is because the latter provides
implemented knowledge to the former, and the former advances the knowledge provided
by the latter. In addition, the frequent use of ontologies in knowledge graph applications
across buildings and facilities creates a better understanding and replication potential in
different projects.

Next, ontologies that take into consideration the stakeholders and end users provide
an improved approach for the entire architecture of knowledge graph application. This
is due to the connection between the human aspect and the rest of the building’s entities.
Specifically, integrating the human aspect in a knowledge graph application leads to a more
interactive decision making. That is also supported by functionalities such as advanced
monitoring, feedback mechanisms, optimization and control. A similar perspective is
followed for the occupant behavior-centric ontologies, which take into consideration the
occupant’s needs, actions and habits, and correlates them with the energy consumption and
thermal comfort in a building. Taking into consideration the users’ behavior in a building’s
operational phase leads to a more comprehensive ontology and a more complete DSS.

The development of KGs is considered a significant step forward due to their inherent
structural and functional characteristics. The hierarchical architecture in KGs essentially
translates to the fact that each subject or object is unambiguously defined in terms of its
scope and location. This is particularly important since it deals with certain drawbacks
associated with data handling in otherwise advanced and dynamic databases, whereby
such clarity is not offered. Furthermore, the use of semantics via ontologies provides a
major breakthrough. This is because data are universally defined and leave no space for
interpretation or assumptions about the type of data or metrics used.

In addition, KGs are an interesting approach as a unifying framework in which various
non-homogenous data from various sources can be linked in a dynamic form. Then, these
linked data can be exploited by providing a number of services such as visualization,
monitoring, data analysis, automated control, simulation and machine learning. In this
framework, new architectures can evolve to take advantage of the new era of Big Data, IoT
and the semantic web. As a result, they support the development of advanced tools for
energy efficiency in buildings, neighborhoods and cities.

KGs can provide the foundation for emerging advanced decision support services
such as those that can be provided via DTs, which present several advantages compared to
other less advanced support systems and improve not only the analytic capabilities offered,
but also assist in the visualization, interpretation and understanding of data analytics. In
this sense, KGs are foreseen to provide the means for more effective and reliable decision
support services to be built, thus improving collaborative decision making for energy
efficiency in buildings.

Moreover, KGs are the state of the art in providing the backbone structure for the
implementation of dynamic platforms and systems that can offer advanced real-time pre-
diction and optimization services based on Al and ML. The robust structure and semantic
capabilities of KG-based systems and services are vital attributes enabling transparency,
traceability, interoperability and usability.

The use of KG as a backbone for the creation of decision support services rests on the
notion that data across the physical, social and natural domains will become increasingly
available. KGs used in such DSSs will boost the efforts for buildings renovations and
smart energy management across various spatial and temporal scales. However, there
are challenges associated with the fact that such data-based knowledge generation and
informed decisions span various domains. These domains include business, urban services,
energy and mobility, and are characterized by multiple interdependencies. Identifying
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interdependencies is critical to ensure that decision making in one domain takes into
consideration all key parameters and constraints of interconnected domains.

7. Conclusions

The work in this review tried to address the problem of data exchange and manage-
ment throughout the different phases of a building’s life cycle and between the different
stakeholders that are included in it. This data exchange and management originates from
the need for the improvement in the energy efficiency in buildings. The solution to the prob-
lem is based on the application of the semantic web utilizing the knowledge graphs, which
include ontologies in their core structure. Thus, different ontologies that focus on the differ-
ent phases of a building’s life cycle, proposed in recent years, were reviewed and discussed.
The ontologies were categorized into design phase-related and operational phase-related
sectors, with the latter including smart building, occupants’ behavior and asset manage-
ment. These ontologies are gathered in Table 1, and the most prominent and complete
are discussed in Section 4.3. They are separated into four categories. The first relates to
IFC-associated ontologies, which include ifcOWL and simpleBIM. The second relates to
W3C-associated ontologies, which include BOT, and its extensions, and OPM. The third re-
lates to smart building-associated ontologies, which include Brick, Project Haystack/HTO,
SAREF and REC. The final category relates to occupant behavior-associated ontologies,
which includes DNAs and Onto-SB. Next, applications of these ontologies were examined,
in addition to their reuse and adaptation, which mainly focus on building performance
improvement and facility management.

This study’s limitations relate to the fact that most ontologies do not have a real-life
application in a building, but are rather examples of its possible use; this reflects the early
stage of the ontologies. Moreover, some applications are focused mostly on the design
phase of a building or its early operation. More applications need to be implemented in real
buildings. Time also needs to be spent for stakeholders to use these DSSs in real conditions,
and provide feedback on the operational and maintenance phases of a building’s life cycle.

Future work can utilize KGs to support decision making in all life cycle stages of a
building, neighborhood or district. In addition, future work on KGs can include structuring
and managing different BIM and sensor data to derive new knowledge regarding the
optimum selection of possible application scenarios. By doing so, they would target the
improvement of building energy efficiency and the minimization of environmental impacts.
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Appendix A

Table A1l. Abbreviation list.

AEC Architecture, Engineering and Construction
DSS Decision Support System

IoT Internet of Things

KG Knowledge Graph

UN United Nations
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Table Al. Cont.

SDG Sustainable Development Goal

MCDA Multi-Criteria Decision Analysis

MOP Multi-Objective Programming

LCA Life Cycle Analysis

ANN Artificial Neural Network

FL Fuzzy Logic

EA Evolutionary Algorithms

ICT Information and Communication Technologies
BIM Building Information Models

NBIMS National Building Information Model Standard
IFC Industry Foundation Classes

gbXML green building XML

BAS Building Automated Systems

M Facility Management

DT Digital Twin

RDF Resource Description Framework

IRIs Internationalized Resource Identifiers
URIs Uniform Resource Identifiers

RDFS Resource Description Framework Schema
OWL Web Ontology Language

W3C World Wide Web Consortium

GNN Graph Neural Network

PA Physical Asset

WoT Web of Things

OneDM One Data Model

SEAS Smart Energy Aware Systems

BOnSAI Building Ontology for Ambient Intelligence
SBOnto Smart Building Ontology

SAREF Smart Applications REFerence

SBMS Semantic Building Management System
HTO Haystack Tagging Ontology

GDBO Google Digital Building Ontology

REC Real Estate Core

BOT Building Topology Ontology

BACS Building Automation and Control Systems
KM4City ~ Knowledge Model for City

FSGIM Facility Smart Grid Information Model
DNAs Drivers Needs Actions & systems

or Occupancy Profile

BEDES Building Energy Data Exchange Specification
VBIS Virtual Buildings Information System
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Table Al. Cont.

OPM Ontology of Property Management
LBD Linked Building Data

BEO Building Elements Ontology

FSO Flow System Ontology

BPO Building Products Ontology

FOG Geometry Formats Ontology

OPM Ontology for Property Management
OMG Ontology for Managing Geometry
IAQ Indoor Air Quality

KPI Key Performance Indicator
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