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Abstract 

Fire weather prognosis tools are of great importance for mitigating the catastrophic impacts of 

wildfires posed on human lives, valuable resources and assets. Their importance is getting higher if we 

reflect on the side effects of climate change such as rising temperatures, extreme drought phenomena 

and shifting precipitation patterns. These factors contribute to the heightened frequency and severity of 

wildfires. The Canadian Fire Weather Index (FWI) System stands out as one of the most extensively used 

tools for fire weather prognosis. Its reliability has been demonstrated across various forest types 

worldwide. Nevertheless, the FWI equations were initially developed within Canadian boreal forests, 

which posses different characteristics compared to other forest types, like Mediterranean forests, in 

terms of their vegetation and climatic conditions. The goal of this project is to refine the already effective 

Canadian Fire Danger System (FWI) and tailor it for the different characteristics of the Mediterranean 

climate reference region in order to get improved fire weather prognosis for that particular geographical 

region. 

The first part of the study is finding constants in the equations of the FWI that result from empirical 

calculations or laboratory tests with region specific characteristics and altering them so as to get different 

FWI values, that give better or worse fire weather prognosis. Each alteration is rated as better or worse 

depending on its correlation yield between the corresponding FWI values and Burned Area. The second 

part of the study is correlating the variables mentioned above using two methods. The first method is the 

correlation of all the grid boxes of the study region with Burned Area data and the second is the correlation 

on each grid box by itself providing that enough data of Burned Area is available for it. 

Firstly, this study indicates that an underlying positive correlation exists between the average 

monthly FWI values and the logBA values, which confirms the reliability of the Canadian FWI System.  

Secondly, using the first method of correlation, the altered FWI codes showed an increase in correlation 

of up to 10%, suggesting that optimizating the FWI for the Mediterranean climate refernce region is 

feasible. However, it is noticed that despite accomplishing the goal of increased correlation, there is a 

noteable difference between the FWI values of the optimized and original FWI code. Special attention 

should be given on this observation, since certain FWI values are associated with certain fire risk 

thresholds for different regions. Moreover, using the second method of correlation, from the Figures of 

Correlation Map and Correlation Map Difference, no clear pattern of increase or decrease in correlation 

was observed, throughout the study region. This pattern could be cleared out, either by using a broader 

study period or by accounting for the land use and vegetation type of each gridbox. 
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1. Introduction 

1.1. Motivation 

Climate change is expected to affect almost every environmental and societal aspect. Some of its 

side effects are increasing temperatures, drought phenomena and shifting precipitation patterns. These 

side effects are directly affecting the frequency and intensity of wildfires, creating new fire-prone regions 

and more severe fire weather behavior (Grillakis 2019, Júnior et al., 2022). Recent studies for southern 

Europe project an increase in future fire danger and burnt areas varying, on average, from 2 to 4% and 

from 5 to 50% per decade, respectively (Dupuy et al., 2020). 

Wildfires not only threaten the forests and ecosystems, but also pose a great threat to human lives 

and available resources and assets. (Peris-Llopis et al., 2020). Thus, being able to predict the danger of 

wildfire events is of great importance for reducing its catastrophic effects. Fire Danger Rating Systems are 

a great tool for fire prognosis used around the world (Junior et al., 2022). Additionally, as fire and land 

management agencies are dealing with increased number of fires having limited financial resources, the 

reliability of fire danger predictive models is becoming a crucial and ever-growing concern in the 

Mediterranean region (Chelli et al., 2015). 

The Canadian Fire Weather Index (FWI) System is one of the most widely used systems for fire 

weather prognosis, due to its robust results in different types of forests around the world. However, the 

FWI equations were originally processed and tested in Canadian boreal forests, which have different 

characteristics from other types of forests such as Mediterranean forests, regarding its vegetation and 

climate (Chelli et al., 2015). 

Thus, by keeping the already successful Canadian Fire Danger System (FWI) and optimizing it for a 

specific type of forest such as the Mediterranean forest, will result in even better fire prognosis for that 

specific area. The goal of this project is to optimize the FWI Code for the Mediterranean climate reference 

region, in order to get better fire prognosis for the specific area. 

1.2. Methods Overview 

The method for this project is firstly, to find constants in the equations of the FWI that are calculated 

either empirically or in the laboratory with region specific characteristics. Secondly, to alter them in both 

directions (higher and lower values than the original ones). Finally, ending up with an altered FWI code 

that gives either better or worse fire prognosis for the study area. 

In this project, the rating of “better” or “worse” fire prognosis is done by correlating the following 

two variables, a) average monthly FWI values and b) monthly logBA (logarithm of Burned Area) values. By 

changing parameters of the FWI code, the average monthly FWI values change and so does the correlation 

with the monthly logBA. The optimization of the FWI code is accomplished, on the occasions that the 

correlation gets stronger. This correlation is studied in two methods, a) on all the grid boxes of the study 

region with Burned Area data, and b) on each grid box by itself providing that enough data of Burned Area 

is available for it. 
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2. Literature Review 

2.1. Mediterranean Region & Climate 

The Mediterranean geographic region, is regarded as the area that encloses the Mediterranean 

Basin and it consists of three continents: southern Europe, southwestern Asia, and northern Africa. Today, 

21 countries have coastlines on the Mediterranean Basin. These include Albania, Algeria, Bosnia and 

Herzegovina, Croatia, Cyprus, Egypt, France, Greece, Israel, Italy, Lebanon, Libya, Malta, Monaco, 

Montenegro, Morocco, Slovenia, Spain, Syria, Tunisia, and Turkey (https://www.medqsr.org). 

It should be pointed out that the term “Mediterranean” not only refers to a geographical region 

but also to a climatic zone. The Mediterranean climate is part of the qualitative classification system for 

the various climate types found on Earth, as established by ‘’Köppen in 1936’’ and it has also been applied 

to describe the climate of other regions, typically smaller than the Mediterranean itself. The 

Mediterranean climate is typically characterized by relatively mild and wet winters, and hot and dry 

summers and it may be found on the western side of continents in the latitudes between approximately 

30 and 45 degrees. The five distinct geographic regions characterized by the Mediterranean climate are i) 

Mediterranean Basin, ii) Coastal California, iii) Central Chile, iv) the Cape region of Southwestern Africa, 

and v) the Southwestern and Southern parts of Australia (Figure 1) (Lionello et al., 2006, Bonada and Resh, 

2013). 

 

Figure 1. Location of the five Mediterranean climate regions in the world (Bonada and Resh, 2013). 

https://www.medqsr.org/
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The Mediterranean region includes most of the Atlantic coast of Morocco and Portugal but excludes 

the biggest parts of Libya and Egypt due to their aridity. It spans over an area of about 1,100,000 km2 and 

is located between 31 and 45 degrees of latitude. The landscape of the area is diverse (Figure 2). 

On the one hand, it features several elevated mountain regions such as the Betic Cordillera located 

in the Southern and Eastern Iberian Peninsula, the Taurus Mountains located in Southern Turkey, the Atlas 

Mountains located in Northwestern Africa, the Kabylia Mountains located in North Algeria and the 

Mediterranean Alps (which is part of the Alps as an interzonal mountain system) stretching across France, 

Monaco, Italy and Slovenia. On the other hand, it features lower hills and plains that are common along 

the coast. In addition, elevated plains can be found in some inland regions. The primary vegetation in the 

area consists of evergreen trees and shrubs (commonly called “maquia” or “garrigue”), savannas, even 

dry steppe in the driest parts of the region. There are also numerous deciduous species in the wetter and 

more mountainous areas (Grove & Rackham, 2001) (https://www.pbs.org). 

 

 

Figure 2. Landscape diversity within the Mediterranean climate region of the Mediterranean Basin (Bonada and 
Resh, 2013). 

 

 

 

 

 

 

 

 

https://www.pbs.org/
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More specifically, according to Köppen's method of climate classification, the Mediterranean 

climate is classified as “warm temperate climate with dry summer” or the “Cs” type, which is divided into 

two subtypes, the “Csa” type (“a” standing for hot summer) and the “Csb” type (“b” standing for warm 

summer) (Khlebnikova, 2009, Kottek et al., 2006). On Figure 3, an updated version of Köppen-Geiger 

climate type map of the World is viewed. 

 

 

Figure 3. Köppen-Geiger climate type map of the World (Peel et al., 2007). 
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2.2. Climate Reference Regions 

Several classifications of climate reference regions have been suggested in the scientific literature 

for synthesizing historical climate data and projecting future climate change trends in specific geographic 

areas. These classifications have been employed in multiple assessment reports of the IPCC. The climate 

reference regions divide the different geographic areas into rectangular shapes with the goal of having 

climatic consistency and coherency for each shape. These sets of regions, also referred as IPCC WGI 

reference regions (v4), have been revised many times, so as to represent regional climate features and 

model results with higher reliability, by also keeping an adequate number of grid boxes per region 

(Iturbine et al., 2020). Climatic homogeneity is determined by evaluating the average temperature and 

precipitation using Köppen–Geiger climatic regions (Rubel and Kottek, 2010), taking into consideration 

the annual cycle and projected changes over the reference regions. 

The 4th and latest version conclude with 46 land and 15 ocean regions (Figure 4). More specifically, 

the Mediterranean climate reference region is delimited between 10o W to 40o E longitude and 30o N to 

45o N latitude (https://github.com/SantanderMetGroup/ATLAS). 

 
Figure 4. Updated IPCC reference land (grey shading) and ocean (blue shading) regions; note that the Caribbean 
(CAR), Southeast Asia (SEA) and the Mediterranean (MED) are considered both land and ocean regions (defined 

using the land and sea masks, respectively). Land masks are used to obtain land-only information for land regions 
(excluding the coastal white regions) (Iturbine et al., 2020). 

https://github.com/SantanderMetGroup/ATLAS
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2.3. Fire regime in the Mediterranean Region 

Wildfires are a natural phenomenon in many ecosystems worldwide, and research suggests that 

the fire regime of a certain region, plays a crucial role in shaping the distribution of species and the overall 

vegetation dynamics of landscapes. The term “fire regime” refers to the combination of wildfire 

frequency, intensity, seasonality, and spread pattern. One of these ecosystems is that of the 

Mediterranean climate, which is commonly acknowledged as “fire-prone”, meaning wildfires have been 

a natural occurrence for such ecosystems for a long time, dating back to at least the late Quaternary 

period. Plants in these ecosystems have developed special mechanisms to adapt and cope with wildfires 

(Chergui et al., 2018, Michelaki et al., 2020). 

At the macro level (seasonal time scale), the reason for that behavior is the climate itself, having 

rainy and mild winters succeeded by warm and dry summers, which causes high levels of vegetation stress, 

making the Mediterranean region more susceptible to fire events. At the micro level (daily time scale), 

extreme weather conditions and fuel availability in turn are the significant factors for the initiation and 

spread of wildfires (DaCamara et al., 2014). 

Although fire regimes are typically stable, they do have shifts throughout the years and historically 

they have been linked to fluctuations in atmospheric oxygen concentration, climate oscillations and 

sudden alternations of herbivorous animal population. In recent years, fire regimes are mostly affected 

by the indirect effects of human activities, which causes climate change and by the direct effects of human 

activities, which include land use change and rural depopulation (Chergui et al., 2018). 

More specifically, due to climate change, Europe is expected to experience drought events of 

unprecedented spatial extent and prolonged duration, occurring as frequently as twice per decade in the 

future, irrespective of mitigation efforts, which in turn are expected to increase the risk of wildfire events, 

shorten the time between such events and increase the duration of the fire season, causing severe 

environmental and economic losses year by year (Grillakis et al., 2019, Rovithakis et al., 2019). 

Furthermore, the desertion of land resulting from rural depopulation, coupled with land use change and 

reforestation projects leads to increased levels of fuel connectivity (denser vegetation). Thus, the fire 

regime switched from fuel limited, to drought driven (Chergui et al., 2018). 

Numerous factors, both natural and anthropogenic, contribute to the incidence and spread of 

forest fires and although human activity is the primary cause of wildfires in regions such as the 

Mediterranean Basin, natural conditions such as fuel properties and moisture content are the ones with 

a catalytic role in the ignition and spread of wildfires (Dimitrakopoulos et al., 2011 Zacharakis et al., 2023). 

To put numbers into perspective, the Mediterranean region accounts for over 85% of burned area 

in Europe, being one of the world most affected regions in terms of significant wildfire events. These fires 

burn around half a million hectares of vegetation cover each year, resulting in substantial economic losses 

and ecological harm (DaCamara et al., 2014). 

In certain southern Mediterranean countries, 2017 has been recorded as one of the most 

destructive wildfire seasons to date. This was marked by a significant increase in burned area, with 

Portugal experiencing a 535% increase, France 160%, Italy 105%, and Spain 95%, in comparison to the 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/mediterranean-climate
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typical levels observed in the prior decade (San-Miguel-Ayanz et al. 2018). For Greece, 2021 was the year 

that saw a significant increase in the burnt area. With five wildfires occurring in less than a month, the 

extent of burnt land was three times larger than the annual average of the previous decade (Giannaros et 

al., 2022). 

2.4. Forest Fire Danger Rating Systems and Indices 

Within the scope of climate analysis, ‘’fire danger’’ as a term, refers to the assessment of the 

climatic conditions that determine ignition speed, rate of spread, suppression difficulty and severity of a 

fire. Therefore, it is crucial to estimate the fire danger a few days (or longer) beforehand to enable fire 

protection agencies to react quickly and provide sufficient human and material resources (Bedia et al., 

2018).  

Historically, fire danger prediction primarily relied on statistical techniques that utilized the delayed 

connections between various fire-related measures (such as the number of fires and the total burnt area) 

and slowly changing climate system components used as predictors, such as sea-surface temperatures or 

meteorological droughts. These predictions were also based on meteorological observations, on a global 

to regional scale. Nevertheless, the use of empirical approaches had its limitations as it relied on the short 

history of observation-based data, leading to inaccuracies and point observations that were not 

representative of broader region stations as a result of local small-scale variations in meteorological 

variables resulting in the loss of data. The use of modern climate science and climate models has allowed 

for the development of numerical climate models such as Global Climate Models (GCMs). These models 

generate predictions based on simulations of atmospheric and oceanic parameters, providing an 

alternative to empirical approaches (Bedia et al., 2018, Ntinopoulos et al., 2022). 

However, the predictions from model simulations unavoidably come with a degree of uncertainty 

due to model biases, resulting in significant deviations from observed climate. To address this, the mean 

outputs of multiple models, known as ensembles, are often used. Ensembles can provide more confidence 

in the decision-making process during emergency situations, as a cost-loss analysis can be associated with 

different scenarios. Running ensembles is computationally intensive, and therefore, they are typically run 

at lower resolutions than a single deterministic run. The forecast is then interpreted as probabilistic, 

rather than deterministic (Bedia et al., 2018, Ntinopoulos et al., 2022). 

Accordingly, modern fire danger assessment uses the climate predictions from GCMs in 

combination with Fire Danger Rating Systems and Indices to predict future fire danger with higher 

certainty. These Fire Danger Rating Systems and Indices are produced through research both in theoretical 

and in empirical terms and they mostly use meteorological parameters such as temperature, humidity, 

wind and precipitation in correlation with fuel moisture as well as other parameters, to give off an index 

that translates into the danger of a fire occurring, or its severity if it were to happen (Zacharakis et al., 

2023). 

The ability to predict fire danger can reduce the ecological and economic losses as well as operation 

costs for fire suppression systems. Fire and land management agencies utilize fire danger rating systems 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/climatic-factor
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to assess their readiness levels, release public alerts, and establish management, research, and legal 

frameworks concerning fire-related issues (Dimitrakopoulos et al., 2011). 

Different regions of the world implement different fire danger rating systems, including some of 

the following: 

• Fire Weather Index – Canada (FWI, Van Wagner 1987) 

• McArthur Forest Fire Danger Index – Eastern parts of Australia (FFDI, McArthur 1967) 

• Forest Fire Behaviour Tables – Western Australia (FFBT, Sneeuwjagt and Peet 1998) 

• National Fire Danger Rating System – USA (Deeming et al. 1977) 

All these systems integrate weather conditions, fuel moisture and other parameters to assess fire 

danger, calculated as a numerical index. Although fire danger is not the same as fire behavior, the indices 

were developed on the assumption that fire danger is related to fire behavior, quantified as rate of spread 

or intensity. Index values are classified into rating classes to aid interpretation. Most systems use five 

rating classes: Low, Moderate, High, Very High, and Extreme (Matthews, 2009). On Figure 5, an example 

of Fire Danger rating can be seen. 

 

Figure 5. Updated Australian Fire Danger Rating (https://afdrs.com.au). 

 

 

 

 

 

 

 

https://afdrs.com.au/
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2.5. Canadian Forest Fire Weather Index 

Among the various fire danger systems being used in literature and in practice, both on global and 

regional scale, the most frequently used one is the Canadian Forest Fire Weather Index (CFFWI) or Fire 

Weather Index (FWI) in short, due to its simplicity and robustness (Ntinopoulos et al., 2022, Grillakis et 

al., 2022). The FWI was developed after years of work by a number of fire researchers in the Canadian 

Forestry Service (Van Wagner 1987). Data of weather, fuel moisture and test fire behavior were collected 

and tested over several decades for the final form of the FWI to be produced (Simard and Main, 1982). 

The Fire Weather Index (FWI) System is composed of six (6) standard components. The first three 

are fuel moisture codes that follow daily changes in the moisture content of three classes of forest fuel 

with different drying rates. The last three (including the FWI itself) are fire behavior indices representing 

rate of spread, fuel weight consumed and fire intensity (Dimitrakopoulos et al., 2011, Van Wagner 1987). 

1) FFMC – Fine Fuel Moisture Code 

It represents the moisture content of litter and other cured fine fuels in a forest stand, in a 

layer of dry weight about 0,25 kg/m2. This code is an indicator of the relative ease of ignition and 

flammability of fine fuel. 

2) DMC – Duff Moisture Code 

It represents the moisture content of loosely compacted, decomposing organic matter 

weighing about 5 kg/m2 when dry (found around 7 cm of soil depth). Also used as an indicator of 

the receptivity of the forest floor to ignition by lightning. 

3) DC – Drought Code 

It represents a deep layer of compact organic matter weighing around 25 kg/m2 when dry. 

This code is a good indicator on the seasonal drought effect on soil moisture. 

4) ISI – Initial Spread Index 

A combination of wind and the FFMC, and represents the rate of spread alone without the 

influence of variable quantities of fuel. 

5) BUI- Buildup Index 

A combination of the DMC and the DC, and represents the total fuel available to the 

spreading of fire. 

6) FWI – Fire Weather Index 

A combination of the ISI and the BUI, and represents the intensity of the spreading fire as 

energy output rate per unit length of fire front. 

The system uses as inputs only weather readings/observations taken each day at noon local 

standard time (LST), generally specified as 12:00 hours, and those are dry-bulb temperature, air relative 

humidity, 10m open wind speed and 24 h accumulated precipitation (if any) (Turner and Lawson, 1978). 
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The structure of the Canadian FWI System and the connections between fire weather observations, 

fuel moisture codes and fire behavior indices can be viewed on Figure 6. 

 

 
Figure 6. Structure of the FWI System and their connection (https://www.nwcg.gov). 

In its basic form, the FWI system is a set of equations that can easily be processed by computer, 

which is a big advantage over the previous systems (Van Wagner and Picket, 1985). 

The FWI system was designed for Canadian fuel and weather conditions and primarily refers to a 

standard pine fuel type which is pretty common in Canadian forests (Van Wagner 1987). More specifically, 

the exact fuel type (trees) that were used for the development of the FWI system and more specifically 

the Equilibrium Moisture Content (EMC) of fine fuel are leaf litter of the following (Van Wagner, 1972): 

• White pine (Pinus Strobus L.) 

• Red pine (Pinus Resinosa Ait.) 

• Jack pine (Pinus Banksiana Lamb.) 

• Trembling aspen (Populus Tremuloides Michx.) 

• Sugar Maple (Acer saccharum Marsh.) 

• Grass (Calamagrostis p.) 

• Processed match splints (standard fine fuel in Canadian research on fire danger rating) 

 

https://www.nwcg.gov/
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2.6. Calibrations/Modifications of FWI 

The FWI system was originally created to incorporate weather data into indices for fuel moisture 

and fire danger, with no consideration given to variations in forest types (Wotton, 2009). The FWI 

equations were developed and tested in boreal forests in Canada, which have different features compared 

to Mediterranean vegetation and climate. Specifically, the Canadian FWI was designed to monitor 

moisture in a standard Jack Pine (Pinus banksiana) and Lodge Pole Pine (Pinus contorta) forest. In contrast 

to Canadian boreal forests, Mediterranean forests are found in a distinct climate, consisting of different 

species, and have a simpler vertical structure due to widespread coppice management. Additionally, they 

are commonly found in marginal areas with shallow soils and low biomass accumulation and have a 

relatively slow growth rate (Chelli et al., 2015). 

There is not much literature in the topic of FWI Optimization/Calibration for different regions and 

few researchers have attempted this. 

Cheli et al. (2015) collected forest fuel moisture data from the regions of Peloponnese and Algarve 

and calibrated the Fine Fuel Moisture Code (FFMC) and Duff Moisture Code (DMC) to match the collected 

fuel moisture data in order to improve the FWI code in predicting forest fire danger. This study produced 

promising results of an adapted FWI code, however, due to the heterogeneity of the Mediterranean 

vegetation, further testing and research should be made for a more precise calibration of the FWI code. 

Yang et al. (2015) focused on calibrating (reformulating) the Drought Code (DC) component of the 

FWI code for New Zealand. Two methods were investigated. The first method (PotE) replaces the 

evapotranspiration values, calculated by the FWI code, with values taken from JULES (Joint UK Land 

Environment Simulator). The second method (soilM) replaces the moisture content of the compact 

organic matter of the deep layer (referred to as ‘’soil moisture’’ in this study) calculated by the FWI code, 

with either observed soil moisture or simulated soil moisture taken from JULES. The results from this study 

suggest that the original DC method underestimated the drought status, resulting in underestimation of 

FWI values whereas the PotE method overestimated it. Moreover, the soilM method that used simulated 

moisture, reduced the errors in the calculated drought status and FWI. Unfoturnately, FWI values between 

the original and the calibrated code were not compared, since there were no records of wildfire around 

the study area. 
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3. Data 

3.1. Data Gathering 

1.Burned Area (BA) 

The satellite data for Burned Area were collected from NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS), Global Land Cover Product (MCD64A1) and specifically for the years 2001-

2016 on a monthly time resolution. The current dataset has a spatial resolution of 0.25o and provides 

values of burned area in hectares and information on percentages of burned area for 17 different land 

types, such as evergreen needleleaf forest, open shrublands or even savannas (Giglio et al., 2018). 

2.Climate Data 

Meteorological data were collected from the ERA5 dataset, which is the fifth generation of 

reanalysis for the global climate and weather for the past 8 decades. It is generated by the Copernicus 

Climate Change Service, which is part of the Earth’s monitoring programme of the European Union and 

implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) 

(https://climate.copernicus.eu). 

Reanalysis is a process that combines data from computer models and observations from all over 

the world. The aim is to produce a comprehensive observation-based dataset that is consistent with the 

laws of physics. This is done through a technique called data assimilation, which is similar to what is used 

by weather forecast centers. In this technique, a previous forecast is combined with new observations to 

produce a new and improved estimate of the atmosphere's state, which is then used to update future 

forecasts. Reanalysis works the same way as weather forecasts, but at a lower resolution, allowing for the 

creation of a dataset that spans several decades. Unlike weather forecasts, reanalysis does not have to be 

timely, which means there is more time to collect observations and apply retrospectively. This also allows 

for the incorporation of improved versions of original observations, which ultimately improves the quality 

of the reanalysis output (Copernicus Climate Change Service, 2023). 

Specifically, five meteorological variables and one parameter that separates land and sea grid 

boxes, all at a 0.25o resolution were collected for the time period of 2001-2016. Those are (Hersbach et 

al., 2023): 

• 10m u-component of wind (eastward component of wind at a height of 10 meters above the 

surface of the Earth) 

• 10m v-component of wind (northward component of wind at a height of 10 meters above the 

surface of the Earth) 

• 2m temperature (temperature of air at 2 meters above the surface of land, sea or inland waters) 

• total precipitation (accumulated liquid and frozen water, comprising rain and snow, that falls to 

the Earth's surface) 

• 2m dewpoint temperature (temperature to which the air, at 2 meters above the surface of the 

Earth, would have to be cooled for saturation to occur) 

https://climate.copernicus.eu/
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• Land-Sea mask (proportion of land, as opposed to ocean or inland waters) 

3.2. Data Preparation 

The data were prepared for their use in the Mediterranean Climate Reference Region and the 

Canadian Fire Weather Index System. Data preparation was done on the MATLAB programming platform. 

At first, both burned area data and climate data were cropped into certain dimensions, so as to fit 

the Mediterranean Climate Reference Region. Having 0.25o resolution, the study region comes up to 201 

cells in the Longitude (X axis) and 61 cells in the Latitude (Y axis). Resulting in a study region of 201x61 

grid boxes. 

After that, hourly climate data were converted into daily climate data. This was achieved by keeping 

only one value out of the 24-hourly values and that is of 12:00 LST (Local Standard Time), as it is a 

prerequisite in the FWI system. The only exception is total precipitation, where the 24-hourly values of 

each day were added for the final daily value. 

Then, climate data were converted into the four necessary input data for the FWI and those are 

temperature, relative humidity, 10m open wind speed and 24 h accumulated precipitation. More 

specifically, 10m u-component of wind and 10m v-component of wind were combined for the calculation 

of the 10m open wind speed, and 2m dewpoint temperature and 2m air temperature were combined for 

the calculation of the relative humidity using the formula for saturated water pressure from Wright 

(1997). 

𝑤𝑖𝑛𝑑 = √𝑤𝑖𝑛𝑑𝑢
2 + 𝑤𝑖𝑛𝑑𝑣

2 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑎𝑡𝑒𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 611.21 ∗ 𝑒
17.502∗𝑡𝑒𝑚𝑝

(240.97+𝑡𝑒𝑚𝑝) 

𝑎𝑐𝑡𝑢𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 611.21 ∗ 𝑒
17.502∗𝑑𝑝𝑡

(240.97+𝑑𝑝𝑡) 

𝑟ℎ =
𝑎𝑐𝑡𝑢𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑎𝑡𝑒𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
∗ 100 

Finally, the Land-Sea mask was applied on the climate data, in order to exclude grid boxes that 

represent bodies of water (ocean or inland waters) from the FWI calculations. 
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4. Methodology 

4.1. FWI Calculation 

Following the preparation of climate data, the first step of the methodology requires the input of 

those data into the Canadian FWI system, meaning its equations. The end result from this step, are the 

daily values of FWI for all the grid boxes of the study region excluding the areas of ocean or inland waters 

(using the Land-Sea mask), for the years 2001-2016. 

All FWI calculations were done on the MATLAB programming platform and the equations used can 

be seen on the official Canadian Forestry Technical Report of 1987 by Van Wagner. 

4.2. Correlation 

The daily FWI values were then converted into average monthly FWI values and the monthly burned 

area values were converted into monthly logBA (logarithm of monthly Burned Area values). The use of 

logBA has been found to be a useful tool for examining correlation between Burned Area and drought or 

fire indicators over seasonal and interannual time periods in a linear fashion (Abatzoglou et al., 2018, 

Grillakis et al., 2022). 

The two sets of values were paired and sorted by ascending order of the monthly logBA values and 

were then correlated and the Pearson’s r was calculated. 

Then, the two sets of values were binned, having 100 sets of values in each bin, and the correlation 

process and Pearson’s r calculation was repeated. 

Finally, low values of BA were excluded from the correlation and the correlation process and 

Pearson’s r calculation were repeated once more. 

4.3. Correlation Map 

Furthermore, a different type of correlation was also considered, by correlating the same two 

variables (average monthly FWI, monthly logBA) on the grid box level, referred to as Correlation Map from 

here on. Since many grid boxes had very few or no fire events for the time period of the study (2001-

2016), grid boxes that experienced less than five months in total (of the 2001-2016 period) of fire events 

(Burned Area) were excluded from the correlation. 

The Correlation Map was also re-made after keeping only 4 months (June-July-August-September 

– JJAS) of the year, since they represent the peak of the fire season in the Mediterranean Region. 
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4.4. FWI Optimization 

In order to further optimize the FWI code for the specific study region, certain equations of the FWI 

code that were either empirical or the result of region-specific parameters, were chosen as fit for this 

study and were altered. 

Four different variations were studied, from here on referred to as Experiments, choosing certain 

equations each time in each of the following indices: 

• Experiment 1 - (FFMC – EMC(Ed)) 

• Experiment 2 - (FFMC – EMC(Ew)) 

• Experiment 3 - ISI 

• Experiment 4 - DMC 

The same methodology was followed for all the experiments, obtaining different values of average 

monthly FWI values, which were then correlated with the same monthly logBA, ending up with a different 

Pearson’s r in each experiment. Multiple set of values were tested in each Experiment and the highest 

Pearson’s r value (best fit) of each Experiment was chosen as a tool for comparing the results of the 

Experiments with those of the original code. 

The same methodology was also followed for the second approach, the Correlation Map, which was 

plotted using the best fit from each Experiment. For the sake of comparison, the Correlation Map of the 

original code was subtracted from them, as shown on the following equation, where i and j are the 

coordinates of each grid box. 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑝 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖, 𝑗)

= 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑝 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡(𝑖, 𝑗) − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑝 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (𝑖, 𝑗) 

Experiment 1 - FFMC (Ed) 

The first experiment focused on the Fine Fuel Moisture Code – FFMC component of the FWI code 

and specifically on the Equilibrium Moisture Content – EMC obtained in the drying phase of the fine fuel 

(Ed). 

Moisture of dead vegetative material (leaves, pine needles etc.) comes to an equilibrium with the 

atmospheric conditions in certain rates, depending on the type of vegetation. This specific rate which is 

different in each vegetation type, plays a crucial role in the calculation of the FWI value. For that reason, 

during the years 1960 to 1968, specific experiments took place in a laboratory in order to calculate the 

drying/wetting rates for fine fuel to reach equilibrium with the daily atmospheric conditions. Canadian 

local species of tree litter, mainly pine trees, were used in the experiments since they form the biggest 

part of the Canadian boreal forests (Van Wagner, 1972). 

The equation describing the EMC of the drying phase is the Ed equation of the FWI code and 

describes the drying isotherm curve of Figure 7: 
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• 𝐸𝑑 = (0.942) ∗ 𝑅𝐻0.679 + 11 ∗ 𝑒
𝑅𝐻−100

10 + 0.18 ∗ (21.1 − 𝑇𝐸𝑀𝑃) ∗ (1.0 − 𝑒0.115∗𝑅𝐻) 

 

 

Figure 7. Isotherm curves of Equilibrium moisture content versus relative humidity at 21.1oC (Van Wagner, 1987). 

As such, different types of forests (different vegetation), in our case Mediterranean forests, are 

suggested to be represented by modified Ed equations. In order to do so in a controlled manner, two 

parameters from the Ed equation were chosen as fit for change. Those are 0.942 and 0.679, which were 

named multip and expon, and they are considered variables from here on. The Ed equation, becomes as 

follows: 

• 𝐸𝑑 = (𝑚𝑢𝑙𝑡𝑖𝑝) ∗ 𝑅𝐻𝑒𝑥𝑝𝑜𝑛 + 11 ∗ 𝑒
𝑅𝐻−100

10 + 0.18 ∗ (21.1 − 𝑇𝐸𝑀𝑃) ∗ (1.0 − 𝑒0.115∗𝑅𝐻) 

The study utilized different values for the parameters of multip and expon, represented as 

percentages of the original parameter values, in order to modify the Ed equation. The percentages ranged 

from 60% to 120% of the original values as follows: 

The values used: 

• multip = 0.60*0.942, 0.65*0.942…….1.15*0.942, 1.20*0.942 (total of 13 values) 

• expon = 0.60*0.679, 0.65*0.679…….1.15*0.679, 1.20*0.679 (total of 13 values) 

A total of 169 sets of values (13 values for each parameter) were used to calculate the average 

monthly FWI values, which were then correlated with monthly logBA values. 
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Experiment 2 - FFMC (Ew) 

The second experiment focused on the Fine Fuel Moisture Code – FFMC component of the FWI 

code and specifically on the Equilibrium Moisture Content – EMC obtained in the wetting phase of the 

fine fuel (Ew). 

The equation describing the EMC of the drying phase is the Ew equation of the FWI code and 

describes the wetting isotherm curve of Figure 7: 

• 𝐸𝑊 = (0.618) ∗ 𝑅𝐻0.753 + 10 ∗ 𝑒
𝑅𝐻−100

10 + 0.18 ∗ (21.1 − 𝑇𝐸𝑀𝑃) ∗ (1.0 − 𝑒0.115∗𝑅𝐻) 

Again, two parameters from the Ew equation were chosen as fit for change. Those are 0.618 and 

0.753, which were named multip and expon, and they are considered variables from here on. The Ew 

equation, becomes as follows: 

• 𝐸𝑤 = (𝑚𝑢𝑙𝑡𝑖𝑝) ∗ 𝑅𝐻𝑒𝑥𝑝𝑜𝑛 + 10 ∗ 𝑒
𝑅𝐻−100

10 + 0.18 ∗ (21.1 − 𝑇𝐸𝑀𝑃) ∗ (1.0 − 𝑒0.115∗𝑅𝐻) 

Using the same method as in the previous experiment, in the place of multip and expon, different 

set of values were used ranging from 60% to 120% of the original value. 

The values used: 

• multip = 0.60*0.618, 0.65*0.618…….1.15*0.618, 1.20*0.618 (total of 13 values) 

• expon = 0.60*0.753, 0.65*0. 753…….1.15*0. 753, 1.20*0. 753 (total of 13 values) 

A total of 169 sets of values (13 values for each parameter) were used to calculate the average 

monthly FWI values, which were then correlated with monthly logBA values. 
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Experiment 3 - ISI 

The third experiment focused on the Initial Spread Index – ISI component of the FWI code and 

specifically on two equations. The first one represents the wind effect, f(W), and the second one 

represents the fine fuel moisture effect, f(F), on the spread rate of fire. Their effect can be viewed on 

Figure 8 and Figure 9. 

The above-mentioned equations were chosen as fit for change, since they are essentially empirical. 

Specifically for the first equation, its validity is uncertain at very high wind speeds (Van Wagner, 1987). 

1st Equation 

• 𝑓(𝑊) = 𝑒0.05039∗𝑊 

 

 

Figure 8. Effect of wind speed on relative spread rate in the ISI, along with wind effects from five sources (Shape 
and slope of curves is relevant, their relative position is not) (Van Wagner, 1987). 

The equation f(W) has only one parameter, the exponent 0.05039, which was chosen, named 

expon1 and is considered a variable from here on. The f(W) equation, becomes as follows: 

• 𝑓(𝑊) = 𝑒𝑒𝑥𝑝𝑜𝑛1∗𝑊 
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2nd Equation 

• 𝑓(𝐹) = (91,9 ∗ 𝑒−0.1386∗𝑚)[
1+𝑚5.31

4.93∗107] 

 

Figure 9. Effect of fine fuel moisture (FFM) on relative spread rate in the ISI, along with FFM effects from three 
sources (Shape and slope of curves is relevant, their relative position is not) (Van Wagner, 1987). 

The equation f(F) has more than one parameter, however the exponent 0.1386, was chosen, named 

expon2 and is considered a variable from here on. The f(F) equation, becomes as follows: 

• 𝑓(𝐹) = (91.9 ∗ 𝑒−𝑒𝑥𝑝𝑜𝑛2∗𝑚)[
1+𝑚5.31

4.93∗107] 

Using the same method as in the previous experiment, in the place of expon1 and expon2, different 

set of values were used ranging from 60% to 120% of the original value. 

The values used: 

• expon1 = 0.60*0.05039, 0.65*0.05039…….1.15*0.05039, 1.20*0.05039 (total of 13 values) 

• expon2= 0.60*0.1386, 0.65*0.1386…….1.15*0.1386, 1.20*0.1386 (total of 13 values) 

A total of 169 sets of values (13 values for each parameter) were used to calculate the average 

monthly FWI values, which were then correlated with monthly logBA values. 
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Experiment 4 – DMC 

The fourth experiment focused on the Duff Moisture Code – DMC component of the FWI code and 

specifically on two equations concerning the wetting phase of the duff layer. The first one represents the 

calculation of the moisture content of the duff layer according to the previous day’s DMC and the second 

one represents today’s DMC according to the previously calculated moisture content. 

DMC represents the moisture content of real slow drying forest fuel. The duff layer was chosen as 

a representative fuel type due to its constant occurrence in Canadian forests. The development of DMC 

equations was the result of four years of fieldwork, mainly in red pine and jack pine forests (Van Wagner 

1987). 

For that reason, different types of forests (different vegetation), in our case Mediterranean forests, 

have different type of duff layer (decomposing organic matter in the same soil depth) and should be 

represented by modified DMC equations. 

The two equations are the following: 

• 𝑀𝑜 = 20 + 𝑒
(5.6348−

𝐷𝑀𝐶𝑝𝑟𝑒𝑣

43.43
)
 

• 𝑃𝑟 = 244.72 − 43.43 ∗ log(𝑀𝑟 − 20) -> 𝑃𝑟 = 43.43 ∗ (5.6348 − log(𝑀𝑟 − 20)) 

The Pr equation is slightly re-arranged, in order to end up with the same parameters as the Mo 

equation. The above equations have three parameters, two of them were chosen as fit for change. The 

first is 5.6348, named var1 and the second one is 43.43 named var2 and they are considered variables 

from here on. The equations, become as follows: 

• 𝑀𝑜 = 20 + 𝑒
(𝑣𝑎𝑟1−

𝐷𝑀𝐶𝑝𝑟𝑒𝑣

𝑣𝑎𝑟2
)
 

• 𝑃𝑟 = 𝑣𝑎𝑟2 ∗ (𝑣𝑎𝑟1 − log(𝑀𝑟 − 20)) 

Using the same method as in the previous experiment, in the place of var1 and var2, different set 

of values were used ranging from 60% to 120% of the original value. 

The values used: 

• var1 = 0.60*5.6348, 0.65*5.6348…….1.15*5.6348, 1.20*5.6348 (total of 13 values) 

• var2= 0.60*43.43, 0.65*43.43…….1.15*43.43, 1.20*43.43 (total of 13 values) 

A total of 169 sets of values (13 values for each parameter) were used to calculate the average 

monthly FWI values, which were then correlated with monthly logBA values. 

Combinations 

Lastly, combinations of the above-mentioned Experiments were carried out for the FWI 

calculations. These combinations integrated the alteration/modifications that yielded the highest 

Pearson's r value in each experiment. By incorporating multiple optimization Experiments, the correlation 

of the two variables is expected to increase. 
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4.5. Study Region 

The region analyzed in this study is the Mediterranean Climate Reference Region as used in the 

updated IPCC WGI reference regions (v4) (Iturbine et al., 2020). As mentioned before, the specific region 

is delimited between 10o W to 40o E longitude and 30o N to 45o N latitude. In Figure 10 the study region is 

viewed in more detail. Moreover, a map of the vegetation land cover is viewed on Figure 11 and its land 

cover classification on Figure 12, provide an insight of the study region regarding its vegetation/fire 

dynamics. 

 

Figure 10. Mediterranean Climate Reference Region (LON: 10o W to 40o E, LAT: 30o N to 45o N) (Iturbine et al., 
2020). 

 

Figure 11. Vegetation land cover across the Mediterranean Climate Reference Region & Land Cover Classification 
(https://land.copernicus.eu/global/products/lc). 

A quick observation is that areas located at the Northern parts of Africa and Western parts of Asia, 

such as parts of Morocco, Algeria, Tunisia, Libya, Egypt and Syria,  have more favorable conditions for fire 

events (higher temperature, lower humidity etc.), however, the high percentages of bare/sparse 

vegetation make wildfires uncommon in these places. 

https://land.copernicus.eu/global/products/lc
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5. Results 

5.1. Original FWI code 

First of all, a map of the average FWI was plotted (Figure 12), for the study region and the study 

period, in order to have a clear view of the fluctuations of the average FWI values across the 

Mediterranean climate reference region. The original equations of the Canadian FWI were used (Van 

Wagner, 1987). 

 

Figure 12. Fluctuation of the Average FWI values across the Mediterranean Climate Reference Region. 

The areas with the highest average FWI values were mentioned before as the areas with the highest 

percentages of bare/sparse vegetation. Concluding, that high FWI in these areas does not mean high fire 

danger. 

The first correlation analysis between the monthly BA values and the average monthly FWI values 

(total of 30,971 set of values) that took place, represents all the grid boxes that experienced Burned Area 

in the years 2001-2016 and is viewed on Figure 13. 
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Figure 13. Correlation of the monthly logBA values and the average monthly FWI values. 

The Pearson’s r in the above correlation is r=0.0944, which translates into a very poor positive 

correlation. It is important here to note, that when looking at the micro level (specific month and specific 

area), a strong correlation is not excepted because high FWI values suggest high fire danger and not high 

burned area. 

For that reason, the set of values were binned into sets of 100 values. In that way, the impact of 

extreme events, such as a cold winter month with high BA or a warm summer month with low BA, is 

reduced. By grouping the data into bins, the variability within each bin is reduced, allowing for a clearer 

representation of the underlying trends in the data. 

This can make it easier to identify any patterns or correlations between the FWI and BA values. 

Additionally, binning can help reduce the noise in the data that may be caused by natural variability or 

measurement error. This can make it easier to detect and quantify the true underlying relationship 

between the FWI and BA values. In Figure 14 the correlation between the binned set of values is viewed. 
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Figure 14. Correlation of the monthly logBA values and the average monthly FWI values (bins of 100). 

The Pearson’s r in the above correlation is r=0.4216, which translates into a weak to average 

positive correlation. Clearly the correlation became much stronger. 

Moreover, areas with low values of BA (BA<50 hectares, or logBA<1.7) were excluded from the 

correlation (Figure 15). Firstly, since 21.44 hectares is the lowest value the MODIS satellite can provide as 

Burned Area, errors or false data might fall on this category. Secondly, because small fires might have 

started as extreme wildfires, but a quick response from the fire protection agency led to a quick stop of 

the fire. 

Therefore, including these low BA values might bias the analysis and affect the correlation between 

FWI and BA. Thus, technically the values of 21.44 and 42.87 hectares were the ones excluded from the 

data. Their corresponding logarithmic values are log(21.44)=1.33 and log(42.87)=1.63. 
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Figure 15. Correlation of the monthly logBA values and the average monthly FWI values (bins of 100) 
(logBA>1.7). 

The Pearson’s r in the above correlation is r=0.5786, which translates into an average to strong 

positive correlation. Again, the correlation became stronger following this refinement. 

This is a significant improvement compared to the initial correlation before binning the data, which 

had a Pearson's r value of only 0.0944. The higher correlation value suggests that binning the data and 

excluding areas with low BA values may have helped to reduce noise in the data and better capture the 

relationship between FWI and BA. 

The above correlation will be the one to be compared with the experiments of optimization that 

are provided later in the study. 
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The second type of correlation, the Correlation Map, can be viewed on Figure 16. The green color 

represents positive correlation between the two variables (average monthly FWI, monthly logBA) and the 

red color negative correlation. All the areas with less than 5 months of Burned Area in the study period, 

were excluded from the correlation. 

 

Figure 16. Correlation of the monthly logBA values and the average monthly FWI values on the grid box level 
(logBA>1.7) (months of BA≥5). 

In Figure 17, the Correlation Map for the summer months (June-July-August-September – JJAS) of 

the year can be viewed. 

 

Figure 17. Correlation of the monthly logBA values and the average monthly FWI values on the grid box level 
(logBA>1.7) (months of BA≥5) (JJAS). 

Both of the above figures provide mixed correlations throughout the Mediterranean region. More 

specifically, areas such as Portugal, Northwestern Spain, North Algeria and Tunisia, Croatia up to Albania, 

Romania and Bulgaria have a mostly positive correlation between the two variables, whereas Turkey, the 

rest parts of Spain and Syria have a mostly negative correlation.  
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By comparing Figure 16 and Figure 17 with Figure 11 (Land Cover), the following conclusions are 

made: Areas with mostly negative correlation are represented by high percentages of cropland and 

herbaceous type of vegetation. On the other hand, areas with mostly positive correlation are split into 

two groups. Portugal, Northwestern Spain and Croatia up to Albania are represented by high percentages 

of forest type of vegetation, whereas North Algeria and Tunisia, Romania and Bulgaria are represented by 

high percentages of cropland type of vegetation. 

The Correlation Maps (Figure 16 and Figure 17) will be used as a comparison for the experiments 

of optimization that are provided later on the study. 

5.2. Experiment 1 – FFMC (Ed) 

In Figure 18, the Pearson’s r between the average monthly FWI value and the monthly logBA, of all 

the different sets of multip and expon values is viewed for the Experiment 1. It is important to note here 

that the method of binning the data and excluding areas with low BA is followed in this analysis. 

 

 

Figure 18. Experiment 1 – Pearson’s r for all the sets of multip & expon. 

The green circle represents the Pearson’s r using the original values of multip & expon (original FWI 

code) with a value of r=0.5786, whereas the red circle represents the best fit (set of values of multip & 

expon that achieve the highest Pearson’s r) of Experiment 1 with a value of r=0.6247. An increase of about 

8%. As a general observation, the Pearson’s r values tend to get higher as both multip and expon decrease. 

However, expon seems to have the greatest role in the correlation shifts. 
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The Correlation Map Difference between the best fit of Experiment 1 and the original code can be 

viewed on Figure 19. 

 

Figure 19. Difference in Pearson’s r between the best fit of Experiment 1 and the original code on the grid 
box level (logBA>1.7) (months of BA≥5). 

The Correlation Map Difference for the 4 months (June-July-August-September – JJAS) of the year 

between the best fit of Experiment 1 and the original code can be viewed on Figure 20. 

 

 

Figure 20. Difference in Pearson’s r between the best fit of Experiment 1 and the original code on the grid 
box level (logBA>1.7) (months of BA≥5) (JJAS). 

Even though the overall correlation of the two variables has increased with the use of binning, it is 

clear from both figures, that there is no trend of overall increase or decrease of the Pearson’s r in any of 

the individual areas mentioned in the previous paragraph. In this experiment, the spatial divesity in 

correlation values throughout the region is low. 
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5.3. Experiment 2 – FFMC (Ew) 

In Figure 21, the Pearson’s r between the average monthly FWI value and the monthly logBA, of all 

the different sets of multip and expon values is viewed of Experiment 2. Again, note here that the method 

of binning the data and excluding areas with low BA is followed in this correlation. 

 

Figure 21. Experiment 2 – Pearson’s r for all the sets of multip & expon. 

The green circle represents the Pearson’s r using the original values of multip & expon (original FWI 

code) with a value of r=0.5786, whereas the red circle represents the best fit (set of values of multip & 

expon that achieve the highest Pearson’s r) of Experiment 1 with a value of r=0.5904. An increase of about 

2%. As we observe on the above Figure, there are two sets of best fit variables, thus the one closest to the 

original values was kept. As a general observation, the Pearson’s r has the highest values near the original 

values of multip and expon, and is kept at similar levels by simultaneously increasing or decreasing the 

two variables. 
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The Correlation Map Difference between the best fit of Experiment 2 and the original code can be 

viewed on Figure 22. 

 

Figure 22. Difference in Pearson’s r between the best fit of Experiment 2 and the original code on the grid 
box level (logBA>1.7) (months of BA≥5). 

The Correlation Map Difference for the 4 months (June-July-August-September – JJAS) of the year 

between the best fit of Experiment 2 and the original code can be viewed on Figure 23. 

 

 

Figure 23. Difference in Pearson’s r between the best fit of Experiment 2 and the original code on the grid 
box level (logBA>1.7) (months of BA≥5) (JJAS). 

Even though the overall correlation of the two variables has increased with the use of binning, it is 

clear from both figures, that there is no trend of overall increase or decrease of the Pearson’s r in any of 

the individual areas mentioned in the previous paragraph. In this experiment, the spatial diversity in 

correlation values is higher than in the previous Experiment 1 
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5.4. Experiment 3 – ISI 

In Figure 24 the Pearson’s r, between the average monthly FWI value and the monthly logBA, of all 

the different sets of expon1 and expon2 values is viewed. Again, note here that the method of binning 

the data and excluding areas with low BA is followed in this correlation. 

 

Figure 24. Experiment 3 – Pearson’s r for all the sets of expon1 & expon2. 

The green circle represents the Pearson’s r using the original values of expon1 & expon2 (original 

FWI code) with a value of r=0.5786, whereas the red circle represents the best fit (set of values of expon1 

& expon2 that achieve the highest Pearson’s r) of Experiment 3 with a value of r=0.6030. An increase of 

about 4%. As a general observation, the Pearson’s r values tend to get higher as expon1 values decrease 

and expon2 values do not change. Expon1 seems to have the greatest role in the correlation shifts. 
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The Correlation Map Difference between the best fit of Experiment 3 and the original code can be 

viewed on Figure 25. 

 

Figure 25. Difference in Pearson’s r between the best fit of Experiment 3 and the original code on the grid 
box level (logBA>1.7) (months of BA≥5). 

The Correlation Map Difference for the 4 months (June-July-August-September – JJAS) of the year 

between the best fit of Experiment 3 and the original code can be viewed on Figure 26. 

 

Figure 26. Difference in Pearson’s r between the best fit of Experiment 3 and the original code on the grid 
box level (logBA>1.7) (months of BA≥5) (JJAS). 

Even though the overall correlation of the two variables has increased with the use of binning, it is 

clear from both figures, that there is no trend of overall increase or decrease of the Pearson’s r in any of 

the individual areas mentioned in the previous paragraph. In this experiment, the spatial divesity in 

correlation values is lower than both Experiment 1 and Experiment 2. 
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5.5. Experiment 4 – DMC 

In Figure 27 the Pearson’s r, between the average monthly FWI value and the monthly logBA, of all 

the different sets of var1 and var2 values is viewed. Again, note here that the method of binning the data 

and excluding areas with low BA is followed in this correlation. 

 

Figure 27. Experiment 4 – Pearson’s r for all the sets of var1 & var2. 

The green circle represents the Pearson’s r using the original values of var1 & var2 (original FWI 

code) with a value of r=0.5786, whereas the red circle represents the best fit (set of values of var1 & var2 

that achieve the highest Pearson’s r) of Experiment 4 with a value of r=0.5904. An increase of about 2%. 

As a general observation, the Pearson’s r values tend to get higher as both var1 and var2 values decrease. 

Var2 seems to have the biggest role in the correlation shifts. 
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The Correlation Map Difference between the best fit of Experiment 4 and the original code can be 

viewed on Figure 28. 

 

Figure 28. Difference in Pearson’s r between the best fit of Experiment 4 and the original code on the grid 
box level (logBA>1.7) (months of BA≥5). 

The Correlation Map Difference for the 4 months (June-July-August-September – JJAS) of the year 

between the best fit of Experiment 4 and the original code can be viewed on Figure 29. 

 

Figure 29. Difference in Pearson’s r between the best fit of Experiment 4 and the original code on the grid 
box level (logBA>1.7) (months of BA≥5) (JJAS). 

Even though the overall correlation of the two variables has increased with the use of binning, it is 

clear from both figures, that there is no trend of overall increase or decrease of the Pearson’s r in any of 

the individual areas mentioned in the previous paragraph. In this experiment, the spatial divesity in 

correlation values is similar to Experiment 1. 
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5.6. Combinations 

From the results of the previous Experiments, it is clear that the FWI code can actually be improved 

in terms of predicting Burned Area by altering certain constants of its equations. 

In the next and final step, combinations of the above Experiments were run, using the values that 

provided the best fit for the constants from each Experiment. The combinations with the best results are 

presented subsequently. 

5.6.1. Combination 1-2-3 

 Combination 1-2-3, incorporates the best fit alterations of Experiment 1, Experiment 2 and 

Experiment 3, that yielded the highest Pearson’s r in each Experiment. In Figure 30, the correlation of the 

two variables is viewed. 

 

Figure 30. Correlation of the monthly logBA values and the average monthly FWI values (bins of 100) 
(logBA>1.7) (Combination 1-2-3). 

The highest Pearson’s r of Combination 1-2-3 has a value of r=0.6365, which shows an increase of 

about 10% compared to the Pearson’s r of the original code. An important observation is that the FWI 

values range from 28 to 42, compared to Figure 16, where they ranged from 13 to 20. 
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The Correlation Map Difference between the Combination 1-2-3 and the original code can be 

viewed in Figure 31. 

 

Figure 31. Difference in Pearson’s r between Combination 1-2-3 and the original code on the grid box level 
(logBA>1.7) (months of BA≥5). 

The Correlation Map Difference for the 4 months (June-July-August-September – JJAS) of the year 

between the best fit of Combination 1-2-3 and the original code can be viewed on Figure 32. 

 

Figure 32. Difference in Pearson’s r between Combination 1-2-3 and the original code on the grid box level 
(logBA>1.7) (months of BA≥5) (JJAS). 

Again, the overall correlation of the two variables has increased with the use of binning, however, 

it is clear from both figures, that there is no trend of overall increase or decrease of the Pearson’s r. Mostly 

small differences in correlation values are observed throughout the region. The spatial diversity of 

correlation values is similar to that from Experiment 1. 
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5.6.2. Combination 1-2-3-4 

Combination 1-2-3-4, incorporates the best fit alterations of Experiment 1, Experiment 2, 

Experiment 3 and Experiment 4 that yielded the highest Pearson’s r in each Experiment. In Figure 33, the 

correlation of the two variables is viewed. 

 

Figure 33. Correlation of the monthly logBA values and the average monthly FWI values (bins of 100) 
(logBA>1.7), (Combination 1-2-3-4). 

The highest Pearson’s r of Combination 1-2-3-4 has a value of r=0.6339, which shows an increase 

of about 9,5% compared to the Pearson’s r of the original code. An important observation is the FWI 

values, ranging from 24 to 40, compared to Figure 16, ranging from 13 to 20. 
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The Correlation Map Difference between the best fit of Combination 1-2-3-4 and the original code 

can be viewed on Figure 34. 

 

Figure 34. Difference in Pearson’s r between Combination 1-2-3-4 and the original code on the grid box level 
(logBA>1.7) (months of BA≥5). 

The Correlation Map Difference for the 4 months (June-July-August-September – JJAS) of the year 

between the best fit of Combination 1-2-3-4 and the original code can be viewed on Figure 35. 

 

Figure 35. Difference in Pearson’s r between Combination 1-2-3-4 and the original code on the grid box level 
(logBA>1.7) (months of BA≥5) (JJAS). 

Again, the overall correlation of the two variables has increased with the use of binning, however, 

it is clear from both figures, that there is no trend of overall increase or decrease of the Pearson’s r. Mostly 

small differences in correlation values are observed throughout the region. The spatial diversity of 

correlation values is similar to that from Experiment 4. 
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5.6.3. Combination 3-4 

Combination 3-4, incorporates the best fit alterations of Experiment 3 and Experiment 4, that 

yielded the highest Pearson’s r in each Experiment. In Figure 36, the correlation of the two variables is 

viewed. 

 

Figure 36. Correlation of the monthly logBA values and the average monthly FWI values (bins of 100) 
(logBA>1.7), (Combination 3-4). 

The highest Pearson’s r of Combination 3-4 has a value of r=0.6090, which shows an increase of 

about 5% compared to the Pearson’s r of the original code. An important observation is the FWI values, 

ranging from 10 to 18, compared Figure 16, ranging from 13 to 20. 
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The Correlation Map Difference between the best fit of Combination 3-4 and the original code can 

be viewed on Figure 37. 

 

Figure 37. Difference in Pearson’s r between Combination 3-4 and the original code on the grid box level 
(logBA>1.7) (months of BA≥5). 

The Correlation Map Difference for the 4 months (June-July-August-September – JJAS) of the year 

between the best fit of Combination 3-4 and the original code can be viewed on Figure 38. 

 

Figure 38. Difference in Pearson’s r between Combination 3-4 and the original code on the grid box level 
(logBA>1.7) (months of BA≥5) (JJAS). 

Again, the overall correlation of the two variables has increased with the use of binning, however, 

it is clear from both figures that there is no trend of overall increase or decrease of the Pearson’s r. Mostly 

small differences in correlation values are observed throughout the region. The spatial diversity of 

correlation values is similar to that from Experiment 4. 
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6. Discussion 

This study shows that an underlying positive correlation exists between the monthly average FWI 

values and the logBA values, by using the method of data binning and excluding low values of BA. 

From the first method of correlation (all the grid boxes of the study region with Burned Area data), 

the Experiments and their Combinations suggest, that this correlation can actually get stronger by altering 

certain constants of the FWI equations. More specifically the increases in Pearson’s r are: 

• Experiment 1: r=0.5786 -> r=0.6247 (8% increase) 

• Experiment 2: r=0.5786 -> r=0.5904 (2% increase) 

• Experiment 3: r=0.5786 -> r=0.6030 (4% increase) 

• Experiment 4: r=0.5786 -> r=0.5904 (2% increase) 

• Combination 1-2-3: r=0.5786 -> r=0.6365 (10% increase) 

• Combination 1-2-3-4: r=0.5786 -> r=0.6339 (9.5% increase) 

• Combination 3-4: r=0.5786 -> r=0.6090 (5% increase) 

As seen on the above list, the correlation of the two variables can increase, depending on the 

alterations made on the FWI equations, thus improving the FWI in predicting possible wildfire events in 

this study. However, from Figures 31, 34 and 37, it is observed that even though the goal of increased 

correlation is achieved, the values of average FWI vary substantially from the corresponding values of the 

original FWI code. Specific attention should be paid to this observation, since certain values of FWI are 

associated with certain fire risk thresholds for different regions, e.g. in Karali et al. (2014) these thresholds 

are established for Greece. 

On the other hand, from the second type of correlation, on the grid box level (Correlation Map & 

Correlation Map Difference), no pattern of increase or decrease in correlation was observed, throughout 

the study region. This probably happens due to the fact that many grid boxes were excluded from the 

correlation, having inadequate data of monthly BA (less than 5 months on the study period of 2001-2016). 

However, this type of correlation could have led to clearer results, should the study period have been 

longer. Also, there could be further development of the fire danger index by accounting for the land use 

and vegetation type of each gridbox, which could provide more uniformly positive changes in the FWI-BA 

correlations across the region. 

7. Conclusions 

Summing up, this study focuses on exploring the possibility of an optimized FWI code specifically 

for the Mediterranean Region, that correlates better with Burned Area and possibly make better fire 

weather predictions, using future climate projection data. 

The results from this study suggest that the correlation between the average monthly FWI values 

and the monthly logBA values can increase or decrease depending on alterations made on the FWI 

equations. The alterations of the equations that were experimented with on this study, achieved 

increased Pearson’s r values of up to 10%. 
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Since there is not much literature on this topic, this study can pave the way for future research for 

even more refined optimizations, and could be applied to different regions of the globe. 
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