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Abstract: The objective of this study is to examine, over the last 20 years, the short-run and long-run
effect on global carbon dioxide (CO2) emissions of the stock returns, exchange rates and consumer
confidence. Stock markets contribute to environmental degradation; as a result, we employed, for
the first time, Dow Jones Sustainability World Index to use stock returns of socially responsible
companies. The euro to US dollar exchange rate is used, as the forex market is the largest financial
market and considers it as the largest major pair. The Consumer Sentiment Index is used as a proxy
to consumer confidence, since consumer behavior is, also, considered as a major factor linked
to environmental degradation. The basic testing procedures employed include the Augmented
Dickey–Fuller stationarity test, cointegration analysis and Vector Error Correction Model (VECM).
The results establish that stock returns of companies listed on the Dow Jones Sustainability World
Index exert a significant negative (positive) impact on the global CO2 emissions in the short (long)
term. The inverse, i.e., a significant positive (negative) impact on the short (long) run holds for the
both other variables, i.e., US consumers’ confidence and euro to US dollar exchange rates. From
the outcomes obtained, policy initiatives that could assist companies to mitigate environmental
degradation are recommended.

Keywords: stock returns; CO2 emissions; Dow Jones Sustainability World Index; consumers’ confidence;
ESG criteria; exchange rates

1. Introduction

Global warming has many different implications for humanity, and our societies must
confront these in order to achieve not only their growth but political stability and their
very own survival [1,2] It is generally accepted that global warming is due to the growth
of greenhouse emissions, and in particular, the rise of carbon dioxide (CO2) emissions [3].
The key driver of this increase is fossil fuels, such as oil, coal and gas, that when combusted
lead to climate-changing CO2 emissions with significant future but also contemporaneous
repercussions, such as for example on human health with more than seven million people
being killed every year due to respiratory illnesses [4–6]. According to the IPCC [7] the
concentration of CO2 in 2019 was higher than at any time in at least 2 million years, while
CO2 was increased by 47% since 1975. A number of different initiatives, such as the Kyoto
protocol and the Paris agreement, have been developed to demand the industrialized
economies implement specific policies to reduce greenhouse emissions [8].

A plethora of empirical studies intend to investigate the relationship between CO2
emissions and macroeconomic factors such as international trade, GDP [4], nuclear en-
ergy [5], consumption of renewable energy [9,10], and foreign direct investment [11] so as
to understand the behavior of CO2 emissions.

Sustainability 2022, 14, 12052. https://doi.org/10.3390/su141912052 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141912052
https://doi.org/10.3390/su141912052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su141912052
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141912052?type=check_update&version=2


Sustainability 2022, 14, 12052 2 of 19

Specifically, the variable of stock returns is considered as a prominent economic
indicator and, in particular, it is employed as a proxy of economic growth and development
in order to investigate the impact on CO2 emissions. In this context, we consider the
hypothesis of the Environmental Kuznets Curve (EKC), N-shaped relationship or any linear
relationship between CO2 emissions and stock returns. Originally, the EKC hypothesis
proposes that there is an inverted U-shape relationship between economic output per capita
(i.e., GDP per capita or stock returns) and environmental degradation (i.e., CO2 emissions),
supporting that economies first give priority to their economic development and then to
environmental quality. When they grow, however, they focus on environmentally friendly
technologies. In addition, there are studies that investigate the N-shaped relationship
between CO2 and economic output levels. In particular, the N-shaped curve suggests that
environmental degradation will start to rise again beyond a certain point of economic
output [12]. Social responsibility indexes and consumer sentiment are not incorporated
in the Environmental Kuznets Curve. To overcome the above gaps, this study focus on
validating the EKC hypothesis between stock returns of socially responsible companies
and CO2 and consumer confidence and CO2. Several socially responsible indexes have
been elaborated to integrate companies that consider non-financial initiatives in their
business operations such as DJSI, FTSE4good and MSCI KLD. Among the most well-known
socially responsible indexes is the DJSI that tracks the stock performance of the world’s
leading companies based on economic, environmental and social criteria comprising global,
regional and country benchmarks (DJSI Index Family: https://www.spglobal.com/esg/
performance/indices/djsi-index-family (accessed on 7 June 2021)). For the purpose of the
study, the DJSI world stock returns is used, for the first time, as a proxy of world economic
growth taking into account socially responsible initiatives.

In accordance with the consumer-based approach, consumer confidence depicting
their willingness to buy is the third potential determinant of the global concentration of
CO2 emissions. To our knowledge, it is the first time that consumers’ confidence variable
is employed to understand the behavior of CO2 emissions, and it is used as a proxy of
consumers’ perception of the state of the economy and their own financial situation [13],
and thus, it is important in explaining their behavior as investors. In this context, it is
intended to validate the EKC hypothesis, the N-shape or any linear relationship between
consumer confidence and CO2.

Based on Rothman [14], this study intends to explain the CO2 emission behavior
considering two different approaches: the first one concerns the production-based approach
by explaining how the economic growth via stock returns of socially responsible companies
can affect CO2 emissions, whereas the second one concerns the consumption intention
via consumers’ confidence. Finally, the third potential determinant that could affect the
concentration of CO2 emissions is considered to be the exchange rate of euro to US dollar, as
the US dollar is considered the world’s currency and is used as invoice, funding and reserve
currency, affecting international trade transactions. It is employed in the proposed model
to ascertain whether the strong or weak value of the US dollar affects the CO2 emissions.
Furthermore, limited empirical studies scrutinize the relationship between exchange rate
and CO2 emissions [15].

The study employs the VECM, as it is considered the most suitable approach to
measure causality [16] identify long-run relationships [17] and obtain temporal dynamic
changes in explanatory variables [18–20]. Kayani et al. [17] constructed a VECM model
to explore the causal relationships between financial development and CO2 emissions.
The results reveal unidirectional long-term causality from CO2 emissions to financial
development. The results of Mizra and Kanwal’s [21] study indicate the presence of
bidirectional causalities between economic growth and the CO2 emissions in a VECM
framework. Similarly, the VECM causality analyses of Rahman and Vu [22] showed the
long-run bidirectional causality among CO2 emissions, economic growth, and renewable
energy consumption in Australia and Canada.

https://www.spglobal.com/esg/performance/indices/djsi-index-family
https://www.spglobal.com/esg/performance/indices/djsi-index-family
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To sum up, there are no empirical studies using, as explanatory factors for the CO2,
stock returns of socially responsible companies, the consumers’ confidence and exchange
rates. Our study intends to fill this gap, using the DJSI World as a proxy for world economic
growth, the Consumer Sentiment Index as a proxy for consumer’s confidence, and the
exchange rate of euro to US dollar as a proxy for financial markets. Our results suggest
that the explanatory factors have a different effect on CO2 emissions in the short run
compared to the long run, which is a fact that policy makers should consider in their
planning process. In addition, the results of the study have significant implications to
socially responsible investors, as they might understand the determinants of the global
CO2 emissions and how the concentration of CO2 emissions could be reduced. In light of
the above discussion, to investigate the potential determinants of global CO2 emissions
among socially responsible companies, consumers’ confidence and exchange rates is of
great value to scientific knowledge.

The rest of the paper is structured as follows. Section 2 provides a literature review
regarding the potential effect of our determinants on the global CO2 emissions, while the
next section describes the data and the methodology. Section 4 provides and discusses
the results, while the final section analyzes their implications and mentions ideas for
further research.

2. Literature Review

This section describes the potential factors that affect the concentration of CO2 emis-
sions and focuses on the rationale for considering stock returns of socially responsible
companies, consumer confidence and exchange rates.

Reexamining the effect of economic growth on the environment is considered a crucial
issue as the results of empirical studies, such as those of Nguyen et al. [23] suggest. To
this end, stock returns are used as a proxy of economic growth and development from
a production-based approach [14]. The rationale behind the employment of stock returns
is that when companies expand their operations, they consume more energy contributing
substantially to the concentration of CO2 emissions and leading to industrial pollution and
environmental degradation [24,25].

In general terms, the EKC curve is a well-known hypothesized relationship between
economic growth and environmental degradation. Greater economic growth leads to an
increase in environmental degradation, but beyond some level of economic growth, the
trend reverses, so that the economic growth leads to environmental improvement. The
above relationship can be depicted as an inverted U [26,27]. In addition, there are empirical
studies that tend to investigate the N-shaped relationship between economic growth and
CO2 emissions. Considering the N-shaped curve, at first, the environmental degradation
worsens; then, the environmental degradation is improved. However, as the economic
growth continues to increase, the environmental degradation worsens again [28].

Furthermore, this study incorporates companies that have assimilated socially respon-
sible initiatives in their operations, as the need for sustainable financial products is now
more imperative than ever. Different sustainability stock indexes have been elaborated to
evaluate companies considering socially and environmentally responsible criteria under
environmental, social and governance aspects [29].

There are a few empirical studies that investigate the impact of stock markets on
CO2 emission levels [15]. Analytically, Nguyen et al. [23] focus on Canada, France,
United Kingdom, Italy, Japan, and the United States for the period 1978–2014 to examine
the explanatory variables of CO2 emissions. They confirm that stock market capitaliza-
tion has a negative but weak impact on CO2 emissions. Based on data from 18 countries,
Chang et al. [30] investigate the relationship of stock returns and CO2 emissions using
Granger causality tests. There appears to be a unidirectional impact from stock market
returns to CO2 emissions but not the reverse. Ullah and Ozturk [15] find that for Pakistan
in the long term, positive and negative shocks of the stock market, in terms of total value of
stock trade, have a positive significant impact on CO2 emissions. Al-mulali et al. [31] find
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that in Malaysia, in the short (long) run, rises (falls) in stock markets increase (decrease) CO2
emissions, implying that stronger stock markets contribute to environmental degradation.
Examining this relationship, Paramati et al. [32] focus on 23 developed and 20 emerging
markets based on the Morgan Stanley Capital International. The results confirmed the
presence of the EKC hypothesis between stock markets and CO2 emissions, albeit at varying
levels across developed and emerging market economies.

Paramati et al. [33] investigated the impact of stock market growth on CO2 emissions
focused on a sample of G20 member countries using data from 1991 to 2012. The results
revealed that stock market development has both a negative and positive effect on the
concentration of CO2 emissions of development and developing economies, respectively.
Zhang [34] illustrated for China that stock markets have a relatively larger influence on CO2
emissions in comparison with other variables, while the influence of stock market efficiency
on CO2 emissions seems fairly weaker. To the contrary, taking into account Brazil, Russia,
India and China, Tamazian et al. [25] use panel data to find that the stock market value
significantly decreases CO2 in the above countries. Tiwari et al. [35] explore the dynamic
spillover effects among green bond, renewable energy stocks and carbon markets during the
COVID-19 pandemic and conclude that during bearish markets conditions, the connection
between CO2 and the renewable energy market increases. Similarly, Hanif et al. [36]
investigate the dependence and connectedness between carbon pricing and renewable
energy stock and observe a positive dependence and strong spillover between CO2 and
renewable energy indices in the short run and in the long run. Table 1 summarizes the
main aspect of the literature review regarding the effect of stock market on CO2 emissions.

The study of Rothman [14] introduced the second, consumption-based, approach to
investigate the environmental impact from consumption activities to validate the EKC
hypothesis. Consumers can be a considered as a major factor linked to environmental
degradation, both directly, when deciding to use a polluting car, and indirectly, when
linked to the production activities that are undertaken to satisfy their demand. For instance,
Schipper et al. [37] illustrate that approximately half of the total energy consumed in US
is influenced by consumer behavior for personal transportation, personal services, and
homes, while Bin and Dowlatabadi [38] state that more than 80% of the energy used and
the CO2 emissions emitted in the US derive from consumer demand and the required
economic activities that are necessary to support this demand.

Lifestyle consumption is an important potential factor from the consumption-based
approach so as to investigate the impact of consumers’ consumption on environmental
degradation. For instance, Bin and Dowlatabadi [38] adopted the concept of Consumer
Lifestyle Approach to investigate the relationship between consumer behavior and CO2
emissions. The results pointed out that the consumer behavior is an important aspect for
effective policies in order to mitigate CO2 emission, which was consistent with the findings
of Moran et al. [39]. Similarly, Habib et al. [40] indicated that consumers’ behavior and
lifestyles are crucial determinants to understand CO2 emissions in the United Kingdom.
However, this study intends to implement a different aspect of consumer’s behavior based
on their perception for economic growth and development of economy by adopting the
CSI, which represents consumers’ willingness to buy and to predict their subsequent
discretionary expenditures. This measure considers consumers’ personal finances, general
business conditions, and market conditions or prices. Thus, when there is positive consumer
confidence, consumption increases and there is economic growth, while when the consumer
is negative, consumption is decreased, leading to the downsizing of economic activity [41].
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Table 1. Summary of literature review.

Authors Type of Data Period Methodology Country/Region Type of Relationship Stock Market Indicator Relationship: Stock
Market—CO2

Tiwari et al.
(2022) [35] Time series 2015–2020

Time-varying parameter
vector autoregression

(TVP-Var)
Global Linear relationship Renewable energy stock market Strong connectedness between

stock market and CO2 emissions

Hanif et al.
(2021) [36] Time series 2011–2020 Vector autoregression method Europe Nonlinear

relationship Renewable energy stock market
Asymmetric tail dependence

between the carbon prices and
renewable indices

Nguyen et al.
(2021) [23] Panel data 1978–2014

Fully modified ordinary least
squares, dynamic ordinary

least squares
G-6 countries EKC is not clear Stock market capitalization: stock

market capitalization to GDP ratio
Stock market has weak and

negative impact on CO2 emissions

Ullah and Ozturk
(2020) [15] Time series 1985–2018 A nonlinear autoregressive

distributed lag (ARDL) Pakistan Asymmetry
relationship Stocks traded: total value (% of GDP)

Positive and negative shocks in
the stock market have a positive

significant effect on CO2 emissions

Chang et al.
(2020) [30] Time series 1971–2017

Unidirectional Granger
causality, regressions with

dummy variables
18 countries Linear relationship Stock returns Unidirectional causality from

stock market to CO2 emissions

Al-mulali et al.
(2019) [31] Time series 1980–2017 A nonlinear autoregressive

distributed lag (ARDL) Malaysia Asymmetry
relationship Percentage of stock traded to total GDP Increases in stock markets will

increase CO2 emissions

Paramati et al.
(2018) [32] Panel data 1992–2011

Panel cointegration
methodology, common

correlated effects

Developed and
emerging market

economies

Confirms EKC
hypothesis

Total market capitalization divided by
the total population of the country, total

stocks traded divided by the total
population of the country

The effect of stock market
indicators varies across developed

and developing economies

Paramati et al.
(2017) [33] Panel data 1991–2012

Fisher-type Johansen
cointegration test, fully
modified ordinary least

square method

G20 countries Linear relationship
Stock market capitalization: market
capitalization of listed companies as

a percentage of GDP

Stock market capitalization
increases CO2 emissions of full

sample and developing
economies, and it reduces in

developed economies

Zhang (2011) [34] Time series 1992–2009 Granger causality, Johansen
cointegration test, VECM China Linear relationship

Stock market scale: the ratio of stock
market capitalization to the GDP and

stock market efficiency: the ratio of stock
market turnover to GDP

Both stock market scale and
efficiency influence the volatility

CO2 emissions

Tamazian et al.
(2009) [25] Panel data 1992–2004 Random effect Bric (Japan and US) Confirms EKC

hypothesis

Stock market value (total shares traded
on the stock market exchange to GDP

in country)

Stock market value significantly
decreases CO2
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The third potential determinant of CO2 emissions is considered to be the exchange rate
of euro to US dollar. One of the most important developments in ecological macroeconomics
is the study of financial markets and their role in the non-financial sectors [42]. In this study,
the exchange rate is chosen, as the forex market is the world’s largest financial market.
The exchange rate exerts significant impact on environmental quality via its influence
on economic and technological activities [43]. The role of the US dollar for the global
economy is crucial because it is used as an invoice, funding and reserve currency, and it is
an important factor affecting the international trade transactions [4,43–45]. A few empirical
studies investigate the role of the exchange rate on CO2 emissions. Ullah and Ozturk [15]
look into the role of exchange rate volatility between Pakistan and USA on CO2 emission as
a proxy of environmental pollution. In the long run, the findings revealed that both positive
and negative shocks in exchange rate volatility affect CO2 emissions negatively. In the short
run, positive shocks in exchange rate volatility reduce CO2 emissions, while negative shocks
in exchange rate volatility have a positive significant effect on CO2 emissions. Moreover,
Omoke et al. [4] who investigate the role of financial development on environmental
degradation in Nigeria over the period 1973–2014, use among other variables, exchange
rates. The results showed that exchange rate depreciation in terms of LCU per USD
contributes to environmental degradation in the form of CO2 emissions. In addition, Zhang
and Zhang [43] point out that a stronger RMB exchange rate against the dollar renders
China’s exports less competitive as the total value of exports fall, leading to lower levels of
CO2 emissions.

3. Data and Methodology
3.1. Data

The aim of this study is to explore the relationship among the CO2 emissions and
the exchange rate of euro to US dollar, stock returns of socially responsible companies
and US consumers’ confidence using monthly time-series data for the period 1 April 2001
to 1 July 2020. The original data are sourced from the S&P Global and the Thomson
Reuters Database as well as the National Ocean and Atmospheric Administration and the
Federal Reserve Economic Data. In addition, all the variables adopted were transformed
into logarithmic form. On the one hand, this transformation in logarithms facilitates the
interpretation of the estimated coefficients, which are read as elasticities. On the other hand,
it can control the heteroscedasticity problem [46]. Based on VECM, the study employs
global CO2 emissions as a dependent variable, and the exchange rate of euro to dollar,
the DJSIW’s stock returns, and the US Consumer Sentiment Index (CSI) as independent
variables. While our main interest is in the relationship among carbon emissions, EUR/USD,
DJSI and CSI, in accordance with the relative literature, we include the US GDP [47–51]
(and global energy index [25,47,51,52] as control variables potentially correlated with CO2.

3.2. Methodology

In order to verify the correctness of the U-shaped and N-shaped EKC hypothesis, we
follow the principles of the EKC hypothesis and introduce the squared and cubic term of
DJSI and CSI into the model as independent variables, as seen below:

CO2tt = β0 + β1DJSIWt + β2DJSIWt
2 + β3DJSIWt

3 + β4EUR/USDt + β5CSIt + β6GDP_USt+β7ENERGYt (1)

CO2t = β0 + β1CSIt + β2CSIt
2 + β3CSIt

3 + β4EUR/USDt + β5DJSIWt + β6GDP_USt+β7ENERGYt (2)

where CO2 are global carbon dioxide emissions, DJSIW is the Dow Jones Sustainability
Index World stock returns, EUR/USD is the exchange rate of Euro to US dollar, CSI is the
US Consumer Sentiment Index, GDP_US is the Gross Domestic Product of the US and
ENERGY is the global price of the energy index.

The validity of the EKC hypothesis can be tested by the β1, β2, and β3 coefficients [53].
Specifically,

If β1 > 0, β2 < 0 and β3 = 0, it indicates a quadratic inverse U-shaped relationship.
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If β1< 0, β2 >0 and β3 = 0, it indicates a U-shaped quadratic relationship.
If β1 > 0, β2 < 0 and β3 > 0, it indicates the N-shaped cubic polynomial relationship.
If β1< 0, β2 >0 and β3 < 0, it indicates the inverse N-shaped cubic polynomial relationship.
The central contribution of this research is to examine the dynamic relationship among

carbon emissions, DJSI, EUR/USD and CSI in an integrated framework. The equation of
the EKC hypothesis explores the U-shaped and N-shaped relationship between CO2 and
DJSI. In order to investigate the linear relationship and causal relationship among CO2
emissions and other variables, we construct a Vector Error Correction Model (VECM).

Given that in this study, the time-series EUR/USD, DJSIW, CSI and CO2 are encoun-
tered as endogenous, we use as required a simultaneous equation system [54–56]. Similarly,
Kayani et al. [17], Kivyiro and Arminen [57], Sebri and Salha [58] and Zeb et al. [59] inves-
tigate the relationship among CO2, renewable energy and economic growth and treat all
the variables as endogenous. One of the most popular simultaneous equation systems is
the Vector Autoregressive Model (VAR), as the researcher does not need to specify which
variables are endogenous or exogenous—all are endogenous. VAR was popularized in
econometrics by Sims [60], as a natural generalization of the univariate autoregressive
model AR to a multivariate autoregressive time-series model.

The test of stationarity in the time series is essential not only to ascertain the order of
integration of a variable to prevent spurious analysis and erroneous policy implications [61]
but also in order to use the VAR model. The augmented Dicky–Fuller (ADF) test [62] is
one of the most commonly used unit root tests [63–66]. The lag-length criteria are selected
through the Akaike Information Criteria (AIC), Schwartz Information Criteria (SIC) and
Hannan–Quinn Criteria (HQ) [67,68]. According to the VAR model, every variable depends
on different combinations of the previous values of all variables and error terms. The
autoregressive term refers to the lagged dependent variable, while the vector refers to the
number of variables. The simplest case that can be entertained is a bivariate VAR, where
there are only two variables and one lag. This could be written as:

Yt = a0 + A1Yt−1 + εt (3)

where Yt =

(
Y1t
Y2t

)
, Yt−1 =

(
Y1, t−1
Y2, t−1

)
, α0 =

(
α1
α2

)
, A1 =

(
α11 α12
α21 α22

)
, εt =

(
ε1t
ε2t

)
, and εt

are stochastic error terms, which are also called impulses or schocks and are white noise
disturbance terms with E(εt) = 0 and E(εt, εs

′) = Ω , για t = s

E
(
εt, εs

′) = 0, για t 6= s

Ω is the matrix of variance–covariance:

Ω =

(
V(ε1t) Cov(ε1t, ε2t)

Cov(ε1t, ε2t) V(ε2t)

)
An extension of model VAR with k variables and p lags is:

Yt = a0 + A1Yt−1 + A2Yt−2 + . . . + ApYt−p + εt (4)

where matrix Ai, i = 1, . . . , p is the matrix of coefficients αij with dimensions K×Ki,j = 1,2, . . . , K.
Most of the time, series are non-stationary at the levels and then stable after first

differences [69]. In this case, VAR can capture only the short-term relationship between
variables; otherwise, this could have led to the estimation of spurious relations. The
estimation of a long-term relationship, employing the variables in levels, would result in
non-robust estimators unless the series were cointegrated. If it is stationary, then the series
are considered to be cointegrated and form a long-run relationship with each other [69]).
Cointegration tests reveal whether a long-term equilibrium relationship exists between
non-stationary sequences. The Johansen cointegration test is suitable for the multi-period
cointegration time-series analysis [70]. A Vector Error Correction Model (VECM) is used to
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examine the short-term and long-term relationships between variables if all variables are
co-integrated I(1) (Equation (5)).

∆yt = β1∆xt + β2(yt−1 − γxt−1) + εt (5)

where xt and yt are cointegrated, and coefficient yt−1 − γxt−1 is the error correction term.
Every variable is, separately, I(1), while the linear combination yt−1 − γxt−1 is I(0).

The target variable of VECM is CO2. Equation (6) is the cointegration equation of
VECM. Coefficients βi represent the long-term relationship among CO2 and other variables,
where X is a series of control variables.

ECMt−1 = CO2 − β0 − β1
EUR
USD t−1

− β2DJSIt−1 − β3CSIt−1 −
5

∑
i=4

βiXi (6)

The VECM model designed for the variable of interest is described as follows:

D(CO2t) = ϕ1ECTt−1 +
n
∑

i=1
α1iD(CO2t−1)) +

n
∑

i=1
δ1iD(EUR/USDt−i) +

n
∑

i=1
θ1iD(DJSIt−i)

+
n
∑

i=1
ω1iD(CSIt−i) +

n
∑

i=1
βiXi + ε1t

(7)

D(EUR/USDt) = ϕ2ECTt−1 +
n
∑

i=1
α2iD(CO2t−1) +

n
∑

i=1
δ2iD(EUR/USDt−i)) + +

n
∑

i=1
θ2iD(DJSIt−i)

+
n
∑

i=1
ω2iD(CSIt−i) +

n
∑

i=1
βiXi + ε2t

(8)

D(DJSIt) = ϕ3ECTt−1 +
n
∑

i=1
α3iD(CO2t−1) +

n
∑

i=1
δ3iD(EUR/USDt−i) +

n
∑

i=1
θ3iD(DJSIt−i)) +

n
∑

i=1
ω3iD(CSIt−i)

+
n
∑

i=1
βiXi + ε3t

(9)

D(CSIt) = ϕ4ECTt−1 +
n
∑

i=1
α4iD(CO2t−1) +

n
∑

i=1
δ4iD(EUR/USDt−i) +

n
∑

i=1
θ4iD(DJSIt−i) +

n
∑

i=1
ω4iD(CSIt−i))

+
n
∑

i=1
βiXi + ε4t

(10)

where i represents the number of lags, coefficients ϕj, αji, δji, θji, ωji, and β ji (j = 1, 2, 3) are
parameters to be estimated and ε ji are white noise error terms. Especially, ECT is the error
correction term derived from the corresponding long-run equilibrium relationship, and
the coefficients ϕj of the ECTs represent the deviation of the dependent variables from the
long-run equilibrium.

The error correction term (ECT) in this study reflects the strength of the self-correction
mechanism at work in CO2 emissions. If the coefficients of ECTt−1 are statistically signifi-
cant, VECM makes it possible to estimate the short-term relationships and to indicate the
existence of long-term relationships. The coefficients of ECT have to be negative, as they
represent the speed of adjustment of the system and constrain the endogenous variables
to converge to cointegration relationships while allowing for short-term dynamic adjust-
ments. The ECT implies that the variations of the endogenous variables are a function of
the level of imbalance in the cointegration relation that it recovers [18,20,71]. Coefficients
αji, δji, θji, ωji, and β ji indicate the short-run causal relationship among the dependent
variables, its lag and other independent and control variables.

The VECM model indicates 3 types of causality: short-run, long-run and strong
causality. If αji, δji, θji, and ωji are statistically significant, they indicate short-run causality
among dependent and other variables. If ϕj is statistically significant, it indicates long-run
causality among dependent and other variables, and finally, if both coefficients ϕj and
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αji, δji, θji, ωji are statistically significant, they indicate a strong causality among dependent
and other variables.

4. Results
4.1. Descriptive Statistics

The following Table 2 depicts the descriptive statistical measures of the variables.
GDPUS has the lowest mean (−0.000148), while DJSIW has the highest price (0.001203).
The lowest deviation from the mean value based on the standard deviation is (0.003318) and
appears to be in CO2, while ENERGY has the highest price (0.078589). All the variables have
a negative asymmetry, while the curvature is positive, which proves it to be slender shaped.

Table 2. Descriptive statistics.

Variables CO2 EUR/USD DJSIW CSI GDPUS ENERGY

Mean 0.000499 0.001002 0.001203 −0.001202 −0.000148 0.001039
Median 0.001587 0.000730 0.008142 −0.002709 0.000127 0.010122

Maximum 0.006352 0.096276 0.115841 0.148694 0.019420 0.237459
Minimum −0.006549 −0.102355 −0.200314 −0.240043 −0.049122 −0.403523
Std. Dev 0.003318 0.027920 0.042303 0.056380 0.004648 0.078589
Skewness −0.554356 −0.305116 −1.103941 −0.506764 −5.709579 −1.208289
Kurtosis 1.965248 4.507465 5.672819 4.922114 66.80467 7.224504

A GARCH model is employed to verify the correctness of the EKC hypothesis.
The results show that all the coefficients except CSI are not significantly important (see
Tables A1 and A2 in Appendix A). When including the quadratic and cubic variable, the
other determinants lose significance. This means that including the quadratic and cubic
terms just brings distortion to the model and should not be considered. In this way, inverted
U-shaped and N-shaped functional forms are also discarded.

4.2. Test of Stationary

According to Table 3 and the Augmented Dickey–Fuller (ADF) unit root test, it is
concluded that the time series remains stable in all levels, except for CO2, while all variables
remain stable I(1) at first differences at the 1% level of significance.

Table 3. ADF stationary test.

Variables
Level Values First Differences

t-Statistic t-Statistic

CO2 −0.735269 −13.51329 *
EUR/USD −12.16529 * −9.039720 *

DJSIW −12.72848 * −10.43915 *
CSI −9.051139 * −8.835164 *

GDPUS −7.447519 * −11.70490 *
Energy −10.38490 * −11.64283 *

Notes: For the level, critical t-values were taken as –2.575011, –1.942205 and −1.615784 for the significance levels
of 1%, 5% and 10%, respectively. For the first differences, critical t-values were taken as –2.575144, −1.942224 and
−1.615772 for the significance levels of 1%, 5% and 10%, respectively. * is the significance level of 1%.

The existence of structural breaks in the dataset may lead the above unit root test
results to be misleading. In order to capture structural breaks, we will use a Breakpoint
Unit Root Test. The null hypothesis is H0: the variable has a unit root. The results of the
test are presented in Table 4.

According to Table 4, the null hypothesis can be rejected at a 1% significance level; as
a result, all the variables do not have the unit roots with structural breaks. Combining with
the results in Table 3, it can be concluded that the six variables analyzed are not stationary
at level but stationary at their first differences.
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Table 4. Results of unit root with structural breaks test.

Variables
Intercept Trend and Intercept

t-Statistic t-Statistic

CO2 −5.368745 * −5.392604 *
EUR/USD −15.88910 * −15.86313 *

DJSIW −13.29994 * −13.47101 *
CSI −16.40341 * −16.25841 *

GDPUS −12.69829 * −12.67187 *
Energy −11.35777 * −11.51268 *

Notes: For the intercept, critical t-values were taken as –4.949133, –4.443649 and −4.193627 for the significance
levels of 1%, 5% and 10%, respectively. For the trend and intercept, critical t-values were taken as –5.347598,
−4.859812 and −4.607324 for the significance levels of 1%, 5% and 10%, respectively. * is the significance level
of 1%.

4.3. Cointegration Analysis

In order to estimate the long-run relationship through the VECM approach, there are
pre-requisite tests for the selection of the appropriate lag selection criteria [72,73]. Table 5
presents the prices of the LR, FPE, AIC, SC and HQ criteria, as a result of the unrestricted
VAR model. Following the literature [74,75] according to the AIC criteria, we select three
lags. To capture dynamic results, the AIC criterion is considered superior and more effective
as compared to SC and HQ, as it provides more reliable results [16]

Table 5. Lag length criteria.

Lag LR FPE AIC SC HQ

0 NA 4.18 × 10−21 −29.89712 −29.80660 −29.86060
1 326.4540 1.30 × 10−21 −31.06383 −30.43013 * −30.80812
2 120.9319 1.02 × 10−21 −31.31175 −30.13489 −30.83687 *
3 95.39607 8.84 × 10−22 * −31.45320 * −29.73318 −30.75915
4 38.08187 1.01 × 10−21 −31.32445 −29.06136 −30.41132
5 57.00695 * 1.04 × 10−21 −31.29822 −28.49187 −30.16581

Note: * indicates lag order selected by the criterion. LR: sequential modified LR test statistic (each test at 5% level);
FPE: final prediction error; AIC: Akaike Information Criterion; SC: Schwarz Information Criterion; and HQ:
Hannan–Quinn Information Criterion.

We employ the Johansen cointegration test in order to examine the existence of cointe-
gration among the CO2 emissions, the exchange rate EUR/USD, the Dow Jones Sustainabil-
ity Index, the Consumer Sentiment Index, the GDP US and the energy index. The results
are reported in Table 6.

Table 6. Johansen cointegration results for CO2 with, EUR/USD, DJSIW, CSI, GDPUS, ENERGY.

Hypothesized No CE(s)
Trace Test Maximum Eigenvalue Test

Trace Statistic 0.05 Critical Value Prob ** Max-Eigen Statistic 0.05 Critical Value

None * 487.8425 95.75366 0.0001 122.0161 40.07757
At most 1 * 365.8264 69.81889 0.0001 110.1060 33.87687

* denotes rejection of the hypothesis at the 0.05 level. ** MacKinnon–Haug–Michelis (1999) p values.

They demonstrate that the first two null hypotheses are rejected, since trace and
eigenvalue tests are greater than the critical bounds of the 0.01 level of significance. This
indicates that there is one cointegrating equation at the 0.01 level. As a result, we confirm
that the CO2 emissions, EUR/USD, DJSIW, CSI, GDP US and ENERGY, have a long-term
stable cointegration relationship at the 1% level.

Based on the existence of a cointegrated relationship among variables, the VECM is
implemented to reveal long-term equilibrium relationships between non-stationary series.
Results of the VECM used in this study are summarized in Tables 7–9.
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Table 7. Cointegration equation of VECM.

Cointegrating Equation CO2(−1) EUR/USD(−1) DJSIW(−1) CSI(−1) GDPUS(−1) ENERGY(−1) C

CointEq1 1.00000 0.028048 −0.037012 0.082171 0.201637 −0.003883 −0.000378
(0.01967) (0.01257) (0.01177) (0.11536) (0.00720)
[1.42627] [−2.94390] [9.34048] [1.74795] [−0.53931]

Standard errors in ( ) and t-statistics in [ ].

According to Table 7, the cointegration equation is:

ECMt−1 = 1.00000 CO2(−1)
+ 0.028048 EUR/USD(−1) − 0.037012DJSI(−1) + 0.082171CSI(−1)

+0.201637GDPUS(−1) − 0.003883ENERGY(−1) − 0.000378
(11)

Error Correction Modeling (ECM) is the simplest univariate modeling. It depicts the
long-term relationship among CO2 and other variables. The coefficients are statistically
significant and reveal a long-run positive relationship between CO2 emissions, DJSIW and
ENERGY. As shown in Equation (11), DJSI has the largest contribution to CO2 emissions
at 0.037012, which is followed by ENERGY at 0.003883. In other words, a 1% increase in
DJSIW will increase CO2 by 3.7% and a 1% increase in ENERGY will, respectively, increase
CO2 by 0.3%. A long-run negative relationship appeared among CO2 and EUR/USD, CSI
and GDP US at−0.028048,−0.082171 and−0.201637, respectively. It is very interesting that
a 1% increase in GDPUS will decrease CO2 by 20.1%. This is in line with Mohsin et al. [76],
who conclude that GDP is negatively contributing to carbon dioxide emissions for the long
run. Regarding the other variables, a 1% increase in CSI will decrease CO2 by 8.2%, and
a 1% increase in EUR/USD will decreases CO2 by 2.8%.

Table 8 shows that ECT coefficients for the EUR/USD, DJSIW, CSI, GDPUS and
ENERGY are found to be −0.3596, −0.2953, −8.0342, −0.1438 and −1.1659, respectively,
and they are statistically significant at the 1% level.

These results validate the presence of a long-run causal relationship among the vari-
ables. The error correction term (ECT) in this study reflects the strength of the self-correction
mechanism at work in CO2 emissions. In this case, the ECT is found to be −0.3596, which
is a result that indicates that when there exist short-term dynamic deviations in CO2 from
the long-term equilibrium, the next phase of CO2 emissions will be reversed by external
changes to bring the unbalanced state back to equilibrium at 35.9%.

Finally, the results of the first and second lagged values reveal that there is a short-run
causal relationship among the variables.

In Table 9, we isolate the first equation of VECM (first column of the Table 8) with CO2
emissions as a dependent variable, EUR/USD, DJSIW and CSI as independent variables
and GDPUS and ENERGY as control variables to investigate the short-run and long-run
causal relationships among the variables and perform some necessary diagnostic tests.

In accordance with Table 9, the equation of error correction with the CO2 emissions as
the dependent variable is:

D(CO2) = −0.359692ECTt−1 + 0.397294D
(

CO2(−1)

)
+ 0.245313D

(
CO2(−2)

)
+ 0.009703D

(
EUR/USD(−1)

)
+ 0.008406D

(
EUR/USD(−2)

)
− 0.006705D

(
DJSI(−1)

)
− 0.001935D

(
DJSI(−2)

)
+ 0.022277D

(
CSI(−1)

)
+ 0.008440D

(
CSI(−2)

)
+ 0.011328D

(
GDPUS(−1)

)
− 0.034395D

(
GDPUS(−2)

)
− 0.001785D

(
ENERGY(−1)

)
− 0.000435D

(
ENERGY(−2)

)
− 1.69E− 05

(12)
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Table 8. VECM estimates.

Error
Correction

(1) D(CO2) D(EUR/USD) D(DJSIW) D(CSI) D(GDPUS) D(ENERGY)

CointEq1 −0.359692 * −0.295379 −0.951541 −8.034263 *** −0.143863 ** −1.165925
(0.04245) (0.61671) (0.83613) (1.12951) (0.07988) (1.52539)

[−8.47382] [−0.47896] [−1.13802] [−7.11305] [−1.80099] [−0.76434]
D(CO2(−1)) 0.397294 * 0.367120 −0.907101 5.902574 0.108877 0.683075

(0.06085) (0.88404) (1.19859) (1.61914) (0.11451) (2.18663)
[6.52930] [0.41527] [−0.75681] [3.64550] [0.95083] [0.31239]

D(CO2(−2)) 0.245313 * −0.294326 1.111206 4.259699 −0.67197 3.365139
(0.06971) (1.01276) (1.37311) (1.85489) (0.13118) (2.50501)
[3.51917] [−0.29062] [0.80926] [2.29647] [−0.41225] [1.34336]

D
(

EUR
USD

)
(−1)

0.009703 * −0.706992 * 0.058300 0.258379 ** −0.001121 *** −0.019915

(0.00443) (0.06434) (0.08723) (0.11784) (0.00833) (0.15914)
[2.19105] [−10.9881] [0.66832] [2.19259] [−0.13446] [−0.12514]

D
(

EUR
USD

)
(−2)

0.008406 * −0.398249 * −0.034946 0.206211 ** −0.005796 ** 0.068271

(0.00436) (0.06339) (0.08594) (0.11610) (0.00821) (−0.15679)
[1.92651] [−6.28249] [−0.40661] [1.77614] [−0.70593] [0.43542]

DJSIW(−1) −0.006705 * −0.030714 *** −0.560285 * 0.104281 *** −0.004454 * −0.010112
(0.00357) (0.05180) (0.07023) (0.09487) (0.00671) (0.12813)

[−1.88063] [−0.59294] [−7.97773] [1.09917] [−0.66381] [−0.07892]
DJSIW(−2) −0.001935 *** −0.041600 *** −0.356622 * 0.096446 ** −0.009892 * −0.185411 ***

(0.00329) (0.04782) (0.06483) (0.08758) (0.00619) (0.11827)
[−0.58780] [−0.86997] [−5.50078] [1.10125] [−1.59715] [−1.56764]

D(CSI)(−1) 0.022277 * 0.020025 0.005590 −0.270270 ** 0.002792 ** 0.121799 ***
(0.00309) (0.04492) (0.06090) (0.08227) (0.00582) (0.11110)
[7.20544] [0.44581] [0.09178] [−3.28519] [0.47989] [1.09627]

D(CSI)(−2) 0.008440 * 0.015445 *** −0.033704 *** −0.127762 ** −0.002722 * −0.107916 ***
(0.00239) (0.03465) (0.04698) (0.06347) (0.00449) (0.08571)
[3.53857] [0.44572] [−0.71739] [−2.01307] [−0.60649] [−1.25908]

D(GDPUS)(−1) 0.011328 −0.108338 4.216318 3.285028 −0.130227 ** 3.123381
(0.00239) (0.54532) (0.73935) (0.99877) (0.07063) (1.34882)
[0.30182] [−0.19867] [5.70273] [3.28908] [−1.84368] [2.31563]

D(GDPUS)(−2) −0.034395 0.441676 −0.439166 2.693038 −0.050379 −5.881146
(0.03725) (0.54113) (0.73366) (0.99108) (0.07009) (1.33844)

[−0.92346] [0.81622] [−0.59860] [2.71727] [−0.71877] [−4.39402]
D(ENERGY)(−1) −0.001785 0.044541 ** 0.021036 −0.023764 0.015246 * −0.349104 *

(0.00187) (0.02712) (0.03677) (0.04967) (0.00351) (0.06708)
[−0.95621] [1.64226] [0.57205] [−0.47840] [4.33970] [−5.20390]

D(ENERGY)(−2) −0.000435 0.023242 ** −0.011843 −0.142056 ** 0.008325 * −0.209877 **
(0.00195) (0.02832) (0.03839) (0.05186) (0.00367) (0.07004)

[−0.22341] [0.82074] [−0.30845] [−2.73896] [2.26952] [−2.99640]
C −1.69 × 10−5 0.000306 6.54 × 10−5 −0.000802 9.27 × 10−5 0.001265

(0.00014) (0.00210) (0.00285) (0.00385) (0.00027) (0.00520)
[−0.11698] [0.14534] [0.02291] [0.20805] [0.34028] [0.24306]

Notes: *, **, and *** denote significance levels of 1% 5% and 10%, respectively.(1) In the table of error correction,
in front of the variables, there is a “D” due to the fact that at first, times series were not stable and the model
VECM corrects the stationary, taking the differences. This is the reason why we use 2 lags and not 3 lags, as it was
suggested by the lag length criteria. Standard errors in ( ) and t-statistics in [ ].

We will check the robustness of the equation. We have employed the Jarque–Bera
test for the normality of the residuals, the LM test for the autocorrelation of the residuals
and the Breusch–Pagan–Godfrey test for heteroskedacity. According to the F-statistic, the
regression is statistically significant. The probability of the Jarque–Bera is 0.95 > 0.05; as
a result, the null hypothesis is not rejected. According to LM test, the null hypothesis of
no existence of autocorrelation is not rejected, and last but not least, according to Breusch–
Pagan–Godfrey, the residuals are homoskedastic.
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Table 9. Equation of CO2.

Variable Coefficient Std. Error t-Statistic Prob

ECTt−1 −0.359692 * 0.042447 −8.473820 0.0000
D(CO2(−1)) 0.397294 * 0.060848 6.529302 0.0000

D(CO2(−2) 0.245313 * 0.069708 3.519175 0.0005

D
(

EUR/USD(−1)

)
0.009703 ** 0.004429 2.191048 0.0295

D
(

EUR/USD(−2)

)
0.008406 ** 0.004363 1.926508 0.0554

D
(

DJSI(−1)

)
−0.006705 *** 0.003565 −1.880634 0.0614

D
(

DJSI(−2)

)
−0.001935 0.003291 −0.587799 0.5573

D
(

CSI(−1)

)
0.022277 * 0.003092 7.205436 0.0000

D
(

CSI(−2)

)
0.008440 * 0.002385 3.538574 0.0005

D
(

GDPUS(−1)

)
0.011328 0.037534 0.301817 0.7631

D
(

GDPUS(−2)

)
−0.034395 0.037245 −0.923463 0.3568

D
(

ENERGY(−1)

)
−0.001785 0.001867 −0.956210 0.3400

D
(

ENERGY(−2)

)
−0.000435 0.001949 −0.223413 0.8234

C −1.69 × 10−5 0.000145 −0.116979 0.9070

R-squared 0.334763 Jarque-Bera test 0.088163
Adjusted R-squared 0.294539 (p-values) (0.956876)

F-statistic 8.322547 LM-test 1.325039
(p-values) 0.000000 (p-values) (0.5156)

Breusch-Pagan-Godfrey test 8.342628
(p-values) (0.9731)

*, **, and *** denote significance levels of 1% 5% and 10%, respectively.

The coefficient of ECT is c(1) = −0.3596 . Once the coefficient is significant and
negative, it implies that there is at least a long-term link among CO2 and the other variables
(EUR/USD, DJSIW, CSI, GDPUS, ENERGY). In the short run, there is a positive causal
relationship from the first and second lag of CO2 to CO2 (c(2) = 0.3972 and c(3) = 0.2453,
respectively) at the 1% level of significance, and from the first and second lag of EUR/USD
to CO2 (c(4) = 0.0097 and c(5) = 0.0084, respectively) at the 5% and 10% levels of
significance, respectively. The first lag of DJSIW has a negative causal relationship with
CO2 emissions at the 5% level, with direction from DJSI to CO2 (c(6) = −0067)). Finally,
there is a positive causal relationship from the first and second lag of CSI to CO2 at the
1% level (c(8) = 0.0227 and c(9) = 0.0084), respectively. As for the control variables,
GDPUS and ENERGY are not statistically significant at any level.

The results of the study reveal a differentiation in the long run and in the short run.
Specifically, the causal relationship between CO2 emissions and DJSIW is negative in the
short run and positive in the long run. Similarly, the causal relationships among CO2 and
the variables EUR/USD and CSI are positive in the short run and negative in the long run.
Furthermore, as for the control variables, in the long run, GDPUS has a negative effect on
CO2 emissions and ENERGY has a positive effect on CO2 emissions, while in the short
run, none of them are statistically significant. Regarding the correctness of the U-shaped
and N-shaped EKC hypothesis, the inverted U-shaped and N-shaped functional forms
are discarded, as all the coefficients except CSI are not significantly important, and when
including the quadratic and cubic variable, the other determinants lose significance.

5. Conclusions and Policy Implications

As environmental degradation attracts the interest of the global community, this
study intends to investigate the determinants of global CO2 emissions. Focused on the
production point of view, stock returns are employed as an indicator of economic growth
and development to examine the impact on environmental degradation. Based on the
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consumption point of view, consumers’ confidence is another plausible factor of CO2
emission levels [14]. The third explanatory factor of environmental degradation is the
exchange rate of euro to US dollar because of the importance of the US dollar for the global
economy. Finally, the sample consists of socially responsible companies that integrate
environmental concerns in their business operation. In particular, the sample is made up
of companies listed in DJSIW considering monthly data for the period 1 April 2001 to
1 July 2020.

Based on the empirical results of the study, it is found that in the short run, the increase
in stock returns contributes to the decline of global CO2 emissions. This result implies that
the growth of socially responsible companies driven by the integration of environmental
initiatives in their business operations mitigates environmental degradation. This can be
linked to government initiatives and policy makers’ incentives that force companies to
employ eco-friendly technology [32]. All the above initiatives might have significantly
contributed to the short-run companies to mitigate the global CO2 emissions.

In the long run, the results show that the increase in stock returns causes higher
levels of CO2 emissions. This result indicates that the continuing economic development
contributes to long-run environmental degradation (i.e., responsible firms grow in good
market periods but so do less responsible ones). For this reason, all governmental bodies
and policy makers should intensify their initiatives, the same way they did for the short-run,
so that companies are prepared for a long-run production with an eco-friendly approach.
Furthermore, policy makers and governments should provide financial incentives such as
tax benefits for stable renewable energy production that could minimize the CO2 emissions
level produced by companies. Governments could impose stricter fines or increased taxes
to polluting companies, leading corporate management to alter their production procedures
to more sustainable ones by investing in eco-friendly technology using clean or renewable
energy. Finally, policy makers should encourage and promote companies to commit to
sustainability networks in which companies are brought together to help each other find
solutions by exchanging or sharing sustainable technological innovations and operational
procedures [31,32].

As far as the consumers’ confidence variable is concerned, in the short run, the results
reveal a positive effect of consumer confidence on global CO2 emissions. On the one
side, the high prospects of increased consumer consumption find companies unable and
unprepared to produce with sustainable approaches, leading to increased CO2 emissions.
This is probably due to the fact that companies wait before investing in environmental
initiatives so as to ascertain that consumer positive prospects will not just be a short-term
phenomenon but a long-run one. On the other side, negative prospects of consumer
willingness to buy lead to lower sales and profits for companies, preventing them from
investing in eco-friendly technology and reforming their business procedures that could
mitigate CO2 emissions.

In the long run, there is a negative effect of consumer confidence on CO2 emis-
sions. The positive prospects of consumers’ confidence for their personal finances and
general business conditions causes lower levels of CO2 emissions. This result implies
that consumers will buy more and over the long run increase company sales and profits,
enforcing companies to adopt all necessary environmental initiatives that could reduce
CO2 emissions.

Finally, in the short run, the euro to US dollar exchange rate has a positive effect on
the global CO2 emissions. This result implies that when the US dollar is strengthening,
the global CO2 emissions are increasing. As the US dollar plays a crucial role in the
funding of companies, when the US dollar strengthens in relation to the euro, the lending
cost of companies for their investments and operations increases, imposing barriers to
consider further investments to mitigate environmental degradation. Furthermore, as the
US dollar is the world’s preferred currency for international trade, the strengthening of the
US dollar leads to higher costs of trade transactions, discouraging companies from taking
into account the environmental concerns on their business operations. On the other side,
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the results indicate that when the US dollar is depreciated, environmental degradation
increases. The depreciation of the US dollar could be considered as an overwhelmingly
positive development for the US and global economies. As companies increase their sales
and profits, they are able to consider and implement sustainability measures to mitigate
the environmental degradation.

In the long run, the results indicate that the euro to US dollar exchange rate has
a negative effect on the global CO2 emissions. The result implies that companies have
developed alternative environmental funding strategies so as to avoid the cost of the US
dollar strengthening. For instance, companies collaborate with governments or economic
communities that have introduced several environmental funds to promote and reduce
the cost of eco-friendly investment technologies and change their business operations
according to environmental standards. In addition, the strong US dollar in relation to the
euro drives companies to find and integrate alternative energy resources so as to avoid the
repercussions of high prices of crude oil, as it is priced in US dollars. However, the long-run
depreciation of the US dollar seems to act against the US dollar’s global status, leading
to increased concerns for global economic stability as well impacting the development of
sustainability projects that could mitigate environmental degradation. Thus, policy makers
should find ways of motivating companies to consider sustainable production and to assist
them with environment-related funding tools that help them during periods of adverse
exchange rate impact. This study shows that the three explanations have different effects
on CO2 emission levels in the short and long run, which policy makers should consider in
their planning process.

Regarding the control variables, in the long run, GDPUS has a negative effect on CO2
emissions. This result is in line with previous studies [77,78], where the authors posited that
an increase in GDP will bring about environmental efficiency by switching away from the
high-carbon emission system to a low carbon-based. Mohsin et al. [76] employing a VECM
model conclude, also, that GDP is negatively contributing to carbon dioxide emissions for
the long run. According to the control variable ENERGY, in the long run, it has a positive
effect on CO2 emissions. Similarly, Chen et al. [47] find a positive relationship between
energy intensity and CO2 emissions and conclude that the high energy-intensive economic
production mode is not conductive to CO2 emission reduction. In the short run, both
GDPUS and ENERGY are not statistically significant at any level.

This study constructs a VECM model in order to explore the determinants of CO2
emissions, but it could not capture the asymmetric effects of the variables on carbon
emissions. Future research could focus on other empirical approaches such as the Nonlinear
Autoregressive Distributed Lag technique (NARDL) and employing a higher frequency
dataset to construct a forecasting model. Furthermore, the subject study can be extended,
for instance, by considering other regional socially responsible indexes, such as DJSI Europe,
FTSE4good and MSCI KLD in order to be compared with DJSI World effects on the global
CO2 emissions. Moreover, renewable energy stocks such as global wind or solar can
be included.
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Abbreviations

DJSI World Dow Jones Sustainability Index
CSI Consumer Sentiment Index
ADF Augmented Dickey–Fuller
VECM Vector Error Correction Model
CO2 Carbon Dioxide Emissions
GDP Gross Domestic Product
EKC Environmental Kuznets Curve
VAR Vector Autoregressive model
AIC Akaike Information Criterion
SIC Schwartz Information Criterion
HQ Hannan–Quinn Criterion
ECT Error Correction Term
LM Lagrange Multiplier
ECM Error Correction Model

Appendix A

Table A1. The results of GARCH for the EKC hypothesis (DJSIW).

Variable Coefficient Std. Error z-Statistic Prob

C 0.000710 * 0.000285 2.491411 0.0127
DJSIW −0.001071 0.008404 −0.127440 0.8986
DJSIW2 −0.004562 0.090149 −0.050606 0.9596
DJSIW3 −0.110755 1.089423 −0.101664 0.9190

EUR/USD −0.004135 0.008415 −0.491360 0.6232
CSI 0.009299 * 0.004408 2.109766 0.0349

GDP_US −0.081281 0.074484 −1.091248 0.2752
ENERGY 0.005913 *** 0.003463 1.707557 0.0877

Variance Equation

C 7.84 × 10−7 4.94 × 10−7 1.586591 0.1126
RESID(-1)2 −0.106473 0.052328 −2.034741 0.0419
GARCH(-1) 1.036902 0.050786 20.41697 0.0000

* and *** denote significance levels of 1% and 10%, respectively.

Table A2. The results of GARCH for the EKC hypothesis (CSI).

Variable Coefficient Std. Error z-Statistic Prob

C 0.002714 * 0.000161 16.88410 0.0000
CSI 0.008089 *** 0.004459 1.813915 0.0697
CSI2 −0.019484 0.029750 −0.654912 0.5125
CSI3 −0.129473 0.420760 −0.307712 0.7583

EUR/USD −0.005029 0.005794 −0.867935 0.3854
DJSIW −0.004714 0.003954 −1.191975 0.2333

GDP_US 0.004627 0.045039 0.102737 0.9182

ENERGY 0.000341 0.002505 0.136089 0.8918

Variance Equation

C 3.59 × 10−6 7.02 × 10−7 5.120570 0.0000
RESID(-1)2 0.915868 0.198188 4.621206 0.0000
GARCH(-1) −0.116314 0.033470 −3.475168 0.0005

* and *** denote significance levels of 1% and 10%, respectively.
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