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Abstract 
This thesis delves into the complexity of cancer, necessitating a multidisciplinary 

approach for effective understanding and treatment. Central to this exploration is the 

use of mathematical tumor modeling to understand and predict the growth of solid 

tumors under a variety of therapeutic interventions. First, an introduction to the key 

concepts underlying the dynamics of cancer and a thorough review of current treatment 

modalities is presented. A comprehensive review of state-of-the-art mathematical 

models that portray tumor growth in both unperturbed and perturbed scenarios, 

focusing on chemotherapy, immunotherapy, and their combination also takes place. A 

key part of this work is the application of optimal control theory to refine cancer therapy 

protocols. This includes a detailed examination of the clinically acclaimed Simeoni et al.’s 

tumor growth inhibition (TGI) model. That model is enhanced in this thesis with a novel 

formulation, the augmented Simeoni et al.’s TGI model, which also incorporates the drug 

pharmacokinetics. An optimal non-linear control problem is then introduced and solved, 

based on that novel formulation, using the state-dependent Riccati equation (SDRE) 

methodology to identify the most effective chemotherapy strategies for tumor 

eradication. Additionally, this thesis presents the Adaptive Neuro-Fuzzy Inference 

System (ANFIS) and introduces three ANFIS TGI model structures for mathematical 

modeling of tumor growth under chemotherapy. Further, a novel method for modeling 

TGI under the efficacy of single and in combination chemotherapy drugs is proposed. 

Specifically, two autoregressive with exogenous inputs (ARX) TGI models for solid tumor 

growth are identified and evaluated. The parameters of these models estimated using 

non-linear optimization and laboratory experimental data, have shown high accuracy in 

fitting experimental tumor growth data under chemotherapy effects, being a pioneering 

contribution of this work. The use of linear quadratic regulator (LQR) optimal control 

based on those ARX TGI models is then introduced and explored for determining optimal 

chemotherapy dosages under various periodic and intermittent treatment schedules. 

Finally, all the presented in this thesis TGI models' capability for short-term adaptive 

tumor growth predictions incorporating also moving (sliding) window techniques, is 

thoroughly investigated giving accurate and significative for the clinical practice and the 
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new anticancer drug discovery research TGI prediction results. All the simulation results 

are presented and extensively discussed, leading to insightful conclusions. 

Keywords:  cancer, tumor growth inhibition (TGI), tumor growth mathematical 

modeling, tumor growth prediction, linear mathematical model, non-linear 

mathematical model, parameter estimation, step-ahead predictions, state-space 

representation, NNA, COMPLEX method of Box, ARX, ANFIS, optimal control, SDRE, LQR, 

chemotherapy, optimal drug dose administration, periodic chemotherapy, intermittent 

chemotherapy, metronomic chemotherapy.  
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Περίληψη 
Ο καρκίνος είναι μια πολύπλοκη ασθένεια που απαιτεί διεπιστημονική προσέγγιση για 

την κατανόηση και τη θεραπεία της. Στην παρούσα εργασία, και με τη βοήθεια 

γραμμικών και μη-γραμμικών μαθηματικών μοντέλων, πραγματοποιείται μία 

προσπάθεια για την κατανόηση και την πρόβλεψη της ανάπτυξης συμπαγών 

καρκινικών όγκων υπό διαφορετικές θεραπευτικές προσεγγίσεις. Αρχικά, 

πραγματοποιείται μια εισαγωγή στις βασικές έννοιες που διέπουν τη «δυναμική» της 

ανάπτυξης-εξέλιξης του καρκίνου και μια διεξοδική ανασκόπηση των πιο ευρέως 

χρησιμοποιούμενων θεραπευτικών μεθόδων. Διεξάγεται επίσης μια ολοκληρωμένη 

ανασκόπηση των state-of-the-art μαθηματικών μοντέλων, που χρησιμοποιούνται για 

την περιγραφή ανάπτυξης όγκων υπό διαφορετικές μορφές θεραπείας, 

συμπεριλαμβανομένης της χημειοθεραπείας, της ανοσοθεραπείας και του 

συνδυασμού τους. Επιπλέον, γίνεται μια σύντομη εισαγωγή στη θεωρία βέλτιστου 

ελέγχου, ενώ παράλληλα τονίζεται η σημασία της στην ανάπτυξη και βελτιστοποίηση 

των πρωτοκόλλων (σχημάτων) αποτελεσματικής θεραπείας του καρκίνου. Με τη 

βοήθεια μη-γραμμικού μαθηματικού μοντέλου για την περιγραφή της εξέλιξης 

καρκινικών όγκων (Simeoni et al.’s tumor growth inhibition – TGI model) και την 

εισαγωγή επιπλέον φαρμακοκινητικών εξισώσεων στη δομή του (augmented Simeoni 

et al.’s TGI model) διαμορφώνεται ένα πρόβλημα βέλτιστου ελέγχου. Στόχος του είναι 

ο προσδιορισμός βέλτιστης στρατηγικής, με τη βοήθεια της μεθόδου SDRE (state-

depended Riccati equation), για τη χορήγηση βέλτιστων δόσεων χημειοθεραπείας με 

σκοπό την εξάλειψη της κακοήθειας με τις ελάχιστες παρενέργειες. Επιπλέον, 

αναπτύσσονται τρία νέα μοντέλα νευρο-ασαφούς λογικής (Adaptive Neuro-Fuzzy 

Inference System – ANFIS)  για την περιγραφή της ανάπτυξης του καρκινικών όγκων υπό 

χημειοθεραπεία (ANFIS TGI models) και αξιολογείται η ικανότητα τους να 

μοντελοποιούν-αναπαριστούν με ακρίβεια τις πειραματικές καμπύλες ανάπτυξης του 

όγκου. Παρουσιάζεται επίσης μια νέα προσέγγιση για την περιγραφή της εξέλιξης ενός 

όγκου υπό την επίδραση ενός ή περισσοτέρων αντικαρκινικών φαρμάκων, που δίνονται 

σε συνδυασμό. Συγκεκριμένα, χρησιμοποιώντας αναδρομικές γραμμικές εξισώσεις 

διαφορών με εξωτερική είσοδο (autoregressive with exogenous inputs – ARX) 

δημιουργούνται και αξιολογούνται με τη χρήση εργαστηριακών δεδομένων από 
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πειράματα σε ποντίκια δύο συστήματα μαθηματικής μοντελοποίησης καρκινικών 

όγκων (ARX TGI models).  Παράλληλα, με τη χρήση ενός γραμμικού τετραγωνικού 

ρυθμιστή (linear quadratic regulator - LQR) διερευνώνται πιθανές βέλτιστες δοσολογίες 

χημειοθεραπείας, τόσο για περιοδικά (periodic) όσο και για διακοπτόμενα 

(intermittent) προγράμματα (σχήματα) θεραπείας. Τέλος, αξιολογείται η ικανότητα 

όλων αυτών των μοντέλων να πραγματοποιούν βραχυπρόθεσμές προβλέψεις της 

εξέλιξης μίας κακοήθους νεοπλασίας με την εφαρμογή μεθόδου «κινούμενου 

παραθύρου» (sliding window) στη χρονοσειρά των δεδομένων. Σημειωτέον, τα μοντέλα 

βραχυχρόνιας πρόβλεψης της εξέλιξης του καρκίνου, είτε υπόκειται, είτε όχι, σε 

θεραπεία, είναι μεγάλης σημασίας στην φαρμακευτική έρευνα ανάπτυξης νέων 

αντικαρκινικών φαρμάκων. Όλα τα αποτελέσματα των προσομοιώσεων 

παρουσιάζονται και αναλύονται λεπτομερώς. 
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Chapter 1:  Introduction 
1.1 Cancer – Solid tumor growth 
Despite the major improvements in medicine and health care technologies along with 

the increased access to high quality and up-to-date healthcare information, cancer 

remains one of the main causes of death. Based on projections by the European 

Commission – Joint Research Centre (JRC) in Ispra, Italy, the number of new cancer    

cases in the European Union (EU) and the European Free Trade Association (EFTA) 

countries is projected to increase by 21%, reaching 3.4 million in 2040. At the same time, 

the number of deaths due to cancer is expected to grow dramatically, from 1.3 million 

in 2020 to almost 1.7 million by 2040. An increase of this size equals a rise of 32.2% in 

20 years’ time. For the lower mortality scenario, this number can potentially increase up 

to 35.4% for the same time period. 

In layman’s terms, cancer is a collection of no less than 100 diseases that develop across 

time and involve the continual unregulated division of the body's cells. Even though each 

type of cancer has its very own unique features (e.g., different staging system, 

mutational signatures, etc.) and it is possible to be developed anywhere in the body, 

there are strong similarities amid the processes that produce cancer. When a normal 

cell bypasses the normal route and starts to follow its own proliferation rules, then it is 

when cancer begins (see Figure 1.1). The disease primarily results from genetic 

mutations in the cellular deoxyribonucleic acid (DNA) which interfere with the internal 

cellular control mechanisms [1], [2]. This allows the cells to evade the homeostatic 

controls that ordinarily suppress inappropriate proliferation and inhibit the survival of 

aberrantly proliferating cells outside their normal niches. The cells escape apoptosis and 

grow improperly with or without growth signals from the environment [3], [4]. Of 

course, cancer is not developed all at once. It is a multistage process which requires the 

accumulation of DNA damage (i.e., genetic mutations) in the genes whose role is to 

control cellular growth. A normal cell may undergo 60 or more genetic mutations to 

become abnormal [5]. The number of cell divisions that occur during this process can be 

astronomically large—human tumors often become apparent only after they have 

grown to a size of 10 billion to 100 billion cells [6]. External factors such as chemicals 

and environmental carcinogens, exposure to radiation, viruses, and smoking can cause 
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damages to DNA and lead to cell immortality [1], [7]. A small number of cancers can also 

occur due to genetic mutations inherited by the parents. 

 

Figure 1.1. Cancer progression. Adapted from [2], [4]. 

The uncontrolled proliferation of these cells eventually leads to the development of a 

solid mass which is called a tumor or neoplasm. The location where the tumor occurred, 

the cell types, as well as the nutrition supply, are crucial for the growth of the neoplasm. 

The abnormal cells may remain in the original tumor (i.e., the primary site) a condition 

called in situ cancer or in the worst case, break off and invade other surrounding tissues 

in a condition called invasive cancer. In the latter case, the tumor is said to be malignant, 

and the cancer cells may spread through the bloodstream and the lymphatic system and 

establish metastases (i.e., new tumors) in other parts of the body. It has to be noted that 

in many cases the primary tumor and the secondary metastases do not progress at the 

same pace and in such an instance the primary tumor may manifest itself while the 

metastases do not cause symptoms. This way, they might not be detected on time and 
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threaten the patient’s life when their growth disrupts the tissues and organs needed for 

survival. 

As previously mentioned, carcinogenesis is a multistep process during which normal 

cells turn into cancer cells. To defend against cancer, the human body itself has 

developed a pool of various defense mechanisms. The DNA damage repair system is one 

of the most important mechanisms. Two of the main repair processes for DNA repair are 

nucleotide-excision repair and base-excision repair (BER) [8]. Once DNA damage is 

detected, the cell cycle is blocked in order to completely address the damage. Although, 

in most cases, the alterations in DNA are reversible, the repair process might fail, and 

the involved genetic mutations might introduce abnormality and transform a normal cell 

into a cancerous cell. Studies have found that genes belonging to anti-oncogene (i.e., 

tumor suppressor gene) and proto-oncogene classes, when mutated, can contribute to 

the development of cancer [8]. 

The immune system is the human’s defense mechanism against pathogens (as well as 

its own cells that have been infected). It is a highly complex network of biological 

processes, mainly composed of white blood cells such as B and T lymphocytes (B and T 

cells), natural killer cells (NK), macrophages, dendritic cells (DC) etc. that acts as a shield 

against a variety of viruses, bacteria, foreign bodies, as well as tumor cells. Therefore, it 

has an important role to play in the fight against cancer. It is comprised of two arms 

which are in continuous interaction and interdependence, the innate and the adaptive 

immune system. NK cells, dendritic cells, and macrophages are part of the innate 

immune system and are the first line of defense against pathogens.  

When antigens, molecular structures such as proteins and sugars that may be present 

on the surfaces of pathogens enter the body a series of reactions are carried out to 

stimulate an immune response and fight the threat off. More specifically, specific 

proteins called antibodies or immunoglobins (Ig) are produced as a result of the body’s 

immune response. Then, these proteins recognize and stick to those of the pathogens 

and either directly destroy them or block them from infecting other cells of the host [9]. 

NK cells are maybe the first group of immune system cells to defend against intruders.   
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They are lymphocytes equipped 

with a variety of receptors (e.g., 

activation receptors, see Figure 

1.2 (adapted by [10]), which 

control their actions. Using such 

receptors, they can identify 

potential infectious agents and 

cancer (potential target cells) 

and attack them without any 

prior exposure to them. A way to 

do this is by the major 

histocompatibility complex class 

I (MHC I) molecules. The NK cell 

binds with the potential target 

cell and then it checks whether MHC I molecules are present on it or not. In the absence 

of MHC I molecules, kill activating receptors are attached and an attack by the NK cell is 

possible. However, in the case where a target cell presents self-antigens in its MHC class 

I receptors then it avoids the attack and remains unharmed. Cancer cells are likely to 

develop such self-antigens in MHC I, like most of the healthy cells of the body, and 

therefore avoid the kill signal from the NK cell [10]. It is common for an infected or 

cancer cell to lose its MHC I. In this case, the cell is vulnerable to attacks by NK cells, 

which release special proteins and enzymes (perforin and granzymes), leading 

eventually to the death of it. This is also the case in the absence of self-antigens in the 

MHC I [10], [11]. Right after the innate immune response, the NK cells secrete some 

proteins called cytokines (e.g., interferon gamma (IFNγ)) which affect other cells such as 

dendritic cells and macrophages to boost the immune response [12]. 

In contrast to innate system cells that recognize abnormal cells, cells of the adaptive 

immune system must be “taught” how to recognize “hostile” cells. Nevertheless, they 

are more specific and more effective compared to those of the innate immune system. 

B and T lymphocytes such as CD4+ T helper and CD8+ T cytotoxic are included to this 

second arm. More specifically, CD8+ T cells are developed in the thymus and present T-

Figure 1.2. Natural killer (NK) cells (yellow) display a 
killer inhibitory receptor (red) that can recognize MHC I 
receptors on the surface of potential target cells (gray). 
In the absence of MCH I, NK cell attacks the target cell 
(right). Otherwise, the attack is declined (left). Adapted 
by [10]. 
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cell receptors on their surface through which they can identify a specific antigen (e.g., 

produced by cancer cells or viruses). If the specific antigen, e.g., tumor-specific-antigen, 

is recognized then it binds to the MHC I molecule – antigen complex of the specific-

antigen-displaying target cell and a killing process is triggered (e.g., through secretion of 

perforin, granzymes, INFγ, etc.) [10], [13]. It is important to note that the bond of the 

two cells is achieved through a glycoprotein called CD8, which is present in the T-cell 

receptors [10], [13]. 

Despite the existence of these natural mechanisms, cancer cells can develop highly 

effective strategies, called immunoevasion strategies, in order to avoid immunological 

attacks, thus creating large, life-threatening tumors [10]. 

1.2 Current strategies for cancer therapy 
Both primary and secondary prevention of cancer is of great importance for public 

health. In the former, lifestyle changes are crucial, as is prophylaxis against infectious 

agent-induced cancers. A large number of infectious agents, like human papilloma virus 

(HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus 

type 1 (HIV-1) and helicobacter pylori (H. pylori) have been identified to cause or 

contribute to the development of specific human cancers [14]. According to [14], 

infections and the agents causing them are associated with 10% of the types of cancer. 

Vaccination, safe sex practices and treatments against microbes have been proven 

beneficial in the fight against these infections and can serve as preventive solutions. 

In terms of secondary prevention, screening with mammography, colonoscopy, PAP-

testing and other laboratory tests like prostate-specific antigen (PSA) has been shown 

to reduce mortality from the respective neoplasms. These screening techniques, when 

combined with significant therapeutic developments, may lead to further 

improvements in prognosis and increased survival rates. Therefore, the early detection 

and diagnosis of cancer, followed by an effective treatment, are crucial for the patient’s 

outcome and overall survival (OS). 

There are over 100 different kinds of cancer that can be developed in the human body 

[3]. However, despite the research efforts and the treatment modalities which have 

been developed, there is no specific therapy that treats all forms of cancer. For this 
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reason, different strategies are used in the clinical practice, with therapies given either 

alone (i.e., monotherapy) or in combination. Some of the most common approaches to 

treat cancer are surgery, radiation (or radiotherapy), chemotherapy and 

immunotherapy [15], [16]. 

1.2.1 Surgical operation 
Surgical operations are the first method introduced in the battle against cancer. They 

aim to directly (i.e., physically) remove solid tumors. During the operation, a healthy, 

non-tumorous tissue around the tumor mass is also removed. This way it is ensured that 

the cancerous cells are fully removed from the area and the chance of local recurrence 

is minimized. This approach is called resection or surgical margin [17], [18]. Even though 

surgery reduces the tumor burden, it is a common practice to be followed by another 

treatment method such as radiation or chemotherapy in order to achieve better results 

and prevent local recurrence of the tumor. 

1.2.2 Radiation 
Radiation therapy is a non-invasive local treatment for cancer that uses ionizing 

radiation. Most of the time, it is used as the first treatment against cancer. It is also 

common practice to be applied after other treatment methods like chemotherapy and 

surgery to eradicate cancer cells which may have survived. In several cases, when cancer 

cannot be fully eradicated, radiation is used to reduce the tumor size, relieve pain, and 

improve the patient’s quality of life (QoL). This kind of treatment is called palliative 

radiation [19]. 

1.2.3 Chemotherapy 
Chemotherapy was introduced to cancer treatment in the 1940s when nitrogen mustard 

was administered to patients with non–Hodgkin’s lymphoma [20]. It involves the use of 

single cytotoxic anticancer drugs or a combination of them, usually given intravenously 

and sometimes orally, to combat cancer growth. Unlike radiation and surgery which are 

local treatments, chemotherapy is considered a systemic treatment. Chemotherapy 

drugs travel through the bloodstream and interact with cells, cancerous or not, all over 

the host’s body. This way, the abnormal cells that are present in other areas of the body, 

i.e., the metastasized cells are also affected and killed by. 
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Chemotherapeutic drugs normally inhibit mitosis or induce ribonucleic acid (RNA) or 

DNA damage to the cells which makes them unable to divide. The faster the cancer cells 

divide, the more likely it is that chemotherapy will kill the cells. Depending on the type 

of the drug used in the treatment, chemotherapy may be cell-cycle specific or cell-cycle 

non-specific. Drugs that are toxic to cancer cells while they are dividing are called cell-

cycle specific. On the other hand, the drugs that are toxic to cancer cells at any point in 

their cell cycle are called cell-cycle non-specific. Chemotherapeutic antineoplastic 

agents can be classified based on several factors, including their chemical 

composition/structure and their action against cancerous cells. They include alkylating 

agents, antimetabolites, plant alkaloids, topoisomerase inhibitors, antibiotics, and 

others [21], [22]. 

 Antimetabolites are one of the most used and effective group of drugs against 

neoplasms. They are cell-cycle specific, meaning they are most effective during 

the DNA replication period (S-phase) of cell division. Specifically, antimetabolites 

act as substitutes for the actual metabolites that would be used in the normal 

metabolism, thereby preventing the synthesis of DNA, RNA, and subsequently, 

cell division [23], [24]. They include compounds such as 5-fluorouracil, 

gemcitabine, decitabine, 8-chloroadenosine and 6-mercaptopurine [22]. 

 Alkylating agents:  Compared to antimetabolites, alkylating agents are cell-cycle 

phase nonspecific drugs that act on the DNA of the cells by preventing the 

strands of the double DNA helix from linking correctly.  This causes DNA strand 

breaks which affect the ability of the cancerous cell to divide and ultimately leads 

to cell death. Examples include cyclophosphamide, temozolomide, cisplatin, 

carboplatin, busulfan and oxaliplatin [25], [26]. 

 Topoisomerase inhibitors: Drugs of this category interfere with topoisomerase 

enzymes, i.e., topoisomerase I and II. These enzymes play a pivotal role in DNA 

replication and transcription. By blocking them, it is possible to block the ligation 

step during either replication or transcription of the DNA, thus creating a single- 

and double-strand break which leads to necrosis or apoptosis. Agents in this 

group are irinotecan, topotecan (inhibitors of topoisomerase I), etoposide and 

teniposide (inhibitors of topoisomerase II) [25]. 
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 Cytotoxic antibiotics are drugs made from natural products. They are considered 

cell-cycle non-specific as they act during multiple phases of the cell cycle. Some 

commonly used anti-tumor antibiotics in this group are anthracycline antibiotics, 

dactinomycin, mitomycin, bleomycin, and doxorubicin [22], [27]. 

Typically, chemotherapy is administered in cycles near or at the maximum tolerated 

dose (MTD). This means the drug is given at the highest dose that yields tolerable side 

effects. Although this strategy has been effective in many patients the excess use of 

chemotherapy drugs (i.e., the duration of the treatment) in combination with the high 

dosage levels may lead to short- and long-term toxicity and severe side effects. 

Depending on the drug type, dose and treatment schedule, these side effects can vary. 

Healthy cells with high proliferation rates, such those in the gastrointestinal (GI) tract, 

mouth, and throat, as well as blood cells are particularly susceptible. Nausea, vomiting, 

oral and GI mucositis and alopecia (loss of hair) are the most common possible adverse 

effects. [28], [29]. Fortunately, these side effects usually subside post-treatment. 

To mitigate toxicity, an alternative therapeutic strategy involves administering 

chemotherapeutic drugs at significantly lower doses. This approach, known as 

metronomic chemotherapy (mCHT), differentiates from the conventional 

chemotherapy not only in terms of dose levels but also in terms of frequency of the anti-

neoplastic drug administration [30]–[32]. Numerous studies suggest that smaller doses 

of chemotherapeutic drugs without extended drug-free time intervals can effectively 

manage the disease, lead to prolonged OS and reduce side effects [32]–[34]. 

1.2.4 Immunotherapy 
Cancer immunotherapy, also called immuno-oncology, is described as a class of 

therapies designed to strengthen or stimulate the patient’s immune system in the battle 

against malignant cells. This comes in contrast with other conventional treatments like 

chemotherapy which directly target the cancer cell. Immunotherapy usually involves the 

modulation of the immune system response, either by enabling or enhancing it to fight 

cancer. Common types of immunotherapies include cytokines, monoclonal antibodies, 

and adoptive cell transfer therapy.  
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 Cytokines are natural (i.e., found in the human body) or synthesized (in the lab) 

substances that affect the response of the immune system. Due to this reason, 

they are also known as immune system response modifiers. They are a group of 

proteins that boost the body’s defense mechanism and its response against 

cancer. Interferons (IFN), interleukins and colony-stimulating factors (CSF) are 

included in this category [35]. Interleukin-2 (IL-2) stands out among the 

interleukins. It facilitates the proliferation and function of T-cells while augments 

the cytotoxic activity of NK cells. It is primarily produced by CD4+ T cells in 

response to antigen stimulation. Nevertheless, it is possible to be secreted also 

by CD8+ T cells and activated DC and NK cells [36], [37]. 

 Monoclonal antibodies (mAbs) were first introduced to the treatment of cancer 

back in 1980, when administered to a patient with non-Hodgkin lymphoma (NHL) 

[25]. In brief, these monoclonal antibodies for cancer are laboratory made 

proteins which can identify and trigger an immune response against cancer cells. 

They can also be used as a vehicle to deliver anticancer drugs or radiation directly 

to the malignant cells using radioactive particles called radionuclides [38], [39]. 

 An emerging and highly promising type of cancer immunotherapy is adoptive 

cell transfer (ACT). Here, T cells are isolated from the patient’s blood and are in-

vitro genetically modified to display high specificity on tumor cells. Once 

multiplied in vast numbers, these tailored T cells are re-infused back to the 

patient’s bloodstream to attack the cancer cells without interfering with the 

normal cells [40]. A type of ACT therapy with promising results (e.g., 92% of end-

stage patients with acute lymphocytic leukemia (ALL) were fully recovered [41]) 

is the chimeric-antigen receptor T-cell therapy (CAR). In CAR-T, the extracted T 

cells are modified to express chimeric antigen receptors in order to interact with 

cancer cells and kill them (see Figure 1.3 [42]) [43]. 

It is worth mentioning that by 2020 more than 75 anticancer immunotherapeutic agents 

had already been approved by the regulatory agencies. Numerous others are currently 

under investigation, either as standalone treatments or as adjunct to conventional 

therapies [25], [39], [44]. 
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Figure 1.3. (Left) Diagram showing CAR T-cell therapy. (Right) Diagram showing the T cell 
before and after genetic engineering. Adapted from [42]. 

1.2.5 Chemo-immunotherapy 
Even though both immunotherapy and chemotherapy may successfully inhibit the 

tumor growth progression, treatments failure remains a challenge in many cases. A 

significant reason for this is the ability of cancer cells to develop resistance to 

antineoplastic treatments due to continuous drug administration. Genetics and the 

tumor microenvironment are two of the many contributing factors [45]–[50]. It is 

estimated that drug resistance accounts for treatment failure in over 90% of the patients 

with metastatic cancer [51]. Tumor cells can also acquire specific mechanisms through 

which they evade immune surveillance and gradually develop resistance to 

immunotherapy [52].  

Addressing a major problem like this could dramatically improve survival rates and may 

even lead to the treatment of the disease. Studies have shown that the use of 

combination chemotherapy (i.e., administration of two or more different drugs) can 

significantly help towards minimizing the effect of drug resistance [53]–[58]. Yet, 

identifying multiple drugs that can be co-administered to effectively arrest tumor 

growth and its progression is a challenging task that requires a lot of time and money.  

Another rising strategy to deal with tumor resistance and disease progression is the 

combination of chemotherapy and immunotherapy. For a long time, most of the 

chemotherapy drugs were considered immunosuppressants. For this reason and due to 

antagonistic effects, the combination of anti-neoplastic drugs and immunotherapy was 

considered unapplicable. However, recent studies have shown that such combinations 
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can have positive effects and result in improved clinical outcomes than chemotherapy 

alone [59]–[61]. Chemotherapy not only has cytotoxic effects upon the cells but also can 

enable immune system’s responses against tumors either by increasing the 

immunogenicity of the tumor antigens or by halting the production of 

immunosuppressive substances due to debulking of the tumor [59], [61]. Inhibiting the 

tumor growth and reducing its mass through chemotherapy, results in smaller 

population of cancer cells which is easier to be tackled by the immune system of the 

organism, enhanced by immunotherapy. Of course, such a thing also reduces the 

possibility of the tumor cells to develop immunoescape mechanisms.  

Indeed, clinical trials combining chemotherapy and immunotherapy have reported 

enhanced OS. For example, OS prolonged by an average of 4.7 months for lung 

adenocarcinoma patients [62], by 3.7 months for breast cancer [63] and by 2.7 months 

for small cell lung cancer (SCLC) [64]. Furthermore, when immunotherapy was 

administered as a maintenance therapy post-chemotherapy, survival rates also 

improved. For instance, the median OS for metastatic urothelial carcinoma patients 

increased by nearly 7 months [65].   

1.3 Key contributions and novelty of this Thesis 
Mathematical modeling and in silico experiments in the field of oncology can optimize 

chemotherapy and/or immunotherapy treatments, offering personalized care while at 

the same time saving money. To this direction, the challenges of accurately describing 

tumor growth inhibition (TGI) under chemotherapy and the identification of optimal 

chemotherapy regimens are addressed. For this purpose, the Simeoni et al.’s TGI model 

is utilized. Two novel ARX-based mathematical models for describing the growth of solid 

tumors under the effect of chemotherapy, both for single and multiple anticancer drug 

treatment, using laboratory data from human-to-mouse xenografts are also developed 

and evaluated. Moreover, the feasibility of using ANFIS-based TGI models to accurately 

model tumor growth is investigated in this work and three new models are introduced. 

Lastly, the application of optimal control techniques is employed to extract optimal 

chemotherapy dosing schedules, both periodic and intermittent. However, it is worth 

mentioning that this research has some limitations, such as the small size of the dataset 
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used and the need for further validation in other types of cancer, which are suggested 

as potential future research directions. 

1.4 Thesis organization 
The organization of the thesis is described below: 

In Chapter 1, a brief introduction to the complex world of cancer and solid tumor biology 

is provided, and some key concepts underlying the biomedical background for the 

anticancer treatments considered in this thesis are discussed. Additionally, a thorough 

review of the most widely used treatment modalities for cancer and solid tumors is 

conducted. 

In Chapter 2, there is a comprehensive review of state-of-the-art mathematical models 

employed to depict both unperturbed and perturbed tumor growth under different 

therapeutic approaches including chemotherapy, immunotherapy, and their 

combination. The models are examined in increasing order of complexity, both in terms 

of their modeling and mathematical aspects. Furthermore, an introduction to optimal 

control theory is provided, and its significance in developing and optimizing cancer 

therapy protocols is highlighted. 

In Chapter 3, the material and methods employed in this work are presented and 

discussed. Specifically, the dataset used in this work is described, followed by a detailed 

presentation of the estimation problem for the unknown parameters of mathematical 

models, be they linear or non-linear. Last but not least, the short-term ahead forecasting 

methodology is analytically described, and the evaluation metrics used are briefly 

presented. 

In Chapter 4, the well-established in the clinical practice Simeoni et al.’s tumor growth 

inhibition mathematical model is presented and described. The model’s parameters are 

presented and short-term step ahead predictions of the tumor growth (pancreatic 

adenocarcinoma) under the action of gemcitabine are presented and evaluated. 

In Chapter 5, a new approach to describe the tumor growth inhibition under the effect 

of single and in combination anti-cancer drugs is introduced. Two novel linear systems 

of difference equations (autoregressive with exogenous inputs - ARX) which model the 
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growth of solid tumors under single and multi-agent chemotherapy treatments are 

identified and evaluated using laboratory data of experiments in mice.  

In Chapter 6, a short introduction to Adaptive Neuro-Fuzzy Inference System (ANFIS) is 

provided and three ANFIS models for tumor growth inhibition under chemotherapy are 

introduced and fitted to experimental tumor growth curves. One model simulates the 

tumor growth inhibition under the action of a single chemotherapy agent, while the 

other two models describe tumor growth under the effect of two drugs given in 

combination. The chapter also includes short-term step ahead predictions of the tumor 

growth under the effect of chemotherapy treatment. 

In Chapters 7 and 8, non-linear and linear optimal control methods are applied for 

efficient tumor growth eradication. First, a non-linear optimal control problem is formed 

to determine the best (i.e., optimal) chemotherapy treatment strategy for tumor 

eradication using advanced non-linear control method and by introducing an 

augmented form of the non-linear Simeoni et al.’s TGI model. Then, linear quadratic 

regulator (LQR)-based optimal control of tumor dynamics is used along with ARX TGI 

models to explore possible optimal chemotherapy dosages for both periodic and 

intermittent treatment schedules. Finally, the simulation results are presented, 

discussed, and conclusions are drawn. 

The last chapter, Chapter 9, presents a thorough discussion about the achievements and 

the limitations of the present work. Analysis of the results obtained in this thesis is also 

performed, and concluding remarks are provided. 
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Chapter 2:  Mathematical frameworks in tumor growth 
and treatment 

2.1 A survey of mathematical models for tumor growth 
Mathematical modelling is powerful tool to quantitively describe the current knowledge 

of a system or a process through parameters and mathematical equations. It can be used 

not only to describe and simulate complex systems but also to test hypotheses and 

validate experiments. In addition, the enormous costs of designing and conducting 

laboratory experiments in order to simulate complex systems can be off-loaded through 

mathematical models which provide relatively fast and costless simulations. 

In oncology particularly, mathematical models have been introduced about 60 years ago 

in an attempt to understand the highly complex dynamics of cancer. Using available 

clinical end experimental data cancer mathematical models can be built, calibrated, and 

validated.  These data are usually collected through mouse clinical trials (MCTs). MCTs 

are population studies that use cell line-derived xenograft (CDX) or patient-derived 

xenograft (PDX) models (i.e., models of cancer where the tissue or cells from a patient's 

tumor are implanted into an immunodeficient or humanized mouse) to assess efficacy 

and predict drug responders in preclinical oncology drug development. The models’ 

parameters, usually based on biological and physiological grounds, can be estimated and 

their prediction ability, i.e., how well a model can predict the tumor growth, can be 

explored. As predictive tools, cancer mathematical models can be used also to anticipate 

the outcome of new chemical entities and regimens used in treatment [66], [67] in an 

attempt to optimize the preclinical experimental design. Finally, the description of the 

relationships between treatment (i.e., chemotherapy drug pharmacokinetics (PK) and 

pharmacodynamics (PD), i.e., the drug effects), and tumor progression may provide 

new, valuable insights and offer several possibilities to understand better the cancer 

process and therefore its treatment.  

To this day, a plethora of tumor growth mathematical models has been created. This 

kind of mathematical models can be classified as empirical (descriptive), mechanistic 

and large scale/system biology models [68]. However, this is not the only classification 

of the tumor growth models. They can also be grouped based on the scales of the 

desired mechanism as continuous (i.e., models that study cancer at the tissue scale), 
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discrete (i.e., models that study cancer at the cell scale) and hybrid [67], [69].  Moreover, 

there are also a lot of studies that group models based on the type of the equations they 

are structured, see [70]–[72]. Therefore, they are usually classified as ordinary 

differential equation (ODE), partial differential equation (PDE) and algebraic equation 

models. 

Some of the first mathematical models for cancer were based on the von Bertalanffy 

tumor growth equation and functions like the linear, the exponential and the logistic. 

Even though such equations can describe the growth of several processes in living 

organisms, their parameters lack the biology relevant information. All these models are 

classified as continuous models with tumor to be considered as a set of cancerous cells 

and described as the density of volume fraction of these cells. Key benefit of continuous 

models is the small number of parameters they are composed of, which can be easily 

estimated from the available experimental model system. Continuous models can be 

further classified based on the heterogeneity of the cells forming the tumor including 

inter and intratumor heterogeneities [73]–[75]. Many of the mathematical models 

assume that tumor cells are similar, having common properties and undergo one-

dimensional growth. These models belong to the class of homogenous models.  

The linear and the exponential growth are the simplest homogenous models. The linear 

model assumes constant growth rate �� of the tumor cells, while in the exponential 

model the number of the cancerous cells are increased exponentially with time (see Eqs. 

below).   

Linear growth model ��
��

= �� (2.1)

with �(�) =  ��� + �� where �� > 0 and �� = �(� = 0). 

Exponential growth model ��
��

= ��� (2.2)

with �(�) = ������  where �� = �(� = 0) (i.e., the tumor size at inoculation time � =

0). Initial growth of solid tumors is rapid [76]. However, their growth rate decreases as 

the size of the tumor increases mainly due to limitations in nutrients, space and oxygen 

[77]. In the above two models all tumor cells are assumed to obtain ample growth 
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factors and nutrients, modelling an ideal scenario in which tumor cells proliferate 

endlessly. Therefore, the saturation and the reduced growth rate as the tumor size 

increases, is not captured.  

These equations can be applied to model the initial stages of tumor expansion. For this 

reason, alternative model formations in which the rate of tumor growth does not remain 

constant have been explored. To capture the saturation of the tumor’s size the logistic 

and the Von Bertalanffy models were introduced [66], [71]. In fact, both models describe 

the tumor growth in relationship with the host carrying capacity. For example, in logistic 

growth model the proliferation rate of the cancerous cells depends on and thus is limited 

by a carrying capacity. As long as the tumor size � is smaller than the carrying capacity 

���� then its growth is nearly exponential. Things are a bit different as soon as the tumor 

cells population size converges to the carrying capacity, where the growth is inhibited, 

and the tumor size eventually reaches a plateau.  

Logistic growth model 
��
��

= ��� �1 −
�

����
� (2.3)

Von Bertalanffy model ��
��

= ��
�
� − �� (2.4)

It is worth to mention that in 1964, Anne Kane Laird formulated the Gompertz model of 

tumor [77]. Even though the model was introduced by Benjamin Gompertz in 1825 as a 

way to describe the human mortality curves [79], Laird was the first scientist to show 

that the growth of a tumor, in the absence of therapy (i.e., the unperturbed case) follows 

Gompertzian kinetics. This means the model assumes the growth rate of tumor 

decelerates over time. The model is described by the following equation: 

Gompertz model 
��
��

= −��� log �
�

����
� (2.5)

Following Laird’s work, a series of papers have been presented. Through the works of 

Norton and Simon [80]–[82] the Gompertz model was utilized in humans, modeling 

breast cancer growth. However, models based on the Gompertz-Laird equation may be 

problematic as the plateau is difficult to estimate. It is common, as a matter of ethics in 

mouse clinical trials, to kill the mice when tumor sizes exceed a certain threshold (e.g., 
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� > 10� mm3). Usually this happens before the appearance of the plateau, therefore it 

is not easy to estimate it. 

The above models, i.e., (2.3), (2.4) and (2.5), are in fact special cases of a generalized 

empirical model, described by the following ODE [67]: 

 
��
��

=
��

�
� �1 − �

�
����

�
�

� (2.6)

with 

 �(�) = ���� �
��

�

��
� + (���� − ��

�)�����
� (2.7)

where �� = �(� = 0) and � is a parameter which determines how fast the solid tumor 

will reach its maximum size (i.e., saturation). In the case where � = 1 the model is 

converted to the logistic model. On the other side, if � tends to 0� the generalized model 

is reduced to the Gompertzian model of (2.5). The time curves (simulations) of the tumor 

growth models described above are presented in Figure 2.1. 

While it is useful to describe the time course of the unperturbed tumor growth, it is vital 

to know the effects of the applied treatment (e.g., chemotherapy, immunotherapy, etc.) 

upon the tumor cells. In light of this, classical models such as Gompertz have been 

modified to include anti-tumor treatments and new models have been introduced. In 

general, cancer treatment focuses on either reducing the overall size of the tumor (i.e., 

shrinking the tumor mass) by causing severe damage leading to the death of the 

proliferating cancer cells or by decreasing the tumor's ability to grow (i.e., reducing the 

carrying capacity). Treatment related tumor size reduction is typically described using 

empirical drug-induced shrinkage terms [70] introduced to models’ equations as 

follows:  

 ��
��

= (tumorGrowth) − (drugTreatment) (2.8)

where (tumorGrowth) denotes the net tumor growth:  

 (tumorGrowth) =  (natural tumor growth) – (natural tumor death) (2.9) 

and (drugTreatment) the drug-induced decay processes. 
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Figure 2.1. Simulated time curves of tumor size from the linear (top left), exponential (top 
right), logistic (bottom left) and Gompertz (bottom right) tumor growth models [71]. 

A standard approach to describe the anti-tumor treatment effect is through a log-kill 

pattern, based on the concept that the tumor’s decay rate, due to treatment is 

proportional to its size: 

 (drugTreatment) = �� � (2.10)

where �� is the drug-induced decay rate. In its simplest form �� can be a constant 

however it often represents a function that reflects the drug exposure, such as the drug 

dose or the drug plasma concentration �(�): 

 �� = β �(�) � (2.11)

with � to be a constant value or a time related function, describing the decay of the drug 

effect over time [83], [84]. There are also other more complicated forms (linear or non-

linear) which describe the drug treatment effects upon tumor cells considering drug 

resistance and by in biomarkers [71], [84]–[91]. 

A large number of the studies on modeling drug treatment effects on malignant tumors 

incorporate the action of a single drug. However, the strategy of treating cancer with 
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multiple drugs has become widely adopted. This approach aims to maximize treatment 

effectiveness and reduce the risk of cancer cells developing resistance to the drugs being 

used. To this direction, several mathematical models have been introduced trying to 

model and explore possible interactions between the drugs in combination. Koch et al. 

[92] and Rossetti et al. [93] are some examples. An extension of [92] and [93] models, 

was presented and tested by Terranova et al. [94]. The model is based on the hypothesis 

that the co-administered drugs damage the tumor cell populations either alone or in 

combination which comes in contrast to [93] where no drug-drug interaction is modeled 

(drugs act without interacting to each other). The drug's effect on the tumor divides the 

cancer cells into two groups: to those that are damaged and those that are not. The cells 

that belong to the first group, i.e., the damaged ones, will eventually die through a 

transit compartment model that considers the delayed drug response. The rate of 

damage to the tumor cells is described by three terms: two terms proportional to the 

drug concentrations and one term that represents the interaction between the co-

administered drugs, which is proportional to the product of the drug concentrations. For 

the case where treatment is based on a “cocktail” of two anticancer drugs � and � the 

interaction effect is formulated as follows: 

 � = γ ��(�)��(�) � (2.12)

where � is the drug interaction related parameter, ��(�) and ��(�) are the 

concentrations for each drug � and �, respectively and, � is the fraction of the 

undamaged tumor cells [94]. 

Of course, the above equations model an ideal situation. Tumors may be comprised of 

blood vessels and other cells subpopulations with which they compete for oxygen and 

nutrients and interact not only with each other but also with normal cells such as 

immune system cells [74]. The continuous models that are trying to model tumor growth 

encapsulating the above theory belong to the family of heterogenous models. Usually, 

tumor mass is separated into subpopulations of cells based on their activity (e.g., 

proliferative, quiescent, and necrotic cells) [95], [96]. Other heterogeneous models are 

structured based on the assumption that tumor cells may have or acquire resistance to 

treatment (i.e., they are not affected) [97]–[103]. This phenomenon is one of the most 
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important factors that chemotherapy fails. In such models tumor cells are classified as 

drug sensitive and drug resistance cells based on their sensitivity to treatment. Cell 

proliferation takes place on both populations however, agents can only act upon and 

damage drug sensitive tumor cells. An example of such model is described by the 

following set of ODEs [104]: 

 

���

��
= ���1 − (�� + ��)��� + ��(�)�� 

���

��
= �1 − (�� + ��)��� − ��(�)�� − ��(�)�� 

(2.13)

with  

 ��(�) = �� + ��(�)� (2.14) 

where ��, �� are the drug resistant and the drug sensitive tumor cell populations and � 

the drug dosage. The growth rate of the resistant cells (with respect to the population 

of the sensitive tumor cells) is described by a factor �� while the term �� models the 

sensitive to resistant transitions (� accounts for the drug independent transition rate of 

the sensitive to resistant and ��(�) the drug related transition rate). Finally, the drug 

induced deaths of the sensitive tumor cells are described by ��(�) term, where � is the 

drug cytotoxicity parameter.  

In addition to these forms of models there are other approaches that model how tumors 

grow, spread and metastasize [105]–[107] over time taking into account the availability 

of vital nutrients and how they can affect tumor cells. A tumor is often modeled through 

PDEs as a density of malignant cells in a spatial position (in single or multi-dimensional 

space) at the tumor microenvironment or as a fraction of the maximum available volume 

at this position. The studies of Burton [108], Casciari et al. [109] as well as the model of 

cancer invasion presented by Gatenby and Gawlinski [110], [111] are some of most 

important spatial models. For example, in [110] Gatenby describes the cancer cells 

growth over time along with the hydrogen ions (��) that are secreted during tumor’s 

cells proliferation (anaerobic metabolism). The increase of �� creates an acidic 

environment which damages the normal host tissue. Furthermore, the model suggests 

that there is a space between tumor and the host, and it is one of the few mathematical 
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models that have been tested and confirmed experimentally. Another example is the 

spatiotemporal model of presented by Papadogiorgaki et al. in [112]. In this work a 

continuous 3-dimenstional mathematical model of a vascular glioma spatiotemporal 

evolution is introduced. The model describes the interactions between four 

heterogeneous glioma cell populations and their tissue microenvironment investigating 

how they can affect tumor growth and invasion. It also includes the effects taking place 

on concentration changes of important nutrients in the tumor microenvironment which 

lead to the creation of tumor cell populations with varying metabolic profiles and 

invasion capabilities. Such nutrients are glucose and oxygen. A brief review of this kind 

of mathematical models is presented in the work of Harris et al. [74]. 

The complexity of the disease and the need to understand in depth its mechanisms led 

to the creation of another category of models. Goal of these models is to provide a more 

detailed and realistic representation of the complex processes underlying tumor growth. 

To achieve this, they describe tumor growth as a series of discrete events scale taking 

into account genetic and specific biophysical rules that are involved in its processes. The 

mathematical models belonging to this category are classified as discrete models. 

However, to build models of this kind may be a challenging and time-consuming task as 

it may require significant amount of experimental data to parameterize the model. This 

includes data on biochemical pathways, cell cycle, cell division, cell death, and other 

intracellular events that control cell survival and death. Data can also be associated with 

the spatial and temporal heterogeneity of tumors, as well as the effects of therapy and 

the immune system on tumor growth. Obtaining such data often requires a 

multidisciplinary approach involving expertise in areas such as cell biology, genetics, and 

biochemistry. Despite the difficulties, these models can offer valuable understanding of 

the biology behind tumor growth. Examples of such models can be found in [113]–[119]. 

To overcome such limitations hybrid mathematical models for tumor growth have been 

introduced during the last years. Hybrid models or multiscale models – as they also 

called – are comprised by both discrete and continuous variables taking advantage of 

the strengths of both modeling techniques [120]–[123]. 

Accurate descriptions and predictions of the unperturbed and perturbed tumor growth 

can help towards understanding the underlying biology of cancer evolution, provide 
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predictions of response to treatments as well as inform treatment decisions leading to 

improved patient care and outcomes. The tumor growth models reviewed in this 

chapter comprise only a small portion of the total introduced number. A variety of 

mathematical modeling approaches for solid tumors are comprehensively analyzed and 

discussed in [67], [68], [70]–[72], [107], [124]–[127]. 

2.1.1 Mathematical frameworks for tumor-immune interactions 
As mentioned in the previous chapter, the immune system is a fundamental unit in the 

fight against cancer. Recent progresses in cancer immunology and immunotherapy 

suggest that its use may be a key variable to prevent or even cure cancer [128]–[135]. 

To this direction, mathematical modeling has also been used to provide a means to 

describe and analyze the highly complex interactions between immune system cells 

populations and cancerous cells. During the past years several mathematical models 

describing the tumor-immune dynamics been developed. Immunotherapy, 

chemotherapy their combined action and their effects against cancer have also been 

explored and modelled. Some approaches that capture and model these dynamics and 

their interactions in the tumor immune microenvironment have been proposed in the 

works of [135]–[150]. By such systems clinicians have access to powerful insights into 

stimulating and modulating immune responses to prevent or even treat cancer, and 

therefore advance the development of tumor-immunotherapies. 

One of the first systems that modeled tumor-immune interactions was introduced in 

1994 by Kuznetsov et al. [137]. Based on the Lotka-Volterra predator-prey model [152] 

Kuznetsov created a system of two ODEs able to describe the interaction of two cell 

populations, the tumor cells (i.e., the prey) and the effectors’ cells (i.e., the predator). 

The model is expressed by the following set of equations: 

 

�̇ = ��(1 − ��) − ��� 

�̇ = � − �� + �
��

� + �
− ��� 

(2.15)

where � represents the population of tumor cells (i.e., prey) and � represents the 

population of effector cells (i.e., predator). The ��(1 − ��) factor describes the growth 

of tumor cells population while the mass action form −��� describes the fraction of 
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tumor cells eliminated by the action of the effector cells. � is the maximum growth rate 

of the tumor cell population and ��� the maximum carrying capacity of the tumor. The 

size of the effector cells population is described by a constant rate �, and � is the natural 

death rate of the effector cells. The term � ��
���

 is a Michaelis-Menten form which 

describes the growth of the immune system cells due to the presence of the tumor. 

Finally, a fraction of the effector cells population is eliminated due to its interaction with 

the cancerous cells. This decay is described by the mass action form −���.  

Several mathematical models have then been built on Kuznetsov’s model, either by 

extending the model by adding more cell populations or by modifying terms. For 

example, Roesch et al. [153] added first order loss terms, to include chemotherapy 

damage to both tumor and immune system cells. Based also on Kuznetsov model, 

Kirschner and Panetta introduced a three-population model that encapsulates IL-2 

(Interleukin-2) dynamics, describing the interactions not only between tumor cells and 

the activated immune system cells such as NK cells and cytotoxic T-cells but also with 

cytokine [138]. In a more recent study, Dong et al. [154] used a simpler version of 

Kuznetsov’s (as proposed by Gallach [155]) combined with the treatment modelling 

approach proposed by Kirschner and Panetta including to the system treatments such 

as TIL injections that boost the immune activity against the tumor cell population.   

In 2001, De Pillis and Radunskaya [156] introduced a competition model of tumor 

growth that includes both the immune system response and chemo drug therapy. It is a 

four-population model based on aspects of previously developed models such as the 

Kuznetsov model that includes malignant tumor cells, healthy host cells, immune system 

cells as well as drug interaction. It incorporates immune response to tumor growth along 

with chemotherapy. The growth of the immune cells may be stimulated by the presence 

of the tumor and that can destroy tumor cells through a kinetic process. Both normal 

cells and tumor cells compete for available resources, while immune cells and tumor 

cells compete in a predator-prey fashion (competition terms). The model was used to 

analyze the stability of the drug-free equilibria with respect to the immune response and 

to simulate qualitatively the asynchronous tumor-drug interaction, i.e., the “Jeff’s 

Phenomenon” [156]. 
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A set of four non-linear differential equations describes the system:  

 

�̇ = � +
���

� + �
− ���� − ��� − ��(1 − ���)� 

�̇ = ���(1 − ���) − ���� − ���� − ��(1 − ���)� 

�̇ = ���(1 − ���) − ���� − ��(1 − ���)� 

�̇ = �(�) − ���  

(2.16) 

where �, � and � denote the immune cells (such as CD8+ T cells), the tumor and the 

normal cells populations, respectively and � is the concentration of the chemotherapy. 

The model parameters are presented in the table below: 

Table 2.1. Description of the De Pillis model parameters [156]. 

Parameter Description Unit 

�� Fraction immune cell kill by chemotherapy L mg�  

�� Fraction tumor cell kill by chemotherapy L mg�  

�� Fraction normal cell kill by chemotherapy L mg�  
� Immune threshold rate cells 
�� Tumor cell carrying capacity cells�� 
�� Normal cell carrying capacity cells�� 

� Immune source rate cells
day�  

� Immune response rate day�� 
�� Competition term cells��day�� 
�� Competition term cells��day�� 
�� Competition term cells��day�� 
�� Competition term cells��day�� 
�� Per capita death rate of immune cells day�� 

�� Per capita decay rate of the drug day�� 

�� Per unit growth rate of tumor cells day�� 

�� Per unit growth rate of normal cells day�� 

Cell populations are damaged by constant rates ��, � = �, �, � which differ for each cell 

type. Normal cells are being damaged at the lowest rate. On the contrary, tumor cells 

are damaged with the highest rate. With treatment terms included in the model, 

simulations with hypothetical dosing schedules are possible. This fact along with the 

simplicity of the model have made easy to apply optimal control theory and search for 

improved treatment protocols. Based on this model, several other, more advanced 
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tumor-immune models have been created [142], [35], [157], [52], [158]–[161]. In 

addition to that, numerous studies on the optimal control theory for chemotherapy 

have been published and used to identify and design practical treatment protocols that 

could improve the standard regimens [149], [162]–[169]. Detailed reviews of tumor-

immune interaction models can be found on the works of Adam and Bellomo (1997) 

[170], Eftimie et al. (2011) [171], de Pillis et al. (2014) [172], Altrock et al. (2015) [173] 

and Mahlbacher et al. (2019) [174]. 

2.2 Foundations of pharmacokinetic (PK) modeling 
Most mathematical models for tumor growth incorporate the effects of chemotherapy 

on cancer cells. To do that, the drug plasma concentrations of each dosing regimen are 

inputs to the pharmacodynamic model. While it is vital to know how the administered 

drug affects the host, it is equally important to know how the body interacts with the 

drug. Pharmacokinetics (PK) is defined as a branch of pharmacology that focuses on how 

therapeutic agents (i.e., drugs) move during their passage through the body (i.e., in the 

blood and subsequently in the tissues), reach their site(s) of action and excreted from 

the body.  

As soon as a chemical enters the body a series of quite complicated processes begins. 

Absorption, distribution, metabolism, and excretion (ADME) are the four processes 

which govern the rate of drug accumulation and elimination. A summary of the ADME 

stages is presented in Table 2.2. 

Table 2.2. Description of the ADME stages [175]. 

Stage Description 
Absorption The drug enters the body and the systemic circulation. 
Distribution The drug is distributed to the peripheral tissues. 

Metabolism The drug is transformed to other chemical compounds called 
metabolites. 

Excretion The drug is excreted from the body (through kidneys and urine).  

2.2.1 Compartment models in drug kinetics 
Through mathematical modelling, PK can describe the time course of the drug 

concentration in the different areas of the body. However, due to the complexity of the 

ADME processes some simplifications are essential. A common approach to do this is by 
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simulating the body and its processes through compartmental models. More 

specifically, the body is divided into discrete parts, i.e., compartments where the drug 

kinetics are similar. For example, in organs such as the heart and the liver the drug 

kinetics follow a similar pattern, thus they may group into a single compartment. The 

concentration of the drug is measured usually in the plasma. For this reason, plasma and 

organs like the kidneys, the lungs and the liver are grouped into the same compartment 

which is called central or highly blood-perfused compartment [176].  

At this point it is important to define drug concentration. Concentration is defined as 

amount of the drug per volume, e.g., in mg/L and it is calculated as: 

 � =
amount of the drug ���

��
�

�� � �
��

�
, (2.17)

where �� in L/kg is the volume of distribution. The volume of distribution is basically the 

apparent volume which the chemical compound must be dissolved as soon as it enters 

the body in order to reach the measured concentration � [177]. 

The properties of the administered drug along with its observed concentrations in the 

plasma over time can define the number of the compartments required to accurately 

describe the PK of the drug. In general, there are one-compartment, two-compartment 

and multi-compartment models which can be used to model the concentration of an 

agent in the organism over time. The simplest form of such model includes just the 

central compartment (see Figure 2.2). In this case both tissues and fluids of the body are 

included in the compartment while the drug the drug is assumed to be delivered 

instantly. On the contrary, advanced models like two and multi-compartment models 

include not only the central, but also other compartments such peripheral and 

absorption (see Figure 2.3) in the case of extravascular administration of the drug, i.e., 

intramuscular (i.m.), subcutaneous (s.c.), intraperitoneal (i.p.), oral, etc. A peripheral 

compartment may include tissues (e.g., muscles and fat) and fluids such as cerebrospinal 

where the distribution of the drug is slower compared to plasma [178], [179].  
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Figure 2.2. One-compartment model representing the transfer of the drug to the central 
compartment (plasma, etc.). k01 and k10 represent the first-order fractional rates for absorption 
and excretion of the drug. 

 

Figure 2.3. Two-compartment model representing the transfer of the drug to and from the 
central and peripheral compartments. k01, k10, k12 and k21 represent the first-order fractional 
rates for absorption, excretion, distribution, and redistribution. 

It is also essential to model the changes in the amount of the drug across the body, i.e., 

in the tissues, the blood (plasma), the organs and the fluids and how it transfers between 

the different compartments. For this reason, transfer rates of the drug have been 

introduced. For instance, the transfer rate of the drug (over time) between two 

compartments is usually described by two first-order rates k12 (h-1) and k21 (h-1). In most 

PK models the elimination of the drug takes place in the central compartment where it 

is excretes from the body at a constant rate k10 (h-1). A two-compartment model for 

bolus administration can be described by a system of differential equations, as follows: 

 

��̇(�) = −�����(�) − �����(�) + �����(�) + ����(�) 

��̇(�) = �����(�) − �����(�) 

��(�) =
��(�)

��
 

��(�) =
��(�)

��
 

(2.18)
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where k01, k10, k12 and k21, in h-1, represent the first-order transfer rates for absorption, 

excretion, distribution, and redistribution, � is the drug dose in mg/kg, ��, �� are the 

amounts of the drug in the central and peripheral compartments, and �� and �� in mg/L 

are the drug concentrations, respectively. The drug concentration in the central 

compartment �� is equal to the concentration in the plasma. Finally, �� and �� in L/kg 

are the volumes of distribution for each of the two compartments. More details about 

these and other pharmacokinetics parameters can be found on [176], [180]. 

2.3 Application of optimal control theory in cancer treatment 
Optimal control theory (OCT) is a mathematical framework for analyzing dynamic 

systems and determining the best control signal overtime that will lead a process to 

satisfy certain constraints while at the same time will maximize or minimize (i.e., 

optimize) a predefined performance index. To determine the optimal control signal, it is 

necessary to define an optimal control problem (OCP). This involves, in the simplest 

case, the optimization of an integral equation �� subject to a set of ODEs describing the 

dynamics of the in-study dynamic system �: 

 

Minimize ����, �, �� = � ���, �, ��

��

�

��

Subject to:
��
��

= ���, �, ��

with �(0) = ��, 0 = �� ≤ � ≤ ��

 (2.19)

Where � is the time, � ∈ ℝ� is the system’s state variables (e.g., tumor mass, cell 

populations at time �), � ∈ ℝ� is the control vector (e.g., drug doses at time �) which 

affect the behavior of the system, �� is the system’s states vector values at � = �� = 0, 

while �� is the simulation end-time. 

Once the OCP is formulated, there is a variety of numerical methods that can be used to 

solve it. There are two broad categories in which they are fall into: the direct and the 

indirect methods [181]. In a direct method a process called “direct transcription” takes 

place. The OCP is transformed into a discrete constrained minimization problem. The 

system’s states and control variables are discretized to get a non-linear programming 

problem (NLP). Then, the NLP problem is solved using iterative non-linear optimization 
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algorithms. However, methods of this type can be sensitive to initial conditions making 

difficult to find the global optimal solution. Even though they are generally robust they 

can also be computationally expensive especially in where the number of the system 

states and the control variables is large. Direct Collocation (e.g., Hermite-Simpson), 

Direct Single Shooting and Direct Multiple Shooting are some commonly used direct 

methods [181]. 

On the other hand, in indirect methods the problem is transformed into another type of 

problem, which then can be solved using numerical methods. Based on the nature of 

the given optimal control problem, the optimality conditions typically lead to a two-

point boundary value problem (TPBVP) or a multi-point value boundary problem 

(MPBVP). The optimal solution is determined by satisfying optimality conditions rather 

than directly minimizing a cost function, as in direct methods. Pontryagin’s maximum 

(or minimum)principle (PMP), dynamic programming (DP) and Hamilton-Jacobi-Bellman 

(HJB) equation are some of the most well-known indirect methods [182]–[184]. More 

information about direct, indirect, and other type of methods can be found on [185]–

[190]. 

The solution of the optimal control problem of dynamical systems is well-established for 

Linear Time Invariant (LTI) systems subjected to a linear quadratic functional. The 

solution of algebraic Riccati equations (ARE) produces necessary information to 

compute the optimal feedback gain(s). Hence, the regulation (stabilization) problem of 

LTI systems, which is known as linear quadratic regulator (LQR), is solved in optimal way. 

The optimal control for non-linear systems, on the other hand, cannot – in general – be 

handled in a way similar to LTI systems as the solutions of HJB equations do not yield a 

straightforward procedure. Analytical solutions for the optimal control may be obtained 

for only a few restricted cases since the governing equations for optimality are also non-

linear and their solutions should satisfy the terminal conditions. It is well known [24] 

that even numerical solutions for the optimal control cannot be obtained with precision 

for non-linear systems as the number of possible candidates for the optimal solution is 

not known [186]. This difficulty brings out many different approaches to approximate 

solutions to the HJB equation which are regarded as suboptimal solutions to the optimal 

control problem of non-linear dynamical systems. 
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One of the approaches to the optimal control of non-linear systems is the use of the 

State-Dependent Riccati Equation (SDRE) [191]. In brief, SDRE provides a systematic 

approach to design non-linear feedback controllers that can approximate the solution 

of the infinite time horizon optimal control problem. It gives time responses of the non-

linear mathematical model in real-time, making it possible to implement the controllers 

online. Essentially, SDRE allows for the design of controllers that can control non-linear 

systems in real-time by approximating the optimal control solution [192]–[194]. This is 

achieved by factoring the non-linearity of the state equations as product of a state-

dependent matrix with the state vector (i.e., the non-linear system of equations is 

transformed to a linear structure comprised of state-dependent coefficient matrices). 

The simplicity of the algorithm along with its effectiveness make SDRE the ideal tool for 

the design of non-linear controllers. In contrast to other strategies which try to solve 

Hamilton-Jacobi-Bellman partial differential equations and non-linear two-point 

boundary value problems, the SDRE method involves only the factorization of the non-

linear dynamics to a linear structure and an ARE. A detailed description of the LQR and 

SDRE methods is presented in Appendix D. 

2.3.1 Optimal control theory in tumor growth modeling and treatment 
strategies 

Despite the significant increase in the number and types of cancer treatments during 

the last decades, the precise dosing and timing of administration of the drug remains 

imprecise. Treatment regimens are determined through costly and lengthy clinical trials, 

which first determine the MTD and then assess the expected effectiveness for the 

average patient. However, this approach, within the clinical trial system does not allow 

for a systematic evaluation of all possible dosing schemes, leaving the optimal 

scheduling of radiation and systemic therapies, such as chemotherapy, largely unknown. 

In the context of tumor growth modeling, OCT can be used to determine the optimal 

treatment strategy for a given patient. This involves finding the best immunotherapy 

and/or chemotherapy drug dose levels and treatment schedules, taking into account the 

predicted growth of the tumor and the potential risks and benefits of different 

treatment options [195]. Once a tumor growth model has been developed, using 

patient-specific data, optimal control theory can be used to determine the optimal 
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treatment strategy which may lead to tumor eradication while minimizing any potential 

risks or side effects of treatment. In literature, some of the first applications of optimal 

control theory to mathematical models of cancer biology and tumor treatment date 

back to 1970s [196], [197]. Specifically, the work of Swan and Vincent in 1977 [197] was 

the first to apply optimal control in human IgG multiple myeloma. Till this day a plethora 

of works on optimal control for mathematical models of cancer therapies such as 

chemotherapy and/or immunotherapy have been published. A small pool of such works 

can be found on [156], [162], [163], [172], [195], [168], [198]–[217], [218], [219]. 

Usually, a tumor receiving some kind of treatment, such as chemotherapy, can be 

viewed as a control system. The state of the system is given by the population(s) of 

cancer cells or the tumor mass(es) at time �, while the control signal(s) at that time �, �. 

Typically, the variable � represents the amount of the administered drug or its impact 

on healthy tissue and cancer cells. Since chemotherapy can affect both types of cells 

(normal & cancer cells) the goal of the control problem is to minimize the number of 

cancer cells while also maintaining a safe level of toxicity for normal tissue. Overall, 

optimal control theory can be a useful tool for optimizing treatment decisions in the 

context of tumor growth modeling, helping to improve patient outcomes and increase 

survival rates. 
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Chapter 3:  Material and methods 
3.1 Human-to-mouse xenograft data 
Experimental data from human-to-mouse cancer xenografts were used in the present 

study. The data were obtained from the experimental studies reported by Bilalis et al. 

[220] and Rocchetti et al. [93]. 

In the first case (i.e., data from Bilalis et al.), AsPC-1 human pancreatic cancer cell line 

was xenografted subcutaneously at the rear flank of male NOD SCID mice. All mice 

received intraperitoneal injections of gemcitabine twice, in a week interval (the days 19 

and 26 after the inoculation of the tumor cells). The dose of the drug was at 100 

mg/kg/injection/mouse (see Figure 3.1). The pharmacodynamic (PD) data after the two 

i.p. injections of 100 mg/kg on days 19 and 26 after the inoculation are given in Table 

3.1 below: 

Table 3.1. Average tumor masses registered in the experiment of [220] (i.e., gemcitabine given 
i.p. at 100 mg/kg on days 19 and 26). 

Tumor masses (g) 
Day Unperturbed Under gemcitabine 
15 0.22 0.22 
19 0.41 0.43 
22 0.83 0.64 
26 1.16 0.80 
32 1.41 1.00 
35 1.34 0.98 
39 1.65 1.25 

 

It must be noted that linear interpolation was used to estimate the “unobserved” tumor 

masses in the time instants that an observation (tumor measurement) was not carried 

out (e.g., at days 0-14, 16-18, 20-21, etc.). 

 

Figure 3.1. Gemcitabine treatment schedule: 100 mg/kg administered at days 19 and 26 post 
tumor inoculation. 
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In the second case (data from Rocchetti et al. [93]), HT29 human colon cancer cell lines 

were implanted subcutaneously at the left flank of mice. All mice of the experiments 

received intravenous injections of irinotecan (CPT-11) and 5-fluorouracil (5-FU) in 

combination with an under development anticancer agent C2 (see Figure 3.2 and Figure 

3.3).  

 

Figure 3.2. 5-FU and drug C2 treatment schedule: 50 mg/kg of 5-FU administered q4dx3 from 
day 9 and 60 mg/kg of drug C2 on days 10, 11, 12 and 14, 15, 16 post tumor inoculation. 

 

Figure 3.3. CPT-11 and drug C2 treatment schedule: 45 mg/kg of CPT-11 administered q4dx3 
from day 9 and 60 mg/kg of drug C2 on days 10, 11, 12 and 14, 15, 16 post tumor inoculation. 

5-FU and CPT-11 were given iv at doses of 50 mg/kg and 45 mg/kg respectively, three 

times at an interval of four days (q4dx3), starting from day 9. On the other hand, drug 

C2 was administered orally at 60 mg/kg on days 10, 11, 12 and 14, 15, 16 after the tumor 

inoculation. 

3.2 The inverse problem: parameters estimation in mathematical 
modeling 

In many mathematical modeling cases of physical processes, the model parameters are 

unknown. Therefore, they must be estimated using the available input-output 

experimental observations. This type of problem is often called the “inverse problem”. 

It is called “inverse” since it uses the results of actual observations to infer (i.e., 
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calculate) the casual factors that produced them (i.e., the numerical values of the 

parameters of the linear/non-linear mathematical model). 

 ������������ →  ������ ������� (����� ����������)  

A way to address this is by defining and solving an optimization problem. An 

optimization problem is a computational problem in which the object is to select the 

optimal solution from among the set of candidate solutions [221]. In order to quantify 

and evaluate the goodness of a possible solution an objective/cost function is used. To 

be more specific, a set of arguments that minimizes the value of the cost function subject 

to a number of constraints is explored. The set which gives the global minimum value 

(i.e., the minimal cost function value) is the solution to the optimization problem. This 

vector of values is also the solution to the parameter estimation problem. 

A standard mathematical representation of the general optimization problem is shown 

below [222]: 

 

Let � ℝ� → ℝ
Find �� = argmin ����, �  ∈ ℝ�

Subject to: ����� ≤ 0, � = 1, … , �
ℎ���� ≤ 0, � = 1, … , �
��,��� ≤ �� ≤ ��,��� � = 1, … , �

 (3.1)

where � is the objective function, �� is the unique minimizer and the solution to the 

problem, ����� is an inequality constraint and ℎ���� an equality constraint function. The 

vector � = [��, … , ��] represents the design variables. The adjustment of these 

variables inside the design space defined by the constraints leads to the global optimum. 

Ideally, for each cost function there is a set of parameters’ values which provides an 

optimal solution to the problem. However, in many cases it is very difficult to find a 

unique vector of values that provides a global solution to the problem (see Figure 3.4 

and Figure 3.5 below). In many applications the objective function can have both a global 

minimum and several local minimizers. Hence, it may be hard for optimization 

algorithms to identify an optimal solution to the problem. Among optimization 

approaches, linear and non-linear, metaheuristic optimization methods have proven 

capable of finding near optimal solutions to various problems. In contrast, analytical 
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approaches may not detect the optimal solution within a reasonable computational 

time, especially when the global minimum is surrounded by many local minima. 

 
Figure 3.4. A non-convex objective function 
with a global minimum and multiple local 
minima. 

 
Figure 3.5. A convex function with one global 
minimum. 

Metaheuristic algorithms are usually inspired by observations of phenomena and rules 

found in nature, such as the Genetic Algorithm (GA), Simulated Annealing (SA), Particle 

Swarm Optimization (PSO), Harmony Search (HS), and so on. A relatively new 

metaheuristic optimization algorithm capable of finding solutions to complex 

constrained and unconstrained optimization problems is the Neural Network Algorithm 

(NNA) [223]. This method is based on the biological nervous system and the 

structure/configuration of artificial neural networks (ANNs). A detailed description of 

the algorithm is given in Appendix A. 

In the cases of the experimental data, such as those of Bilalis et al. [220] and Rocchetti 

et al. [93], which are studied in this work, the tumor growth curve (i.e., the model 

output) in combination with the delivered chemotherapy dosing (i.e., the model input) 

are used to estimate the values of the parameters of each model from the experimental 

observations (i.e., the physical process). More specifically, an objective function �, which 

depends on the model’s unknown parameters values and time, created by the 

comparator of Figure 3.6, must be minimized with respect to the vector of the model’s 

unknown parameters �.  

The vector that minimizes the cost function ���, ��, is the solution to the model 

parameters estimation problem. 
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Figure 3.6. Comparator procedure between the physical experimental process of xenografted 
mice and the under fitting to the experimental data tumor growth inhibition model. 

A commonly used objective function, described by the equation below, is the sum of 

square errors: 

 ���, �� = � ����, ��
�∙��

���

, where � = � ∙ ��, � = 0,1, . . . , � (3.2)

where ���, �� is calculated as the difference between the measured (observed) tumor 

mass at each time point � and the tumor mass estimated by the model simulation at the 

same time point �.  

 ���, �� = ��������������(�) − �������������, �� (3.3)

with ��������������  to be the observed tumor mass and �������������, �� the tumor 

mass estimated by the model. 

Of course, introducing extra terms in  �, such as the regularization term: 

 �� = � � ��
�

�

���

 (3.4)

where � is the regularization strength, can help in preventing overfitting, especially in 

cases where a model has a large number of parameters. This term penalizes large values 

of parameters to avoid overfitting, with the strength of this penalty determined by �. A 

larger value of � results in stronger regularization. 

3.3 Adaptive short-term ahead predictions of tumor growth evolution 
Accurate (statistically) forecasting of tumor evolution is essential for evaluating 

treatment efficacy. A methodology for statistically robust predictions of tumor growth 
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in the near future, based on available experimental data up to a given time instant is 

described here. The proposed approach utilizes the parameter estimation of a 

mathematical model, linear or non-linear, to simulate and predict tumor growth 

inhibition. 

Firstly, the parameters of a mathematical model representing tumor growth are 

estimated using a subset of experimental data available from day 0 up to a specific time 

instant, denoted as ��, �� ≤ ����, ���� being the last day of the experiment. For this 

purpose, methods such as NNA and Complex method of Box can be used. Once its 

parameters are estimated, the model is numerically integrated (i.e., simulated) using the 

available inputs, i.e., the anticancer agent dosing of the experiment delivered up to time 

�� (model inputs) for the time periods [0, �� + �], � ∈ ℕ, � being the forecasting horizon, 

i.e., the number of steps (e.g., days) ahead. This simulation aims to predict tumor growth 

inhibition for different time horizons, such as � = 1, 2, 3, 4, or 5 days ahead, leading to 

[0, �� + 1], [0, �� + 2], [0, �� + 3], [0, �� + 4], and [0, �� + 5] time periods, respectively. 

To assess the accuracy of the predictions, commonly used metrics, such as the root 

mean square error (RMSE) and the mean absolute percentage error (MAPE), are utilized 

for each step ahead. More in information on the metrics used can be found in the 

Section 3.4. Following prediction evaluation, the model parameters are updated for the 

"new" time period �0, ��,��� = �� + 1�. Specifically, the model parameters are re-

estimated based on a new, extended subset of the experimental data, available until 

day ��,��� =  �� + 1, acting as an extended window. The time instant ��,��� is assigned 

as the new "time index" ��, and the procedure re-starts and repeated, iteratively 

updating the model parameters and predicting tumor growth until the final 

experimental day, ��,��� = ����. The above methodology can be understood through 

the simple flow diagram, shown in Figure 3.7. 

To improve prediction accuracy and computational efficiency, a moving (rolling/sliding) 

window technique can also be applied to the experimental data, instead of the extended 

window. This technique involves selecting subsets of time-dependent measurements by 

considering the most recent � time instants' measurements (� =  � · ��, where � =

 0, 1, . . . , �, and � ≪  �). The length of the moving window can be determined either by 

trial and error or by using metrics, such as the Akaike's information criterion (AIC) [221]. 
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Figure 3.7. Flowchart of the proposed procedure for the measurement and the model update, 
ensuring effective adaptive short-term ahead tumor growth prediction. 
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By continually updating the mathematical model parameters based on the "input-

output" measurements within the moving window formed at each time instant, the 

methodology may efficiently capture the changing slopes of the experimental data 

curves. This iterative parameter update process enables the model to adapt and align 

more closely with the observed tumor growth dynamics, which may result in improved 

predictive accuracy. The inclusion of the moving window approach ensures that recent 

data points have a stronger influence on parameter estimation, which potentially may 

enhance the model's ability to capture temporal variations in tumor evolution. 

3.4 Performance evaluation metrics 
The performance of the models, their fitting to the tumor growth data as well as the 

tumor growth predictions were evaluated using statistical parameters. More 

specifically, commonly used scale-dependent and scale-independent metrics such as the 

mean square error (MSE), the root mean square error (RMSE) [224] and the mean 

absolute percentage error (MAPE) [225] were calculated to measure the fitting error: 

 MSE (units�) =
1
�

�(�� − ��)�
�

���

 (3.5)

 RMSE (units) = �
1
�

�(�� − ��)�

�

���

 (3.6)

 MAPE (%) =
1
�

� �
|�� − ��|

��
× 100�

�

���

 (3.7)

where � is the number of the data points in the dataset (e.g., the tumor mass at each 

time point (e.g., day)) and �� denotes the prediction (estimation) of the actual 

measurement (observation) ��. The smaller the value of the statistic is (i.e., closer to 0), 

the better the identified model performs. 
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Chapter 4:  Tumor growth inhibition (TGI) mathematical 
model 

4.1 The Simeoni et al.’s TGI mathematical model 
A first order differential equations (i.e., state-space) mathematical model based on a 

few biologically pertinent parameters, with only requirement the data collected in 

preclinical studies such as the pharmacokinetics (PK) of the anticancer drugs, linking the 

progress (i.e., evolution) of the tumor mass with the administrated anticancer agent 

during treatment, is the one first presented by Simeoni et al. in 2004 [226], [227]. The 

pharmacokinetic-pharmacodynamic (PK-PD) state-space mathematical model (TGI 

model, in brief) is described by the set of the non-linear first order differential equations 

(4.1) shown below: 

 

���(�)
��

=
�� ∙ ��(�)

�1 + ���
��

∙ �(�)�
�

�

�
�

− �� ∙ �(�) ∙ ��(�) 

���(�)
��

= �� ∙ �(�) ∙ ��(�) − �� ∙ ��(�) 

���(�)
��

= �� ∙ [��(�) − ��(�)] 

���(�)
��

= �� ∙ [��(�) − ��(�)] 

�(�) =  ��(�) + ��(�) + ��(�) + ��(�) 

(4.1)

with 

 ��(0)   = �� and ��(0) = ��(0) = ��(0) = 0  

And �(�) = 0, before any treatment administration. 

The unperturbed growth of the tumor in xenograft models is characterized by two 

phases [226], [228]: a rapid or exponential growth at the early stages of the tumor 

development, followed by a linear one, when the tumor mass overcomes a certain 

threshold. This behavior is accurately descripted by the equations of TGI model shown 

above. It has been observed that the value � = 20 allows the (4.1) system to pass from 

the first order to the zero-order growth sharply enough, during the unperturbed tumor 

growth phase. The parameters  �� and �� represent the growth rates of the two phases 

described above, i.e., the exponential and the linear growth rate, respectively. 
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�� represents the tumor mass at the inoculation time, defined as � = 0. In treated 

animals, the administrated anticancer agent concentration �(�) (in mg/L) is not zero and 

thus its effect impinges upon the cycling (proliferating) cancer cells, i.e., the perturbed 

tumor growth phase. Due to the action of the anticancer treatment, a portion of these 

cells stops proliferation and after passing through three progressive stages of damage 

they finally die. At each time instant � (� ≥ 0) the total tumor mass �(�) (i.e., the output 

of the model) is calculated as the sum of all state-space variables �. More specifically, 

��(�) is the mass of the proliferating tumor cells and ��, � = 1,2,3 is the mass of the 

damaged (by chemotherapy) tumor cells in each stage of damage. The plasma 

concentration of the antineoplastic agent is indicated by the variable �(�) (i.e., the input 

to the model). The portion of the tumor cells damaged by an anticancer drug is increased 

by a parameter ��, which is a measure of the drug’s potency. In case a cancer cell is 

affected by the agent action, cell division stops, and it proceeds through three different 

states  ��, �� and ��, each one defined by different progressive stages of damage. The 

transition from a state to another, i.e., the kinetics of cancerous cell death, is described 

by a first order rate constant ��, which is inversely proportional to the mean time-to-

death of the tumor cells. In brief, the set of the two parameters (��, ��) describe the 

effects of the anticancer drug to inhibit the tumor growth while (��, ��, ��) describe the 

tumor kinetics in absence of treatment (i.e., the unperturbed case).It is important to 

note that in the unperturbed case where �(�) =  0 the total tumor growth mass is 

calculated as �(�) = ��(�). A diagram, adapted from Simeoni et al. [226] that describes 

the TGI model can be seen in Figure 4.1 below: 

 

Figure 4.1. Diagram of the PK-PD TGI state-space model introduced by Simeoni et al. [226]. k1: 
first-order rate constant of transit; k2: anti-tumor potency of the anticancer agent, c(t): plasma 
concentration of the anticancer agent and w(t): tumor weight at any time t. 
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The set of the above non-linear differential equations (4.1), can be also written in the 

following form: 

 �̇(�) = ���(�), �� + � ��(�)� �(�) (4.2)

where ��(�), � = 0,1,2,3, are the four state variables, �� ≜ [��, ��, ��, ��, ��] is a vector 

of the five biologically relevant principal parameters and �(�) ≜  �(�) is the input (i.e., 

chemotherapy drug plasma concentration) to the model. A short description of each 

parameter of the model is presented in Table 4.1 [226], [227]. 

Table 4.1. Pharmacodynamic (PD) parameters of the TGI model. 

Parameter Description Unit 
�� First-order rate constant of transit 1/day 
�� Anti-tumor potency of the anticancer agent ml/ng day 
�� Exponential tumor growth rate 1/day 
�� Linear tumor growth rate g/day 
�� Tumor mass at the inoculation time g 

 

Apart from the five principal pharmacodynamic (PD) parameters described above, two 

important and biologically relevant parameters, also called “secondary TGI parameters” 

can be obtained from the TGI mathematical model [227]. The first one is a time efficacy 

index (TEI) which can be calculated using the following equation: 

 ��� =
�� ∙ ���

��
, (4.3)

where ��� is the area under the plasma concentration-time curve of the administered 

anticancer agent. ��� is a time metric that measures the efficacy of a chemo treatment 

using the achieved tumor growth delay, i.e., the time-lag required to achieve a 

predetermined tumor mass between treated and untreated animals during the linear 

phase of the tumor growth.  

�� is another parameter which can be calculated. It describes a threshold of the 

delivered anticancer agent’s concentration in order to achieve tumor eradication. 

Treatment schedules with concentrations exceeding �� for at least some period of time, 
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may be capable of delaying significantly the tumor growth and reducing correspondingly 

the tumor mass. The threshold concentration can be calculated as follows: 

 �� =
��

��
. (4.4)

4.2 Model identification – TGI model’s parameters values estimation 
The tumor growth inhibition model presented above has been extensively used to 

describe the dynamics of the growth of several cancer cells lines (see [226], [227], [229]) 

under the effects of different chemotherapy compounds administrated in several 

different schedules. As in many mathematical modeling cases of physical processes, the 

mathematical model parameters are unknown, and they must be estimated using the 

available input-output experimental observations. In the case of the experimental data 

of Bilalis et al. [220], the gemcitabine regimen (i.e., the TGI model input) in combination 

with the tumor growth curve (i.e., the TGI model output) were used in order to estimate 

the Simeoni et al.’s model’s principal parameters values from the tumor mass 

observations (the physical process).  

A cost function  � depending on time and the TGI model’s unknown parameters values, 

created by the comparator procedure of Figure 3.6 and (3.2) and (3.3), was minimized 

with respect to the vector of the unknown parameters of the model,  �� =

[��, ��, ��, ��, ��] ≜ [��, … , ��] (� = 5 in the present case) to be to best fit of the TGI 

state-space mathematical model to the experimental data. For any given set (i.e., 

vector �) of the unknown parameters’ values, the non-linear TGI model, when solved 

numerically for the same time period as that of the experiments, simulates the tumor 

growth for the same time period. The vector of the unknown parameters’ values that 

minimizes the cost function ���, �� is the solution to the TGI mathematical model’s 

unknown primary parameters ��, ��, ��, �� and �� estimation problem. The function 

���, �� formed by the sum of square errors during the xenografted mice experiment 

period was minimized using the non-linear optimization algorithm NNA. Further details 

on the working principles of NNA can be found in the Appendix A. To achieve the best 

fit to the experimental data some hard bounds on the model’s primary parameters 
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values was defined. The lower and upper physically imposed bounds for the values of 

each parameter are presented in Table 4.2 below.  

Table 4.2. Value range of the TGI mathematical model principal parameters. 

 Parameters 
 �� �� �� �� �� 

Units 1/day ml/ng day 1/day g/day g 
Value Range (0, 1) (0, 10E-3) (0, 1) (0, 1) (0, 1) 

 

The pharmacokinetic data of gemcitabine were obtained and depicted from the almost 

identical experiments found in the literature, i.e., Veerman et al. [230]. The PKs (i.e., the 

drug plasma concentration) attained after the i.p. administration of gemcitabine were 

described by applying a single-compartment model. The compartmental model is 

described by the below set of differential equations: 

 

�̇(�) = −����(�) + ����(�) 

�(�) =
�(�)

�
 

(4.5)

where k01 in h-1 is a first-order transfer rate, � is the anticancer agent dose in mg/kg, � 

is the amount of the drug in the central compartment, and � in mg/L is the drug 

concentration in plasma. � is the volume of distribution in L/kg. The in-silico plasma 

concentration of gemcitabine after two intraperitoneal (i.p.) injections at 100 mg/kg (in 

a 7-day interval) resulted from the above equations is shown in Figure 4.2 below.  

As it is shown in Figure 4.3 the identified TGI model could describe with accuracy the 

tumor growth experimental curves, with fitting statistical errors to be less than 10% (see 

Table 4.3). Using the estimated TGI model’s primary parameters values (Table 4.4), a 

threshold concentration �� for the tumor eradication of ~336 ng/ml (0.336 mg/l) was 

estimated, which means that any drug concentration over this value eventually may lead 

to a delayed tumor growth and hence can be considered effective. The TEI value, i.e., 

the efficacy of a treatment measured using the achieved delay of the tumor growth, was 

estimated to be approximately 7.2 days which means that the tumor growth was 

inhibited in this experiment by gemcitabine for about 7 days. 
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Figure 4.2. Plasma concentration of gemcitabine (measured in mg/L). Gemcitabine 
administrated as repeated i.p. doses at 100 mg/kg, with 7-days interval  [230]. 

 
Figure 4.3. Observed/interpolated (black dots) and best fitted TGI mathematical model tumor 
growth curves obtained in mice given i.p. doses of gemcitabine (100 mg/kg on days 19 and 26) 
using the median (continuous line) and the mean (dashed line) of the estimated values of each 
unknown parameter. 

Tumor Weight (using median of each parameter)
Tumor Weight (using mean of each parameter)
Tumor Weight (observed)
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Table 4.3. TGI mathematical model fitting errors to the tumor growth experimental curve 
obtained in mice administered i.p. doses of gemcitabine (100 mg/kg on days 19 and 26). 

Evaluation 
metrics 

Median of each estimated 
parameter 

Mean of each estimated 
parameter 

RMSE(g) 0.02663 0.02661 
MAPE (%) 9.93 9.97 

 

Table 4.4. Pharmacodynamic parameters values of the TGI model. Obtained by best fitting the 
Simeoni TGI model to the tumor growth curve of mice given gemcitabine i.p. injections. 

 TGI model’s estimated parameters values 
 �� �� �� �� �� 

Units 1/day ml/ng/day 1/day g/day g 
Median 0.23810 4.22e-4 0.14202 0.07618 0.03147 
Mean 0.23294 4.23e-4 0.14225 0.07573 0.03131 
SD 0.01069 0.00003 0.00193 0.00199 0.00104 
CV (%) 4.59 6.20 1.35 2.63 3.31 

SD: Standard deviation; CV: coefficient of variation; ��, first-order rate constant of tumor growth transit; ��, measure 
of anticancer drug potency; ��, first-order rate constant of tumor growth; ��, zero-order rate constant of tumor 
growth; ��, tumor weight at the inoculation time. 
 

4.3 Short-term ahead predictions of the tumor growth inhibition 
Using the NNA algorithm (see Appendix A00), the TGI model was first identified using 

the experimental input-output data until the 25th day (�� = 25, initially). Then it was 

integrated for one, two, three, four, five time periods ahead to predict the tumor’s 

growth at the 26th, 27th, 28th, 29th, and 30th day respectively. On the 26th day, a dose of 

100 mg/kg gemcitabine was administrated in mice. An optimal length � = 5 (i.e., the last 

� time instants measurements) of the moving window was applied based on the AIC 

criterion. Thus, the TGI model parameters were re-estimated using the TGI data from 

the 22nd day to the 26th day of the experiment, i.e., ��,��� = �� + 1 = 26. Next, the 

prediction error was determined using the predicted value and the corresponding actual 

value, known by the laboratory experiments. Starting from the new �� = ��,��� = 26, 

the tumor growth was predicted again for one, two, three, four, five time periods (days) 

ahead, i.e. for the days � = 27, 28, 29, 30 and 31. Subsequently, the model’s parameters 

were re-estimated using the TGI data from the 23rd to the 27th day of the experiment, 

i.e., ��,��� = �� + 1 = 27 (moving the window) and the prediction errors were 
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calculated. The whole procedure of the measurement update, of the re-estimation of 

the TGI model’s parameters following each measurement update (based on the last � =

5 time instants measurements) and of the adaptive tumor growth prediction is 

continued step by step until the end of the experiment, ���� = 39.  

The tumor growth prediction curves for one, two, three, four and five time periods 

ahead, are shown in Figure 4.4.  

 

Figure 4.4. Observed and time period (1 to 5 days) ahead adaptive prediction curves of the 
tumor growth in mice given doses of gemcitabine (100 mg/kg on days 19 and 26). Predictions 
performed after the 25th day of the experiment. 

The model demonstrated a high level of statistical accuracy in predicting the future 

course of tumor progression when gemcitabine was administered, as evidenced by the 

close alignment of the predicted and experimental tumor growth curves. Notably, the 

calculated prediction errors were small, with MAPE ranging from 2.3% for the one time 

period ahead predictions to 7.4% for the five time periods ahead predictions. However, 

as the prediction period of the tumor growth extends, the convergence between the 

predicted and the experimental tumor growth curves decreases, resulting in a decrease 

in prediction accuracy and an increase to the prediction errors. This is due to the 

increasing uncertainty introduced while the predictions time frame increases. 
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Moreover, the model may also be more affected by changes in the underlying data (e.g., 

gemcitabine dosages) or by inaccuracies in the model itself, leading to even greater 

errors. More on prediction errors are presented in Table 4.5 below. 

Table 4.5. Prediction errors for the time period (1 to 5 days) ahead adaptive tumor growth 
inhibition prediction in mice given i.p. doses of gemcitabine (100 mg/kg on days 19 and 26). 

 # Time periods ahead 
Evaluation metrics 1 2 3 4 5 
RMSE (g) 0.03142 0.05662 0.07880 0.10566 0.09368 
MAPE (%) 2.33 3.99 5.52 7.20 7.40 
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Chapter 5:  Time series approaches to tumor growth 
inhibition: ARX modeling and predictive 
analysis 

Even though mathematical models provide good approximations of tumor’s growth, 

they can be complex and challenging to understand and apply. Their complexity arises 

not only from the large number of biologically relevant parameters they based on, but 

also from their attempts to model specific processes and phenomena that take place in 

the microenvironment of a malignant tumor. An alternative approach is to model tumor 

progression as a time series. Time series models, such as difference equations and 

Autoregressive Moving Average (ARMA) models, are some of the most popular tools to 

analyze data [231]. They are relatively simple to implement and have been widely used 

for forecasting in various fields, including electricity load forecasting [232], 

electroencephalogram (EEG) analysis [233] and economics [231]. A special version of 

such models is the Autoregressive with eXogenous inputs model [231]. In the context of 

tumor growth analysis, they can be used to model the evolution of the tumor over time 

and to make predictions about the future tumor growth. By modeling the relationship 

between the current size of the tumor and its past growth under the effect of the applied 

treatment such as chemotherapy, they provide a useful tool not only to analyze the 

tumor progression but also make informed decisions about treatment. In summary, an 

ARX model provides a flexible and effective way to model time series data. 

This chapter introduces a new approach to describe tumor growth inhibition under 

chemotherapy. ARX systems modeling tumor growth under single, or combination 

chemotherapy are identified and evaluated using laboratory data from TGI experiments 

in mice.  

5.1 ARX models background 
An ARX model is a combination of two linear models, the autoregressive (AR) and the 

eXogeneous (X) input models, respectively [231]. It can be defined as a linear input-

output model that uses a weighted linear combination of past input values and data 

observations (i.e., back fit to historical data) to perform predictions. An ARX model can 

be generally described as:  
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 �� = − � ������

�

���

+ � ������

�

���

,   � ∈ ℤ, (5.1)

where �� is the prediction (output of the model), ����, � ≤ � are the past observations 

and ����, � ≤ � are the past inputs, with � ≤ �. 

For example, in the case of tumor growth analysis, � and � correspond to the tumor 

weight observations and the chemotherapy drug dosages, respectively. Parameters �� ∈

ℝ and �� ∈ ℝ are weights associated with each previous observation and input, 

respectively while the set of parameters (�, �) defines the order of the ARX model. It is 

important to note that the order of the model can significantly impact the accuracy of 

the predictions made by the ARX model. Therefore, careful consideration and 

experimentation is required when selecting these parameters, to ensure the best 

possible results.   

5.2 Identification and parameters estimation of ARX models for TGI 
ARX models have a long history in forecasting and time series analysis. However, In the 

case of tumor growth analysis they have not extensively been used. Toward this, ARX 

models describing the dynamics of tumor growth under single and multi-agent 

chemotherapy (ARX TGI modes) were developed. Again, the data used to identify the 

ARX models were derived from the experimental studies in human-to-mouse cancer 

xenografts reported by Bilalis et al. [220] and Rocchetti et al. [93] and described in 

Chapter 3. 

5.2.1 A single-agent dynamics based ARX TGI model 
It is prominent that the essential step in developing a predictor for a process (e.g., tumor 

growth under chemotherapy) is the identification of a model. Of course, a crucial step 

in fitting an ARX model to data is determining its order (�, �). In the single agent case of 

the tumor growth inhibition under gemcitabine, ARX models of all possible order (�, �), 

where 1 < � ≤ 5 and 1 < � ≤ 5, were fitted to the observed tumor growth data of 

[220] as described in the Material and Methods section. The weights �� and ��  of the 

ARX model were estimated by using the Complex Method, while the order of the model 
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was selected based on the Akaike criterion. To measure the quality of fit and the 

accuracy of the models RMSE and MAPE were also calculated. 

Based on AIC, an ARX model of order (� = 3, � = 3) was selected, as described by the 

following equation: 

 �� = −������ − ������ − ������ + ������ + ������ + ������ (5.2)

where �� = �

��

��

��

� = �

 −2.9653

    2.9456

−0.9851

� and �� = �

��

��

��

� = �

   6.7573

−5.8769

−8.7736

�, are the estimated ARX 

model coefficients. 

In Figure 5.1, the model-fitted tumor weight curve is plotted against the observed tumor 

growth curve. It can be observed that the ARX (3,3) model was able to accurately 

describe the observed tumor growth under gemcitabine treatment, as evidenced by the 

close agreement between the model and the observed curves. This finding is further 

supported by the evaluation metrics presented in Table 5.1, which show that the ARX 

(3,3) model exhibited both low RMSE of 0.0148 g and MAPE of 2.45%.  

Moreover, the AIC value of -323.09 indicates that the ARX (3,3) model provides the best 

trade-off between model complexity and goodness of fit compared to the other models 

considered. Thus, the selection of the (3,3) model is supported by both statistical criteria 

and measures of accuracy. 

Overall, the results suggest that the ARX (3,3) model is the most appropriate and reliable 

model (among the tested) for describing the observed tumor growth under gemcitabine 

treatment. However, it is important to note that while these results are promising, 

further validation and exploration are necessary. Additional data from diverse cohorts 

and treatment regimens would be valuable to thoroughly establish the ability of such 

models to describe tumor growth evolution under chemotherapy. Robust evidence from 

larger and more varied datasets would enhance the confidence in the reliability and 

generalizability of these models in clinical practice. 
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Figure 5.1. Observed/interpolated (black dots) and best fitted ARX (3,3) model tumor growth 
curves obtained in mice given i.p. doses of gemcitabine (100 mg/kg on days 19 and 26). 

Table 5.1. Single agent ARX models fitting errors to the tumor growth experimental curve 
obtained in mice given i.p. doses of gemcitabine (100 mg/kg on days 19 and 26). 

Model order (p,q) AIC RMSE (g) MAPE (%) 
(2,2) -249.48 0.0390 8.32 
(3,3) -323.09 0.0148 2.45 
(4,4) -320.79 0.0145 2.42 
(5,5) -312.09 0.0154 2.34 

 

5.2.2 ARX modeling of TGI in multi-drug chemotherapy scenarios 
In addition to investigating the tumor growth inhibition under single-agent 

chemotherapy, it is also crucial to explore the effects of combination chemotherapy. 

This section focuses on the multi-drug case involving CPT-11 and drug C2, aiming to 

identify an appropriate multi-input ARX model that describes the tumor growth under 

combination treatment. 

Similar to the single-agent case of gemcitabine, ARX models of various orders (��, ��) 

with 1 < �� ≤ 7 and 1 < �� ≤ 7 with were fitted to the observed tumor growth data 

Tumor Weight (ARX estimated)
Tumor Weight (observed)
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from experimental studies conducted by Rocchetti et al. [93]. To determine the most 

suitable ARX model AIC was used. The models parameters (weights) were estimated 

using the Complex Method while the accuracy and the fitness of each model to the 

observed tumor growth curve were evaluated using RMSE and MAPE. 

Based on AIC, an ARX model of �� = 4 and �� = 4 was selected. The model is described 

by the following equation: 

 ��� = −�������� − �������� − �������� − �������� + ��� + ���  (5.3)  

with 

��� = ��,���,��� + ��,���,��� + ��,���,��� + ��,���,��� 

��� = ��,���,��� + ��,���,��� + ��,���,��� + ��,���,��� 

where ���  is the prediction (output of the multi-input model), �����  are the past 

observations and ���and ���  are the past inputs factors (one for each of the drugs). 

�� =

⎣
⎢
⎢
⎢
⎡
���

���

���

���⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
−1.6640

   0.2182

   0.1082

   0.3594⎦
⎥
⎥
⎥
⎤

, ��,� =

⎣
⎢
⎢
⎢
⎢
⎡
��,�

��,�

��,�

��,�⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
−9.1822

10.8916

−9.9531

5.0423 ⎦
⎥
⎥
⎥
⎤

 and ��,� =

⎣
⎢
⎢
⎢
⎢
⎡
��,�

��,�

��,�

��,�⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
−20.1489

      1.9032

      1.9030

   24.1672⎦
⎥
⎥
⎥
⎤

, 

are the estimated multi-input ARX coefficients. 

Figure 5.2 displays the model-fitted tumor weight curve plotted against the observed 

tumor growth curve for the CPT-11 and Drug C2 combination treatment. Among the 

range of tested models, the ARX (4,4) model emerges as a strong contender, as it 

demonstrates a good fit to the observed tumor growth data, closely aligning with the 

measured tumor growth curve. The metrics presented in Table 5.2 further support the 

suitability and the effectiveness of the ARX (4,4) model, as it exhibits a low RMSE of 

0.0159 g and MAPE of 11.54%.  

Furthermore, the AIC value of -562.2 indicates that the (4,4) model offers a favorable 

balance between model complexity and goodness of fit compared to the other models 

considered. This statistical criterion, along with the RMSE and MAPE metrics, supports 
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the selection of the ARX (4,4) model as the most appropriate and reliable model for 

describing tumor growth inhibition under CPT-11 and drug C2. 

In summary, the ARX (4,4) model offers a robust framework for accurately describing 

tumor growth inhibition under the combination of CPT-11 and Drug C2. Its ability to 

capture the dynamic nature of tumor growth in response to this specific combination 

treatment highlights its potential as a valuable tool for analyzing and predicting tumor 

progression.  

 
Figure 5.2. Observed/interpolated (black dots) and best fitted ARX (4,4) model tumor growth 
curves obtained in mice given doses of CPT-11 in combination with drug C2. 

Table 5.2. Multi-agent ARX models fitting errors to the tumor growth experimental curve 
obtained in mice given doses of CPT-11 in combination with drug C2. 

Model order (p,q) AIC RMSE (g) MAPE (%) 
(2,2) -514.99 0.0241 15.71 
(3,3) -559.14 0.0169 15.66 
(4,4) -562.20 0.0159 11.54 
(5,5) -547.90 0.0168 12.04 
(6,6) -547.79 0.0162 7.10 
(7,7) -552.39 0.0150 12.34 

Tumor Weight (ARX estimated)
Tumor Weight (observed)
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5.3 Adaptive short-term ahead prediction of TGI using ARX models 
Understanding the nuances of tumor growth dynamics, especially under treatment, 

goes beyond merely noting its current state. Delving into predictive analyses can offer a 

comprehensive outlook on how a tumor might evolve over time, thereby guiding clinical 

decisions more proactively. This section dives into the predictive capabilities of the ARX 

models. Drawing from the methodologies detailed in the Materials and Methods 

section, it echoes the short-term adaptive prediction process featured in Chapter 4, but 

through the lens of ARX. The ARX's prowess in forecasting short-term tumor growth is 

explored, under varying treatment conditions: single chemotherapy drug administration 

(gemcitabine i.p.), and combination drug therapy (CPT-11 and 5-FU with drug C2). In 

each of these cases, the predictions span one to five consecutive time periods (days) to 

gauge the models' accuracy and relevance in oncological applications. 

5.3.1 Predictions of TGI for single-agent scenarios 
The efficacy of the ARX (3,3) model, described before, for forecasting short-term tumor 

weight evolution was examined specifically for the gemcitabine single-agent treatment. 

Starting from day 26 of the experiment, step-ahead predictions were carried out using 

the ARX (3,3) model. Predictions were made for one, two, three, four, and five time 

periods ahead. After each prediction, the model was recalibrated by integrating the 

most recent observed data, encompassing the latest tumor weight measurements. This 

approach aligns with the adaptive prediction technique delineated in the preceding 

chapters. 

The projected tumor growth trajectories for one, two, three, four, and five time periods 

ahead are illustrated in Figure 5.3. These are compared with the actual measured tumor 

weights observed during the gemcitabine treatment phase. To enhance the model's 

predictive accuracy, a moving window technique was incorporated, as detailed in the 

Materials and Methods section. Specifically, the window length was set to capture the 

last � = 6 tumor weight measurements.  

This side-by-side comparison provides a clear perspective on the ARX (3,3) model's 

precision in tracing the short-term changes in tumor weight, especially when 

considering the model's periodic updates with the latest measurements. Table 5.3 
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catalogues the RMSE and MAPE metrics for every prediction interval, offering an in-

depth review of the model's prediction fidelity across different forecasting spans. The 

findings shed light on the proficiency of the ARX (3,3) model in forecasting short-term 

tumor weight variations. Incorporating both adaptive prediction techniques and the 

moving window approach, the model's demonstrated statistical robustness could serve 

as a pivotal tool in refining treatment plans and deepening our understanding of tumor 

growth dynamics. 

 

Figure 5.3. Observed and time period (1 to 5 days) ahead adaptive prediction curves of the 
tumor growth in mice given doses of gemcitabine (100 mg/kg on days 19 and 26). Predictions 
performed after the 25th day of the experiment using ARX (3,3) model. 

Table 5.3. Prediction errors for the time period (1 to 5 days) ahead adaptive tumor growth 
inhibition prediction in mice given doses of gemcitabine (100 mg/kg on days 19 and 26). 
Predictions performed with ARX (3,3) model. 

 # Time periods ahead 
Evaluation metrics 1 2 3 4 5 
RMSE (g) 0.036077 0.056725 0.084136 0.103191 0.109214 
MAPE (%) 3.73 5.64 7.56 9.37 10.35 

Observed
One period ahead
Two period ahead
Three period ahead
Four period ahead
Five period ahead
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The data highlight the incremental increase in errors as the prediction horizon is 

extended from one to five days ahead. The RMSE values, reveal a progressive escalation 

from approximately 0.0361 g at a one-day forecast to 0.1092 g for a five-day outlook. 

Similarly, MAPE, which provides a percentage estimation of prediction accuracy, rises 

from 3.73% for one day ahead to 10.35% for five days ahead.  This trend is somewhat 

intuitive, as forecasting accuracy typically diminishes the further it projects into the 

future.  

When compared to the predictions (and errors) derived using the Simeoni TGI 

mathematical model (see Chapter 4), the current results showcase slightly elevated 

values. This suggests that, while the employed model is competent in predicting short-

term tumor growth, the Simeoni TGI model offers marginally higher precision for the 

given dataset. 

5.3.2 Multi-agent ARX-based predictions of tumor inhibition 
The effectiveness of the ARX (4,4) model in predicting the short-term tumor weight 

evolution was also assessed in the context of the adaptive prediction method previously 

employed for gemcitabine in the single-agent case scenario. From day 17 to day 70 of 

the experiment, step-ahead predictions of tumor weight were conducted using an ARX 

(4,4) model. Predictions spanned one to five time periods ahead. After each prediction, 

the model was updated (i.e., retrained) using the latest � = 16 observed measurements, 

including the most recent tumor weight.  

The predicted tumor growth curves for each of the horizons (1 to 5 days) are depicted 

in Figure 5.4, paired with the actual measured tumor weights observed during the 

administration of CPT-11 and drug C2. This view facilitates a robust evaluation of the 

ARX (4,4) model's accuracy in capturing the short-term evolution of tumor weight, 

considering the continuous updating of the model with the most recent measurements. 

Table 5.4 presents the RMSE and MAPE values for each prediction time period, providing 

a comprehensive assessment of the model's predictive accuracy across the various 

forecast horizons.  
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Figure 5.4. Observed curve and time period (1 to 5 days) ahead adaptive predictions of the 
tumor growth in mice given doses of CPT-11 and drug C2 (45 mg/kg q4dx3 from day 9 and 60 
mg/kg on days 10, 11, 12 and 14, 15, 16). Predictions performed after the 16th day of the 
experiment using ARX (4,4) model. 

Table 5.4. Prediction errors for the time period (1 to 5 days) ahead adaptive tumor growth 
inhibition prediction in mice given doses of CPT-11 and drug C2 (45 mg/kg q4dx3 from day 9 
and 60 mg/kg on days 10, 11, 12 and 14, 15, 16). Predictions performed with ARX (4,4) model. 

 # Time periods ahead 
Evaluation metrics 1 2 3 4 5 
RMSE (g) 0.018599 0.021707 0.025566 0.031446 0.038269 
MAPE (%) 15.38 17.93 21.09 25.21 30.47 

 
Reviewing these results, it is evident that there is a progressive increase in error as the 

forecast extends from one to five days ahead. This trend is not unique to the multi-drug 

ARX (4,4) model; a similar progressive error increase is observed in the ANFIS models, 

the TGI Simeoni, as well as in the single-agent ARX (3,3) predictions previously 

presented. The RMSE values, denoting the model's deviation in grams, climb from 

0.0186 g for a one-day ahead forecast to 0.0383 g for five days ahead predictions. This 

escalation is mirrored also in the MAPE values, which quantify the model's percentage 

Observed
One period ahead
Two period ahead
Three period ahead
Four period ahead
Five period ahead
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error. Starting at 15.38% for one time period ahead predictions, the MAPE escalates to 

30.47% underscoring the complexities in modelling tumor weight dynamics, especially 

when multiple drugs administrations are involved. 

A novel approach to modeling tumor growth under chemotherapy treatment was 

presented in this chapter. Specifically, an ARX models for cancer growth under 

chemotherapy, were developed, estimated using laboratory data, and evaluated. These 

models do not require prior knowledge of the drug's pharmacokinetics, making them 

easier to implement and use. The results demonstrated an excellent fit to the tumor 

weight data of [93] and [220], obtained from xenografted chemotherapy treated mice. 

However, it is crucial to subject the models to extensive testing with additional data 

sources. 
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Chapter 6:  Tumor growth modelling using adaptive 
neuron-fuzzy inference system (ANFIS) 

6.1 Introduction to ANFIS 
Physical systems and processes such as cancer are often hard to describe with 

equations. Due to the existence of processes which involve complex phenomena and 

strong non-linearities, it is rather difficult and time consuming to obtain a mathematical 

model. Over the last decades, fuzzy logic and systems have been commonly used, 

especially in control systems, as they provide solutions to possible system uncertainties 

and noisy data. Using if-then rules and membership functions fuzzy estimation systems 

can be formed to perform a non-linear input-output mapping. The adaptive neuro-fuzzy 

inference system (ANFIS) is one of the most famous neuro-fuzzy systems to fit input-

output data. 

A common ANFIS structure usually includes 5 layers. Figure 6.1 shows an ANFIS 

architecture with 2 rules for a multi-input, single output (MISO) system consisting of 1 

output � (e.g., the tumor growth in g) and 2 inputs � and � (e.g., the time in days and 

the dose level of the chemotherapy drug in mg/kg).  

 

Figure 6.1. Representation of an adaptive neuro fuzzy inference system (ANFIS) structure with 
two rules, for a system of one output (f) and two inputs (x and y). 

A typical set of fuzzy if-then rules of Takaki-Sugeno-Kang’s (TSK) type are described 

below [234]:  
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Rule 1: if � is �� and � is ��, then �� = ��� + ��� + ��, 

Rule 2: if � is �� and � is ��, then �� = ��� + ��� + �� 

where �, � are the premise variables, ��, ��, �� and �� are the premise parameters and 

��, ��, ��, ��, �� and �� are the consequence parameters of the fuzzy rules. By using the 

linear combinations of the consequent parameters (i.e., the functions �� and ��) the 

output of the system is calculated. Figure 6.2 below illustrates the related fuzzy 

inference method for the TSK model. 

 

Figure 6.2. Illustration of the TSK fuzzy inference method. 

Each layer of an ANFIS is composed of several nodes described by a node function. There 

are two types of nodes, the adaptive nodes which represent the sets of parameters that 

are adjustable, and the fixed which represent the fixed parameter sets. In the ANFIS of 

Figure 6.1 the adjustable nodes are denoted by squares whereas the fixed nodes 

denoted by circles.  

A brief description of the ANFIS framework is presented below [235]: 

Layer 1. This is the layer where the fuzzification process takes place. Each node � is an 

adaptive (square) node with a node function: 

 
��,� = ���

(�), for � = 1,2, or
��,� = �����

(�), for � = 3,4  (6.1)

where ���
(�) and �����

(�) are the membership functions (MFs) of the inputs � and �, 

respectively, for each node �. �� and ���� represent the linguistic labels associated with 

this node function. It must be also noted that ��,� specifies the degree to which a given 

input � or � satisfies �� and ��, respectively. Generally, there are several types of MFs 
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which can be used as membership function of � [235]. One of the most common is the 

generalized bell-shaped MF with a minimum and a maximum equal to 0 and 1, 

respectively, is calculated according to the function below: 

 �(�) =
1

1 + ����
�

�
��, (6.2)

where �, � and � are the parameters of the bell function. As shown in Figure 6.3, the 

parameter � represents the width of the membership function, where an increased 

value results in a broader membership function. The parameter � defines the shape of 

the curve at the two sides of the central plateau, with a greater value leading to a 

steeper transition. Both � and � define the gradient (i.e., gradient = − �
��

) of the curve. 

Finally, � is the center (or midpoint) of the membership function. Different combinations 

of these parameters can lead to various form of bell-shaped membership functions. 

 

Figure 6.3. A generalized bell-shaped membership function for fuzzy sets [236]. 

Layer 2. In contrast to the first layer of the ANFIS (i.e., Layer 1), this layer (also called the 

membership layer) consists of fixed nodes labeled Π. The output of each node, which 

indicates the weight of membership functions, is calculated as the product of all the 

incoming signals supplied from Layer 1: 

 ��,� = �� = ���(�)���(�), � = 1,2. (6.3)

The output of every node is also called the firing strength of the rule. 
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Layer 3.  This is where the normalization process takes place. The nodes of this layer are 

also fixed nodes, and they are labeled N. Each node � calculates the ratio of the �th rule’s 

firing strength to the sum of all rules’ firing strengths: 

 ��,� = ��� =
��

�� + ��
, � = 1,2. (6.4)

Each output ��,� is called normalized firing strength.  

Layer 4. Each node � in the fourth layer is an adaptive (square) node with node function: 

 ��,� = ����� = ���(��� + ��� + ��), � = 1,2. (6.5)

where ��, ��  and �� are the parameters of this node and ��� is the output of the previous 

layer (i.e., Layer 3). This layer is also called the defuzzification layer and its parameters 

are referred to as consequent parameters. 

Layer 5. This is the final or the output layer of the ANFIS. It is also called the summation 

layer as it sums up all the incoming signals and produces the overall output of the model. 

It consists of a single, fixed (circle) node labeled ∑ : 

 ����������� = ��,� = � �����

�

���

=
∑ ����

�
���

∑ ��
�
���

 . (6.6)

In this chapter, a new approach on solid tumor growth modelling is introduced. More 

specifically, ANFIS architecture is used to model the tumor growth under the effect of 

single or multi-agent chemotherapy in human-to-mouse xenografts. The prediction 

ability of the ANFIS models is investigated through step ahead predictions of the tumor 

growth inhibition. Results are presented and discussed while important conclusions are 

drawn. 

6.2 ANFIS models for tumor growth inhibition modelling 
The present chapter aims to investigate the application of ANFIS models in describing 

tumor growth inhibition. The integration of artificial intelligence techniques with fuzzy 

inference systems has been demonstrated to provide a powerful tool for modelling 

complex systems. In this study, three ANFIS models were developed and evaluated for 

the description of tumor growth inhibition under different chemotherapy regimens 

(ANFIS TGI models). Specifically, the first model for the case of single agent 
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chemotherapy was developed using tumor weight data from mice administered 

gemcitabine. The other two models are for cases where two anticancer drugs were 

administered in combination (CPT-11 and Drug C2, and 5-FU and Drug C2). More details 

about the datasets used in this chapter are shown in Materials and Methods. The 

models' ability to perform accurate short-term step ahead predictions of tumor growth 

under chemotherapy was also explored. A trial-and-error process was conducted to 

select the appropriate ANFIS structure along with its parameters, such as the number of 

MFs and the number of training epochs, to ensure the best fit to the experimental tumor 

growth curves. 

6.2.1 An ANFIS TGI model for single-agent chemotherapy 
In the case of single agent chemotherapy treatment three parameters were considered 

for the ANFIS. The time (in days) and the chemotherapy drug dosage (in mg/kg) 

administered to the mice represent the 1st and 2nd input of the ANFIS, respectively 

whereas the tumor mass (in g) is considered the output of the model (see Table 6.1). 

Table 6.1. Inputs and outputs of the ANFIS tumor growth inhibition model for the case of single 
agent chemotherapy (gemcitabine i.p.). 

ANFIS model Unit 
A. Inputs  

Time day 
Chemotherapy drug dosage mg/kg 

B. Outputs  
Tumor mass g 

 

To find the most effective ANFIS model, which best fits the tumor growth curve, several 

modifications were made on the model structure. The number of membership functions 

for the input variables is a very important factor, hence it must be chosen carefully. The 

ANFIS structure configurations tested included 2, 3, and 4 membership functions for the 

input variables, with a generalized bell-shaped membership function type for all cases, 

and step size of 0.10, decrease rate of 0.90 and increase rate of 1.10 for all cases. The 

number of 100 epochs was used to train the model. The characteristics of the structure 

of the ANFIS architectures that were tested are illustrated in the Table 6.2 below. 
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Table 6.2. Configurations of the tested ANFIS structures for the case of single agent 
chemotherapy (gemcitabine i.p.). 

Parameters Case 1 Case 2 Case 3 
Membership functions (MF) 2 3 4 

Type of MF Generalized 
bell-shaped 

Generalized 
bell-shaped 

Generalized 
bell-shaped 

Epochs 100 100 100 
Step size 0.10 0.10 0.10 
Decrease rate 0.90 0.90 0.90 
Increase rate 1.10 1.10 1.10 

 

Simulation results for each ANFIS configuration tested indicate that all models 

accurately captured the tumor growth dynamics. The accuracy of the models was 

confirmed by the low values of the fitting errors such as RMSE and MAPE, which 

demonstrate the convergence of the fitted tumor growth curve to the observed tumor 

weight data points. The training total runtime (s) and the evaluation metrics MSE (g2), 

RMSE (g) and MAPE (%), are provided in Table 6.3. The fitted tumor growth curves for 

each ANFIS model configuration, obtained in mice given i.p. doses of gemcitabine (100 

mg/kg on Days 19 and 26), are compared to the observed/interpolated tumor weight 

data in Figures Figure 6.4, Figure 6.5 and Figure 6.6), highlighting the high accuracy of all 

three models. Moreover, the curve fitting errors by iteration (100 epochs) are presented 

in the same figures. Of the three cases tested, the ANFIS with three MFs had the lowest 

fitting errors with a MAPE of less than 1%).  

Table 6.3. Evaluation (i.e., fitting errors to the tumor growth experimental curve) of the ANFIS 
model for different structure configurations for the case of single agent chemotherapy 
(gemcitabine i.p.). 

Evaluation metrics Case 1 Case 2 Case 3 
Total runtime (s) 1.469 3.295 8.123 
MSE (g2) 4.5e-4 2.0e-4 1.0e-5 
RMSE (g) 0.0214 0.0131 0.0036 

MAPE (%) 2.21 2.54 0.73 
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Figure 6.4. Case 1 – (Left) Observed/interpolated (*) and ANFIS model fitted tumor growth 
curves (in g) obtained in mice given i.p. doses of gemcitabine (100 mg/kg on Days 19 and 26). 
(Right) Curve fitting error by iteration. 

  
Figure 6.5. Case 2 – (Left) Observed/interpolated (*) and ANFIS model fitted tumor growth 
curves (in g) obtained in mice given i.p. doses of gemcitabine (100 mg/kg on Days 19 and 26). 
(Right) Curve fitting error by iteration. 

  
Figure 6.6. Case 3 – (Left) Observed/interpolated (*) and ANFIS model fitted tumor growth 
curves (in g) obtained in mice given i.p. doses of gemcitabine (100 mg/kg on Days 19 and 26). 
(Right) Curve fitting error by iteration. 
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However, this came at the cost of the longest training runtime. On the other hand, the 

ANFIS with two MFs had a slightly higher fitting errors but had significantly shorter 

runtime. Thus, this highlights the trade-off between fitting errors and runtime when 

choosing the number of MFs for ANFIS models. 

6.2.2 ANFIS TGI models for multi-agent chemotherapy treatments 
In comparison to the single agent case, in the cases of multi-agent chemotherapy 

treatment (i.e., CPT-11 with drug C2 and 5-FU with drug C2) four parameters were 

considered for the ANFIS model. The multi-agent ANFIS takes into account the time (in 

days) and the chemotherapy drug dosages (in mg/kg) of each drug administered to the 

mice. These are the inputs to the model. The tumor mass (in g) is considered the target 

variable, i.e., the output of the model. The input and output variables of the multi-agent 

ANFIS tumor growth inhibition model are shown in Table 6.4. 

Table 6.4. Inputs and outputs of the ANFIS tumor growth inhibition model for the case of multi-
agent chemotherapy. 

ANFIS model Unit 
A. Inputs  

Time day 
Chemotherapy drug A dosage mg/kg 
Chemotherapy drug B dosage mg/kg 

B. Outputs  
Tumor mass g 

 

As in the single agent case several modifications on the structure of the model can be 

made in order to find the most effective ANFIS formulation, which best describes the 

experimental growth curves when tumors are treated using combination 

chemotherapy. The structure configurations tested included 2, 3, and 4 membership 

functions for the input variables, with a generalized bell-shaped membership function 

type for all cases. The step size was set at 0.10 with a decrease rate of 0.90 and increase 

rate of 1.10 for all cases. Moreover, a constant number of 100 epochs was used to train 

the model for each case. The characteristics of the structure of the ANFIS architectures 

that were tested are described in the Table 6.5 below.  
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Table 6.5. Configurations of the tested ANFIS structures ANFIS for the cases of multi-agent 
chemotherapy treatment. 

Parameters Case 1 Case 2 Case 3 
Membership functions (MF) 2 3 4 

Type of MF Generalized 
bell-shaped 

Generalized 
bell-shaped 

Generalized 
bell-shaped 

Epochs 100 100 100 
Step size 0.10 0.10 0.10 
Decrease rate 0.90 0.90 0.90 
Increase rate 1.10 1.10 1.10 

 

6.2.2.1 CPT-11 administered in combination with drug C2 
The fitting errors (using the RMSE (g) and MAPE (%) metrics) to the experimental tumor 

growth curves and the total training runtime using the above ANFIS configurations are 

presented in Table 6.6. The ANFIS fitted tumor growth curves for each model 

configuration against the observed/interpolated tumor weight data obtained in mice 

given doses of CPT-11 and drug C2 (45 mg/kg q4dx3 from day 9 and 60 mg/kg on days 

10, 11, 12 and 14, 15, 16)  are shown in  Figure 6.7, Figure 6.8 and Figure 6.9, below. 

These figures also present the curve fitting errors by iteration (100 epochs).  

Table 6.6. Evaluation (i.e., fitting errors to the tumor growth experimental curve) of the ANFIS 
model for different structure configurations for the case of CPT-11 given with drug C2. 

Evaluation metrics Case 1 Case 2 Case 3 
Total runtime (s) 5.35 41.58 219.0 
MSE (g2) 8.0e-4 2.8e-4 1.0e-5 
RMSE (g) 0.0285 0.0167 0.0032 
MAPE (%) 19.24 12.89 2.79 
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Figure 6.7. Case 1 – (Left) Observed/interpolated (*) and ANFIS model fitted tumor growth 
curves (in g) obtained in mice given doses of CPT-11 and drug C2 (45 mg/kg q4dx3 from day 9 
and 60 mg/kg on days 10, 11, 12 and 14, 15, 16). (Right) Curve fitting error by iteration. 

  
Figure 6.8. Case 2 – (Left) Observed/interpolated (*) and ANFIS model fitted tumor growth 
curves (in g) obtained in mice given doses of CPT-11 and drug C2 (45 mg/kg q4dx3 from day 9 
and 60 mg/kg on days 10, 11, 12 and 14, 15, 16). (Right) Curve fitting error by iteration. 

  
Figure 6.9. Case 3 – (Left) Observed/interpolated (*) and ANFIS model fitted tumor growth 
curves (in g) obtained in mice given doses of CPT-11 and drug C2 (45 mg/kg q4dx3 from day 9 
and 60 mg/kg on days 10, 11, 12 and 14, 15, 16). (Right) Curve fitting error by iteration. 
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6.2.2.2 5-FU administered in combination with drug C2 
The performance of the ANFIS models was evaluated based on the RMSE (g) and MAPE 

(%) metrics. The fitting errors to the experimental tumor growth curves along with the 

total runtime are presented in Table 6.7. The ANFIS fitted tumor growth curves obtained 

in mice given doses of 5-FU and drug C2 (50 mg/kg q4dx3 from day 9 and 60 mg/kg on 

days 10, 11, 12 and 14, 15, 16) for each model configuration against the 

observed/interpolated tumor weight data are shown in the figures below (see Figure 

6.10, Figure 6.11 and Figure 6.12). The curve fitting errors by iteration (100 epochs) are 

also shown in the same figures. The ANFIS models tested in both multi-agent cases 

effectively captured the tumor growth dynamics, as demonstrated by the low fitting 

errors and the close convergence to the observed tumor weight data points. The 

inclusion of additional MFs in each model improved the overall accuracy of the models, 

as demonstrated by the evaluation metrics and figures. However, as observed also in 

the single agent case of gemcitabine, the training runtime was significantly prolonged 

with the increase in the number of MFs. 

Table 6.7. Evaluation (i.e., fitting errors to the tumor growth experimental curve) of the ANFIS 
model for different structure configurations for the case of 5-FU given with drug C2. 

Evaluation metrics Case 1 Case 2 Case 3 
Total runtime (s) 6.67 46.70 219.1 
MSE (g2) 4.0e-4 1.5e-4 2.4e-5 
RMSE (g) 0.0200 0.0124 0.0049 
MAPE (%) 9.87 4.14 3.23 

 

  
Figure 6.10. Case 1 – (Left) Observed/interpolated (*) and ANFIS model fitted tumor growth 
curves (in g) obtained in mice given doses of 5-FU and drug C2 (50 mg/kg q4dx3 from day 9 
and 60 mg/kg on days 10, 11, 12 and 14, 15, 16). (Right) Curve fitting error by iteration. 
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Figure 6.11. Case 2 – (Left) Observed/interpolated (*) and ANFIS model fitted tumor growth 
curves (in g) obtained in mice given doses of 5-FU and drug C2 (50 mg/kg q4dx3 from day 9 
and 60 mg/kg on days 10, 11, 12 and 14, 15, 16). (Right) Curve fitting error by iteration. 

  

Figure 6.12. Case 3 – (Left) Observed/interpolated (*) and ANFIS model fitted tumor growth 
curves (in g) obtained in mice given doses of 5-FU and drug C2 (50 mg/kg q4dx3 from day 9 
and 60 mg/kg on days 10, 11, 12 and 14, 15, 16). (Right) Curve fitting error by iteration. 

6.3 Evaluation of ANFIS models short-term ahead predictions of TGI 
Simply describing the solid tumor growth under treatment is not sufficient. Predictions 

can provide valuable insight into the future progression of a tumor’s size, and ultimately 

aid in the design and refine of the treatment strategy and its fine tuning. In this study, 

the ANFIS model’s ability to make accurate short-term prediction is explored by using 

the same short-term adaptive prediction process outlined in the Material and Methods 

section, as previously applied in Chapter 4. The ANFIS ability to perform short-term 

future predictions of the tumor growth is evaluated in three different scenarios: tumor 

growth by single chemotherapy drug administration (gemcitabine i.p.), and multi-drug 
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administration (CPT-11 and 5-FU with drug C2). In all scenarios, the tumor growth 

predictions were made for one, two, three, four and five time periods (days) ahead. 

6.3.1 Single-drug chemotherapy – Predictions of TGI under gemcitabine 
Using the same adaptive prediction method described in Chapter 4, statistically accurate 

forecasts were made to evaluate efficacy of ANFIS models in predicting short-term 

tumor weight evolution. For the case of single agent administration (100 mg/kg of 

gemcitabine given i.p. on days 19 and 26), a three-MFs ANFIS model was trained for 100 

epochs, ANFIS (3,100). Step ahead predictions of the tumor weight were performed 

starting from day 25 after inoculation to day 39 of the experiment. After each tumor 

weight prediction, the ANFIS model was retrained using the measured tumor weights 

up to day 25. For example, to predict tumor weight on day 26 of the experiment, the 

model was trained with all the available data (e.g., tumor weight observations, 

gemcitabine dosages) up to day 25. Then, to predict tumor growth on day 27, the model 

was fine-tuned with all data up to day 26. The procedure is described in detail in the 

Material and Methods and Chapter 4. The prediction tumor growth curves, for one, two, 

three, four and five time periods ahead, against the measured tumor weight is 

presented in Figure 6.13. Prediction errors are shown in Table 6.8. 

To enhance the model’s performance, a moving window of measurements was 

established for fitting the ANFIS. The moving window allows the ANFIS to be trained with 

a sliding window of data, rather than all data available up to the prediction time, 

improving the model’s ability to capture changes in the tumor weight over time, leading 

to more accurate predictions. The efficacy of this approach can be confirmed by the 

improved fit of the ANFIS predicted tumor weight curves to the observed/experimental 

data points, as well as by the reductions in the prediction errors (RMSE and MAPE). 

Specifically, the use of moving windows of � = 20 measurements improved the accuracy 

of the predictions (for five time periods ahead) by 26.4% when compared to the non-

window case. By reducing the window length by five measurements, from � = 20 to � =

15, the performance of the model was significantly improved. A 303% reduction of the 

prediction error was achieved when compared to the non-window case. In both cases 

(i.e., window sizes of � = 20 and � = 15), ANFIS models of three MFs was trained for 50 
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epochs, ANFIS (3,50). The tumor growth curves as well as the prediction errors for these 

cases are plotted in Figure 6.15, Figure 6.14 and Table 6.9, Table 6.10, respectively.  In 

conclusion, the ANFIS model has been found to provide accurate predictions of the 

tumor growth under gemcitabine while the use of a moving window approach enhanced 

the model’s performance, leading to more accurate forecasts of the tumor growth over 

time. 

 

Figure 6.13. Observed and time period (1 to 5 days) ahead adaptive prediction curves of the 
tumor growth in mice given i.p. doses of gemcitabine (100 mg/kg on days 19 and 26). 
Predictions performed after the 25th day of the experiment using ANFIS model (3,100) without 
moving window. 

Table 6.8. Prediction errors for the time period (1 to 5 days) ahead adaptive tumor growth 
inhibition prediction in mice given i.p. doses of gemcitabine (100 mg/kg on days 19 and 26). 
Predictions performed with ANFIS model (3,100) without using moving window. 

 # Time periods ahead 
Evaluation metrics 1 2 3 4 5 
RMSE (g) 0.047902 0.089165 0.136458 0.182297 0.193423 
MAPE (%) 3.20 6.06 9.44 12.06 12.39 
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Figure 6.14. Observed curve and time period (1 to 5 days) ahead adaptive predictions of the 
tumor growth in mice given i.p. doses of gemcitabine (100 mg/kg on Days 19 and 26). 
Predictions performed after the 25th day of the experiment using ANFIS model (3,50) with 
moving window of �=20 measurements. 

Table 6.9. Prediction errors for the time period (1 to 5 days) ahead adaptive tumor growth 
inhibition prediction in mice given i.p. doses of gemcitabine (100 mg/kg on Days 19 and 26). 
Predictions performed with ANFIS model (3,50) with moving window of � =20 measurements. 

 # Time periods ahead 
Evaluation metrics 1 2 3 4 5 
RMSE (g) 0.027481 0.057566 0.106060 0.146427 0.178117 
MAPE (%) 1.91 3.78 6.70 8.75 9.80 
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Figure 6.15. Observed curve and time period (1 to 5 days) ahead adaptive predictions of the 
tumor growth in mice given i.p. doses of gemcitabine (100 mg/kg on Days 19 and 26). 
Predictions performed after the 25th day of the experiment using ANFIS model (3,50) with 
moving window of � =15 measurements. 

Table 6.10. Prediction errors for the time period (1 to 5 days) ahead adaptive tumor growth 
inhibition prediction in mice given i.p. doses of gemcitabine (100 mg/kg on Days 19 and 26). 
Predictions performed with ANFIS model (3,50) with moving window of � =15 measurements. 

 # Time periods ahead 
Evaluation metrics 1 2 3 4 5 
RMSE (g) 0.023504 0.036396 0.054110 0.053542 0.056606 
MAPE (%) 1.68 2.63 4.00 3.94 4.09 

6.3.2 Multi-drug chemotherapy – Predictions of TGI in combination 
chemotherapy scenarios 

Chemotherapy drug combination comprises a standard treatment strategy to halt the 

tumor growth and eventually lead to the eradication of it. Therefore, it is important to 

test the prediction ability of ANFIS also in the multi-agent cases, where two or more 

antineoplastic drugs are delivered. Appling the same adaptive prediction technique as 

in the single drug case, ANFIS performance was evaluated in the terms of its ability to 

predict the future progression of the tumor growth in mice. Predictions were performed 
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on the CPT-11 and 5-FU with drug C2 tumor growth datasets, described in the previous 

sections. In both cases, the ANFIS models were trained including tumor weight data of 

0 to 16th day of each experiment. After this time point, one, two, three, four and five 

step (days) ahead predictions of the tumor weight were performed, until the 70th and 

55th days of the experiment, respectively.  

In the first case, 5-FU administered in combination with drug C2, a three-membership 

function ANFIS model was structured and trained for 100 epochs, ANFIS (3,100). On the 

dataset of CPT-11 and drug C2, a more complex ANFIS model of five MFs was required, 

mainly due to the complexity of the dataset. The model was also trained for 100 epochs 

ANFIS (5,100). It is important to note that in comparison to the single case, no moving 

windows were used in any of the two multi-agent cases studied.  The prediction tumor 

growth curves for the cases of drugs administered in combination, i.e., CPT-11 with drug 

C2 and 5-FU with C2, are presented in Figure 6.16 and Figure 6.17, respectively. 

Prediction errors are shown in Table 6.11 and Table 6.12, below.  

As seen from the figures in both cases the ANFIS models provided a good fit to the 

experimental data, as evidenced by the low RMSE and MAPE values. The ANFIS models’ 

predictions were found to be in close agreement with the observed tumor weight data. 

This can be observed in Figure 6.16 and Figure 6.17, where the predicted tumor growth 

curves are found to closely follow the measured data points. 

However, as the time periods ahead increase from one to two, two to three, etc., the 

prediction error also increases, indicating a decrease at the models’ accuracy as the 

prediction horizon becomes longer. This phenomenon repeats itself in both cases 

studied. For example, in the case of 5-FU and drug C2, the prediction MAPE increases 

from 3% in the one-time period ahead to almost 20% in the five-time periods ahead 

predictions. The prediction error increases as the time steps ahead increase due to the 

model attempting to make predictions further into the future, where there is more 

uncertainty. The uncertainty in values of variables, such as chemotherapy drug dosages, 

can potentially impact the outcome, i.e., tumor growth.  
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Nevertheless, the prediction errors for three-time periods ahead predictions of the 

tumor weight were lower than 12%, both in the 5-FU and drug C2, and CPT-11 and drug 

C2 cases. When performing five-step ahead predictions, both models achieved a MAPE 

lower than 28%. 

 

Figure 6.16. Observed curve and time period (1 to 5 days) ahead adaptive predictions of the 
tumor growth in mice given doses of 5-FU and drug C2 (50 mg/kg q4dx3 from day 9 and 60 
mg/kg on days 10, 11, 12 and 14, 15, 16). Predictions performed after the 16th day of the 
experiment using ANFIS model (3,100). 

Table 6.11. Prediction errors for the time period (1 to 5 days) ahead adaptive tumor growth 
inhibition prediction in mice given 5-FU and drug C2 (50 mg/kg q4dx3 from day 9 and 60 mg/kg 
on days 10, 11, 12 and 14, 15, 16). Predictions performed with ANFIS model (3,100). 

 # Time periods ahead 
Evaluation metrics 1 2 3 4 5 
RMSE (g) 0.009202 0.016895 0.026370 0.036939 0.047050 
MAPE (%) 3.33 7.07 11.36 15.61 20.02 
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Figure 6.17. Observed curve and time period (1 to 5 days) ahead adaptive predictions of the 
tumor growth in mice given doses of CPT-11 and drug C2 (45 mg/kg q4dx3 from day 9 and 60 
mg/kg on days 10, 11, 12 and 14, 15, 16). Predictions performed after the 16th day of the 
experiment using ANFIS model (5,100). 

Table 6.12. Prediction errors for the time period (1 to 5 days) ahead adaptive tumor growth 
inhibition prediction in mice given CPT-11 and drug C2 (45 mg/kg q4dx3 from day 9 and 60 
mg/kg on days 10, 11, 12 and 14, 15, 16). Predictions performed with ANFIS model (5,100). 

 # Time periods ahead 
Evaluation metrics 1 2 3 4 5 
RMSE (g) 0.009792 0.019767 0.031182 0.046882 0.193423 
MAPE (%) 2.66 6.29 11.37 17.83 27.73 

 
It is important to highlight that the ANFIS models for multi-agent tumor growth 

prediction achieved lower prediction errors when compared to the TGIadd models of 

[237]. The bar plots in Figure 6.18 and Figure 6.19 below, offer a clear visualization of 

the performance of the ANFIS models for multi-agent tumor growth predictions in 

contrast to the TGIadd models. To be more specific, the ANFIS models exhibited notably 

lower residuals across all test cases. This demonstrates a significant enhancement in the 

accuracy of predictions, particularly in situations where the tumor growth is erratic and 
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less predictable. This improvement is evidenced by the smaller MAPE values for the 

ANFIS models when compared to the TGIadd models. For instance, in the case of 5-FU 

and drug C2, the ANFIS model three steps ahead forecasts achieved MAPE of 11.37%, 

compared to a MAPE of 15.62% for the TGIadd model. Similarly, for CPT-11 with drug 

C2, the ANFIS model yielded a MAPE of 11.37%, whereas the TGIadd model returned a 

MAPE of 17.68%. In the first case, the ANFIS model achieved a 27.21% reduction on the 

prediction error, while in the second case of CPT-11 with drug C2, it did achieve an 

astonishing 35.69% reduction of the MAPE. 

 

 

Figure 6.18. Prediction errors (MAPE %) for the time period ahead tumor growth inhibition 
predictions in mice given 5-FU and drug C2: TGIadd and ANFIS models. One, two and three time 
periods ahead. 
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Figure 6.19. Prediction errors (MAPE %) for the time period ahead tumor growth inhibition 
predictions in mice given CPT-11 and drug C2: TGIadd and ANFIS models. One, two and three 
time periods ahead. 
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PART II 
 

Efficient tumor eradication based on 
optimal control methods
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Chapter 7:  Non-linear optimal control for efficient tumor 
growth eradication 

Traditional cytotoxic cancer chemotherapeutic regimens are often based on the MTD 

schedule, which can result in significant host toxicity and create windows for tumor 

vasculature regrowth and the emergence of drug-resistant cell populations during 

extended drug-free recovery periods. In contrast, metronomic treatment protocols 

adopt a different approach by administering chemotherapy drugs at lower doses than 

conventional MTD regimens. These lower doses are delivered at a more frequent rate, 

and in some cases, on a continuous, daily schedule, thereby reducing the overall burden 

of toxicity on the host. Optimal control could be used to describe treatment protocols 

which have the potential to be more efficient that the standard periodic protocols that 

are currently in use. Therefore, formulating this as an optimal control problem allows 

not only to investigate the tumor growth dynamics and minimize its size at some of end-

time but at the same time optimize the application of the control such that the quantity 

of the treatment (e.g., gemcitabine doses) is minimum. This results in avoiding high 

toxicity levels and adverse effects due to treatment.  To determine the optimal dose 

level, the Simeoni et al. TGI model was further extended, forming the augmented TGI 

model. Specifically, an additional state � corresponding to the one-compartment PK 

model was added (see (4.5)). Therefore, the Simeoni et al.’s TGI model now becomes: 
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where �(�) is the chemotherapy drug dose in mg/kg and the control input at each time 

instance �. The initial conditions (at � = 0) of the augmented mathematical model (7.1) 

are [��(0), ��(0), ��(0), ��(0), �(0)] = [0,0,0,0,0].  

The aim of chemotherapy is to use the right drug doses during treatment to bring the 

system to a tumor-free equilibrium point [��, ��, ��, ��, �] = [0,0,0,0,0], where the 

tumor mass is reduced to zero. Since this equilibrium point in the case of Simeoni TGI 

model is located at the origin, there is no need to employ error states to shift the point. 

Due to the non-linear nature of the problem, the State Dependent Coefficient (SDC) 

form was used to capture the system non linearities into a pseudo-linear system matrix, 

which is used then to derive the SDRE based optimal control for tumor growth. The (7.1) 

equations must be factorized into a SDC form of: 

 �̇ = ����� + ����� (7.2)

where � = [��, ��, ��, ��, ��]� = [��, ��, ��, ��, �]� is the state vector, � ≥ 0 is the input 

(i.e., gemcitabine dose levels) while ���� ∈ ℝ��� and ���� ∈ ℝ��� matrices are the 

pseudo-linear system matrices in the SDC form.  

The initial values of the system states (at � = 0) for the pseudo-linear system of  

[��(0), ��(0), ��(0), ��(0), ��(0)] = [0,0,0,0,0]. However, the parameterization is not 

unique, and to preserve the dependency of terms that contain two or more states (e.g., 
�(�)

�
��(�)), free designs parameters (�) are introduced. For more information on SDC 

parameterization, please refer to the “SDC parameterization” section in the Appendix. 

Using �, a family of SDC parameterizations of (7.1) can be constructed. More specifically, 

a set of vectors of different values of �� ∈ [0,1], for � = 1,2 was used to identify the 

vector � = [��, ��] which maximizes the pointwise controllable space.  

The SDC parameterization of the system (7.1) by using � is described through (7.3) and 

(7.4) below. The sets of � values that were tested against the TGI model states are shown 

in Table 7.1 below.  
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Table 7.1. Sets of the free design parameters � values. Tested against the augmented TGI 
model states to identify the vector � = [��, ��] which maximizes the pointwise controllable 
space. 

� set �� �� �� �� �� �� �� �� 
1 0.0 0.0 0.5 0.0 0.75 0.0 1.0 0.0 
2 0.0 0.5 0.5 0.5 0.75 0.5 1.0 0.5 
3 0.0 0.75 0.5 0.75 0.75 0.75 1.0 0.75 
4 0.0 1.0 0.5 1.0 0.75 1.0 1.0 1.0 

 

In Figure 7.1, the absolute value of the determinant of the state-dependent 

controllability matrix ��(�),  |det(��)| for the tumor dynamics is plotted against state 

�� = �� of the TGI model, for the values of �. For the given parameter set of Simeoni 

TGI model, presented in Table 4.4, the largest value of |det(��)| was obtained by 
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choosing the vector � = [��, ��] = [1,1] (see Figure 7.1), which ensures that the pair 

�(�, �), � is pointwise controllable and therefore stabilizable. 

To prevent side effects, such as acute toxicity of the host cells resulting from the action 

of chemotherapy drug, hard constraints were introduced on the control input, i.e., the 

dose level. When the suggested dose level exceeds a predefined threshold, the control 

signal is constrained using predefined inequalities. Since the control input cannot be 

negative, a minimum value (����) of zero was considered for the administered drug 

dose. In addition, a maximum dose (����) of 200 mg/kg was also applied to balance 

toxicity and chemotherapy efficacy. Thus, at any time instance � the control input � is 

constrained within the bounds: 

 ���� ≤ �(�) ≤ ���� (7.5)

 

Figure 7.1. The absolute determinant of the state-dependent controllability matrix MC(x) 
against x2 = z1 (g) state of the augmented Simeoni’s TGI model for various free design 
parameters �. 

where ���� = 0 mg/kg and ���� = 200 mg/kg. Of course, the solutions derived under 

these constraints possibly yield suboptimal control, as they might not strictly minimize 
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the original objective but do so under the imposed constraints, ensuring a balance 

between optimality and feasibility. 

The SDRE controller for the augmented Simeoni TGI model was designed and developed 

in MathWorks MATLAB and SIMULINK [238] platform where optimal chemotherapy 

drug doses for several periodic and intermittent chemotherapy treatment schedules 

were computed. The goal of non-linear optimal regulation using the SDRE method is to 

drive all system states to the tumor-free equilibrium with the lowest cost. In other 

words, the objective is to eradicate tumor by administering minimum doses of 

gemcitabine. For this purpose, the controller was designed to minimize a cost functional 

����: 

 ���� =
1
2

��������� + ���������
�

�

 (7.6)

where � and � are the state and input weighting matrices.  

Their values were selected through trial-and-error experiments using “good” initial 

values as � = ����(1�3, 1�3, 1�3, 1�3, 0.04) and � = 25. The methods for selecting 

these values are described in detail in the Appendix D.  

 � =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1�3 0 0 0 0

0 1�3 0 0 0

0 0 1�3 0 0

0 0 0 1�3 0

0 0 0 0 0.04⎦
⎥
⎥
⎥
⎥
⎥
⎤

 and � = 25. (7.7)

Optimal drug doses extracted both for periodic and intermittent chemotherapy 

treatment schedules, with all simulations performed using an incremental time step of 

0.001 days and a final time �� = 100 days. To evaluate each drug delivery scenario, 

certain metrics were calculated. These metrics provide important insights into the ability 

of each drug delivery scenario to control tumor growth while at the same time 

minimizing the total amount of drug needed to achieve this goal. Specifically, the total 

dose of the administered drug (������ in mg/kg) until the end of the simulation at � = ��, 
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as well as the maximum weight of the tumor reached (���� in g) during the same period 

were calculated. The equations below describe how these metrics were calculated: 

 ������ = � �(�)

��

���

 (7.8)

 ���� = max
������

�(�) (7.9)

Here, �(�) represents the dose of the administered drug as proposed by the controller 

at each time point �, and �(�) represents the weight of the tumor at time �. ������ can 

also be referred also as the total control effort. 

Monitoring the mouse weight loss is crucial in clinical settings as it serves as a vital 

indicator of treatment-related side effects and overall well-being, aiding in the 

assessment of the treatment tolerability and the overall health during chemotherapy. 

However, in this study, the measurement of weight loss is not conducted as it focuses 

on theoretical simulations rather than real clinical observations.  

7.1 Optimized chemotherapy dosages in periodic treatment scenarios 
using the augmented TGI model and SDRE optimal control 

This study divided the periodic treatment schedules into five distinct cases. For each 

case, the SDRE controller suggested optimal i.p. doses of gemcitabine. In the first case, 

i.e., Case 1, gemcitabine was administered daily or continuously at the optimal dosage. 

This aims to objectively analyze the immediate and consistent impacts of the drug and 

investigate how a persistent drug presence affects the tumor growth. The rest of the 

cases, i.e., Cases 2-5, cover periodic treatment schedules commonly used in clinical 

practice, which include drug administration every 2, 3, 5, and 7 days, respectively, as 

outlined in Table 7.2. The purpose of investigating these intervals is to determine the 

trade-offs between dosing frequency, patient comfort, and the drug's effectiveness in 

treating tumors. Prolonged time intervals may increase patient comfort and reduce side 

effects, although they may also impact the drug's effectiveness. 

Optimum gemcitabine dosages and the corresponding metrics, such as ������ and ����, 

for each case, are listed in Table 7.2. This table can also serve as a reference point for 

comparing the results of the different treatment regimens, thereby aiding in the 
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decision-making process when selecting the most efficient and effective treatment plan. 

The suboptimal drug delivery protocols related to the SDRE control for the periodic cases 

are depicted in Figure 7.2 - Figure 7.6, below. 

Table 7.2. Periodic SDRE treatment results (dose schedules and metrics) across Cases 1 to 5. 

Cases Dose schedule ������ (mg/kg) ���� (g) ����� (days) 
Case 1 Continuous 3234.63 0.4957 >100 
Case 2 every 2 days 3062.82 0.5188 >100 
Case 3 every 3 days 3002.18 0.5447 >100 
Case 4 every 5 days 2844.42 0.5970 >100 
Case 5 every 7 days 2705.71 0.5486 >100 

 

 

Figure 7.2. Augmented TGI system’s response (i.e., tumor weight) and optimal control input 
(i.e., dose level). Continuous treatment: daily dose administration (Case 1). 

In all treatment schedules, the proposed doses of gemcitabine doses highly effective in 

reducing tumor growth. Specifically, in cases 1 – 3, the tumor weight reached values on 

the scale of 1e-2 g or less. Such values are below the tumor weight �� at the time of 

inoculation � = 0. Thus, they can be described as undetectable. However, it was 

observed that the drug dosages suggested by the SDRE were not zero. This observation 



Prediction of the cancer patients’ response to their therapeutical treatment with non-
linear forecasting techniques 
Chapter 7: Non-linear optimal control for efficient tumor growth eradication 
 

 

Sotirios G. Liliopoulos 2023 90 

suggests that the controller may have tried to maintain the tumor at a low level rather 

than eradicating it completely. This is the case in each periodic treatment scheduled 

explored. The tumor weight is rapidly reduced, and it is stabilized to a certain weight at 

days 70 to 80 of the simulations. Such behavior could result from the objective function 

used to optimize drug doses or even from the selection of the state-dependent 

weighting matrices � and �. Another potential factor may be the dose intervals. Longer 

intervals could act as rest periods, allowing the tumor to recover slightly and requiring 

subsequent doses. The maximum tumor weight reached is lower than 0.5 g. 

Nonetheless, as the interval of the doses increases, an increase in the maximum tumor 

weight is observed during the simulations. This increase in the maximum tumor weight, 

����, observed when the dosing intervals becomes longer may confirm this hypothesis. 

In all cases the suggested doses start aggressively at the onset of the treatment, 

beginning with 200 mg/kg of gemcitabine, reaching the predefined upper dose limit. As 

the drug takes effect on the tumor, the SDRE suggests progressively lower doses. 

 

 

Figure 7.3. Augmented TGI system’s response (i.e., tumor weight) and optimal control input 
(i.e., dose level). Periodic treatment: dose administration every 2 days (Case 2). 
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Figure 7.4. Augmented TGI system’s response (i.e., tumor weight) and optimal control input 
(i.e., dose level). Periodic treatment: dose administration every 3 days (Case 3). 

 

Figure 7.5. Augmented TGI system’s response (i.e., tumor weight) and optimal control input 
(i.e., dose level). Periodic treatment: dose administration every 5 days (Case 4). 
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Figure 7.6. Augmented TGI system’s response (i.e., tumor weight) and optimal control input 
(i.e., dose level). Periodic treatment: dose administration every 7 days (Case 5). 

To determine whether non-zero drug doses are necessary to maintain the desired tumor 

size, future work could involve modifying the objective function and further optimizing 

the SDRE controller to reduce drug doses while maintaining tumor control. Overall, the 

results demonstrate the effectiveness of the optimal drug doses proposed by the SDRE 

method in reducing tumor growth to low levels. Further investigation into the 

underlying mechanisms of the controller may lead to improvements in drug dosing 

strategies for cancer treatment.  

7.2 Optimized chemotherapy dosages in intermittent treatment cases 
using the augmented TGI model and SDRE optimal control 

Whereas in the abovementioned cases the tumor was successfully eliminated, 

chemotherapy resistant scenarios might occur due to the long exposure to the drug. 

Cancer chemotherapy resistance is a phenomenon where the neoplastic cells develop 

the ability to evade the effects of the chemotherapeutic treatment, leading to failure in 

drug response [239], [240]. To this direction, optimal drug dosages for intermittent 

chemotherapy schedules were also explored. To be more precise, optimal dosages for 
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two cases of different intermittent treatment schedules were investigated. In both cases 

chemotherapy was administered every 3 days for five times, i.e., q3dx5. Then, to avoid 

toxicity and drug resistance, the treatment paused for a period of ��� = 7 (Case 6) and 

10 days (Case 7), respectively. Finally, it is restarted with dose administrations every 5 

days for five times, i.e., q5dx5. 

The nature of intermittent dosing introduced new dynamics and responses into the 

system, requiring an adjustment in the control strategy. To address the changes in state 

regulation and control effort priorities under this new paradigm, modifications to the � 

and � weighting matrices were deemed essential. Periodic and intermittent dosing 

represent different operational scenarios, each with unique challenges and objectives. 

A summary of the results is presented in Table 7.3 below, while the tumor weight curves 

and the optimal drug dosages are illustrated in Figure 7.7 and Figure 7.8. 

Table 7.3. Intermittent SDRE treatment results (dose schedules and metrics) across Cases 6 
and 7. 

Cases Dose schedule ���(days) ������(mg/kg) ����(g) �����(days) 
Case 6 q3dx5, q5dx5 7 2804.91 0.5447 >100 
Case 7 q3dx5, q5dx5 10 2714.38 0.5447 >100 

 

In examining the results presented in Table 7.3 , a striking observation is the efficacy of 

the intermittent SDRE treatment schedules in both cases 6 and 7. Over approximately 

100 days, tumor size was stabilized at about 0.067 g, a weight close to the initial, at the 

inoculation time, for Case 6, and at about 0.089 g for Case 7, demonstrating the potential 

of these treatment strategies. The proposed drug doses in both cases start aggressively, 

with initial doses close to 200 mg/kg, and average 156 mg/kg in Case 6 and 170 mg/kg 

in Case 7. A comparison between the two cases reveals a direct correlation between the 

length of the chemotherapy holidays, denoted by ���, and the total amount of drug 

administered, ������. Specifically, Case 7, which had longer chemotherapy holidays, 

required 3.34% lower total amount of drug than Case 6. This reduction total amount of 

drug also resulted in faster tumor eradication.  
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Figure 7.7. Augmented TGI system’s response (i.e., tumor weight) and optimal control input 
(i.e., dose level). Intermittent: q3dx5, q5dx5 dose administrations with 7 days pauses (Case 6). 

 
Figure 7.8. Augmented TGI system’s response (i.e., tumor weight) and optimal control input 
(i.e., dose level). Intermittent: q3dx5, q5dx5 dose administrations with 10 days pauses (Case7).
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Chapter 8:  Linear quadratic control (LQC) applied for 
effective tumor growth eradication 

The optimal administration of chemotherapy drugs is a challenging problem. While in 

complex, non-linear mathematical models, such as the Simeoni et al.’s TGI model, 

through its augmented form, the SDRE method is a very good sub-optimal solution to 

discover optimal dose levels in periodic and intermittent chemotherapy schedules, 

when it comes to linear problems, LQC through methods like LQR can provide optimally 

controlled feedback gains and therefore an optimal solution to the problem. Through 

linear state feedback, LQR can achieve closed-loop optimal control of the anti-cancer 

drug dose levels while at the same time eliminate the tumor.  

To do that, liner models such as the ARX models developed in Chapter 5 are necessary 

to be converted in a state-space form. This is feasible by calculating its transfer function 

�(�). Generally, the transfer function of a system can be transformed to a non-unique 

state-space representation using a discrete-time realization algorithm (DRA) [241]. 

The transfer function of the single-agent ARX model (5.2) can be calculated as follows: 

 

�[�] = ���[� − 1] + ���[� − 2] + ���[� − 3] + ���[� − 1] + ���[� − 2] + ���[� − 3] 

�(�) = �(�)(����� + ����� + �����) + �(�)(b���� + ����� + �����) 

�(�) =
�(�)
�(�) =

����� + ����� + �����

1 − ����� − ����� − ����� 

�(�) =
6.7573����� − 5.8769��� − 8.7736 ���

1 + 2.9653 ��� − 2.9456 ��� + 0.9851 ��� 

(8.1)

Among several equivalent state-space forms of the above transfer function, the 

observable canonical form ensures the observability of the derived system [241] (see 

more in the Appendix E). The state-space representation of (8.1) in the observable 

canonical form is described by the equations below: 

 
�[� + 1] = � �[�] + B �[�]

        �[�] = � �[�] + � �[�]
(8.2) 

where 
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� = �

−�� 1 0

−�� 0 1

−�� 0 0

� , � = �

��

��

��

� , � = [1 0 0], � = 0 

with  

�[�] = [�� �� ��]� 

Although the derived state-space system is not stable, it is both observable and 

controllable. This means that the observability matrix � = �

�

��

���

� and the controllability 

matrix � = [� �� ���] are full column and row rank, respectively. Therefore, the 

initial conditions may be calculated from the output �[�] and input �[�].  

Generally, for a �-order system, if � =

⎣
⎢
⎢
⎢
⎡

�

��

⋮

�����⎦
⎥
⎥
⎥
⎤

 is full-rank (i.e., observable) or 

nonsingular, �[0] may be reconstructed with any �[�], �[�] as shown below: 

 

�[�] = ��[�] + ��[�] 

�[0] = ��[0] + ��[0] 

�[1] = � ���[0] + ��[0]� + ��[1] 

�[2] = � ����[0] + ���[0] + ��[1]� + ��[2] 

⋮ 

�[� − 1] = � ������[0] + ������[0] + ⋯ + ��[� − 1]� + ��[� − 1] 

(8.3)

The above can be written in a vector form as follows: 

 

⎣
⎢
⎢
⎢
⎢
⎡

�[0]

�[1]

⋮

�[� − 1]⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

�

��

⋮

�����⎦
⎥
⎥
⎥
⎤

�����
�

�[0] +

⎣
⎢
⎢
⎢
⎡

� 0 … 0

�� � … 0

��� �� … 0

⋮ ⋮ ⋱ �⎦
⎥
⎥
⎥
⎤

���������������
�

⎣
⎢
⎢
⎢
⎢
⎡

�[0]

�[1]

⋮

�[� − 1]⎦
⎥
⎥
⎥
⎥
⎤

 
(8.4)
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So, 

 �[0] = ���

⎣
⎢
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎢
⎡

�[0]

�[1]

⋮

�[� − 1]⎦
⎥
⎥
⎥
⎥
⎤

− �

⎣
⎢
⎢
⎢
⎢
⎡

�[0]

�[1]

⋮

�[� − 1]⎦
⎥
⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎤

. (8.5)

For the specific case studied in this work, the initial conditions of the systems are 

calculated through the following equation: 

 �[0] = ���

⎣
⎢
⎢
⎢
⎡
�

�[0]

�[1]

�[2]

� − � �

�[0]

�[1]

�[2]

�

⎦
⎥
⎥
⎥
⎤
. (8.6)

Using (8.6) and the laboratory measurements of the tumor growth for ���� =

�[� = 0], ���� = �[� = 1] and ���� = �[� = 2], the initial values of the states � of 

the (8.2) state-space system were calculated as: 

 �[0] = �

��[0]

��[0]

��[0]

� = �−

0.0200

0.0259

0.0066

�. (8.7)

As previously mentioned, it was determined that the inherent dynamics exhibit unstable 

behavior. Nevertheless, a thorough examination confirmed that the system possesses 

both controllability and observability properties. This combination of attributes offers a 

promising avenue for stabilization. Specifically, the LQR approach is employed to 

counteract the system's inherent instability. Given the controllability of the system, the 

LQR method has the potential to not only stabilize the system but also optimize its 

performance under specified criteria. 

Given observability and controllability of the system, the use of LQR optimal control was 

considered feasible. Based on the theory presented in [242] (see the Appendix for 

details), an initial selection was made for the weighting matrices �� and �� as 

diag{14 14 14} ∙ 10�� and 343 ∙ 10�, respectively, serving as a "good" start for daily 

dose administrations (see Figure 8.1). However, for chemotherapy schedules that 

extend to doses administered every 2, 3, 5, and 7 days, these matrices required 
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adjustments. Consequently, a series of refinements to �� and �� were made through a 

trial-and-error approach to better accommodate to these extended dosing intervals. 

While there are numerous possible combinations that can be used, the weighting 

matrices �� and �� were chosen to be diag{42 42 42} ∙ 10�� and 1700, respectively: 

�� = �

42 0 0

0 42 0

0 0 42

� ∙ 10�� and �� = 1700. 

 

Figure 8.1. ARX system’s response (i.e., tumor weight) and optimal control input (i.e., dose 
level) utilizing the initial “good” Q and R weights. Continuous treatment (daily drug 
administration starting from day 19). 

While the primary objective of the optimal control problem is to eradicate the tumor, it 

is particularly important this to be done with the minimum cost, i.e., minimal side 

effects. High dose levels may lead to acute toxicity on healthy cells and severe side 

effects. To avoid such phenomena, it is necessary to impose “hard” constraints on the 

system’s control variable �, i.e., the chemotherapy dosage. Therefore, when the dose 

level proposed by the LQR controller surpasses a predefined threshold, the control signal 

adheres to the following inequality:  
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���� ≤ � ≤ ����  

where ���� = 0 and ���� represent the minimum and the maximum allowable dose 

levels, respectively. To balance toxicity and the chemo treatment efficacy, ���� was set 

at 5.4 mg for mice body weight of approximately 27 g, which translates to 200 mg/kg. 

To employ LQR control, an optimal feedback gain must be computed. For this reason, 

MATLAB’s dlqr function [238] was utilized. The dlqr function is used to design optimal 

state-feedback controllers for discrete-time linear systems. It calculates the optimal gain 

matrix by minimizing a quadratic cost function � representing the trade-off between 

control effort and system performance. The optimal feedback gain matrix � as derived 

by MATLAB, is shown below: 

�� = [−0.1394, −0.1165, −0.0956]. 

It also is important to note that in order to simulate more realistic clinical scenarios, 

control inputs were not initiated from day 0 but from day 19 of the experiments, in full 

accordance with the Simeoni et al.’s TGI SDRE optimal control cases, presented in 

Chapter 7. In addition, tumor weights below 10�� g were considered negligible and thus 

set to zero in all simulations. This threshold was set because such small tumor masses 

are often undetectable and may have limited clinical relevance in terms of therapeutic 

intervention. 

8.1 ARX and LQR-based gemcitabine dosage optimization for periodic 
treatment schedules 

Several cases of different periodic treatment schedules were examined. Specifically, 

optimal doses of gemcitabine i.p. for five different treatment schedules were explored 

(as in Section 7.1.1). In the first case, i.e., Case 1, the controller calculated doses for 

continuous (i.e., every day) drug administration. For the rest of the cases, i.e., cases 2, 

3, 4 and 5 the controller calculated optimal drug doses for periodic treatments (see 

Table 8.1). Gemcitabine was administered every 2, 3, 5 and 7 days for the Cases 2, 3, 4 

and 5, respectively, until the tumor’s eradication achievement. Importantly, longer 

intervals between treatments often allow tumor regrowth. For this reason, intervals 

longer than a week (7 days) have not been explored. The response of the state-space 
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system (i.e., the tumor growth in g) along with the optimal control input (i.e., the 

gemcitabine dose levels in mg/kg) for each case are shown in Figure 8.2 - Figure 8.6. 

To understand better the proposed optimal treatment schedules and to evaluate their 

effectiveness in controlling tumor growth some descriptive statistics were also 

calculated and are presented in Table 8.1. ������ denotes the cumulative drug intake 

(i.e., the total dose administered) while ���� represents the maximum tumor weight 

observed during the simulation period. Both metrics were calculated based on (7.8) and 

(7.9). In addition, ����� represents the time duration, in days, required for tumor 

eradication, indicating the efficacy of the treatment in eliminating the tumor. 

In all cases, the chemotherapy treatment is started on day 19 with dose administrations 

ranging from 130 to 140 mg/kg. Then, the estimated dose levels are gradually decreased 

until the tumor is completely eradicated– as late as day 300+ in Case 5. In Case 4, shown 

in Figure 8.5, there is noticeable fluctuation in the suggested doses, starting high, below 

the predefined upper limit of 200 mg/kg, and then fluctuating until the tumor is 

eradicated. In contrast, Case 5, shown in Figure 8.6, starts with a high dosage that 

steadily decreases until the tumor is completely eradicated.  

In addition, as the intervals between doses increase, both the cumulative amount of 

drug required to suppress tumor growth, ������, and the duration of treatment, �����, 

increase. These increases are particularly pronounced when the intervals exceed 3 days, 

as observed in cases 4 and 5. It is also worth mentioning that in none of the cases did 

the weight of the tumor exceed 0.75 g. 

Table 8.1. Periodic LQR treatment results (dose schedules and metrics) across Cases 1 to 5. 

Cases Dose schedule ������ (mg/kg) ���� (g) ����� (days) 
Case 1 continuous 241.93 0.7325 33 
Case 2 every 2 days 230.96 0.7428 35 
Case 3 every 3 days 227.59 0.7522 37 
Case 4 every 5 days 437.21 0.7591 148 
Case 5 every 7 days 1296.45 0.7523 >300 
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Figure 8.2. ARX system’s response (i.e., tumor weight) and optimal control input (i.e., dose 
level). Continuous treatment: daily dose administration (Case 1). 

 

Figure 8.3. ARX’s response (i.e., tumor weight) and optimal control input (i.e., dose level). 
Periodic treatment: dose administration every 2 days (Case 2). 
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Figure 8.4. ARX’s response (i.e., tumor weight) and optimal control input (i.e., dose level). 
Periodic treatment: dose administration every 3 days (Case 3). 

 

Figure 8.5. ARX’s response (i.e., tumor weight) and optimal control input (i.e., dose level). 
Periodic treatment: dose administration every 5 days (Case 4). 
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Figure 8.6. ARX’s response (i.e., tumor weight) and optimal control input (i.e., dose level). 
Periodic treatment: dose administration every 7 days (Case 5). 

8.2 Optimal gemcitabine dosages for intermittent treatment 
schedules using ARX and LQR 

Whereas in the abovementioned scenarios the tumor was successfully eliminated, 

chemotherapy resistant scenarios might occur due to the long exposure to the drug. 

Cancer chemotherapy resistance is a phenomenon where the neoplastic cells develop 

the ability to evade the effects of the chemotherapeutic treatment, leading to failure in 

drug response [239], [240]. To this direction, optimal drug dosages for intermittent 

chemotherapy schedules were also explored.  

To be more precise, optimal dosages for two cases of different intermittent treatment 

schedules were investigated. In both cases chemotherapy was administered every 3 

days for five times, i.e., q3dx5. Then, to avoid toxicity and drug resistance, the treatment 

paused for a period of ��� = 7 (Case 6) and 10 days (Case 7), respectively. Finally, it is 

restarted with dose administrations every 5 days for five times, i.e., q5dx5. 

The nature of intermittent dosing introduced new dynamics and responses into the 

system, requiring an adjustment in the control strategy. To address the changes in state 
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regulation and control effort priorities under this new paradigm, modifications to the � 

and � weighting matrices were deemed essential. Periodic and intermittent dosing 

represent different operational scenarios, each with unique challenges and objectives. 

While periodic dosing emphasizes regularity and consistent response, intermittent 

dosing may prioritize minimizing cumulative effects or addressing the unique 

pharmacodynamics of spaced administrations. As a result, the optimization criteria 

captured by the �� and �� matrices have been adapted to ensure that the control 

strategy aligns with the specific requirements and desired outcomes of intermittent 

dosing. The weighting matrices � and � were chosen to be diag{48 48 48} ∙ 10�� and 

3430, respectively: 

�� = �

48 0 0

0 48 0

0 0 48

� ∙ 10�� 

and 

�� = 3430 

while the optimal feedback gain matrix � as derived by MATLAB, is shown below: 

�� = [−0.1190, −0.1005, −0.0835]. 

A summary of the results is presented in Table 8.2 below, while the tumor weight curves 

and the optimal drug dosages are illustrated in Figure 8.7 and Figure 8.8. 

In examining the results presented in Table 8.2, a striking observation is the efficacy of 

the intermittent LQR treatment schedules in both cases 6 and 7. Over approximately 

120 days, tumor size was effectively minimized, demonstrating the potential of these 

treatment strategies. 

The proposed drug doses in both cases start aggressively, with initial doses close to 100 

mg/kg, and average 25.46 mg/kg in Case 6 and 38.82 mg/kg in Case 7. A comparison 

between the two cases reveals a direct correlation between the length of the 

chemotherapy holidays, denoted by ���, and the total amount of drug 

administered, ������. Specifically, Case 7, which had longer chemotherapy holidays, 
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required a 14.34% higher total amount of drug than Case 6. This increased total amount 

of drug also resulted in faster tumor eradication. 

Although the total amount of the gemcitabine in the intermittent schedules was higher 

than that in the periodic cases, these treatment breaks may benefit patients by 

significantly reducing the adverse effects of toxicity and consequently improving their 

quality of life [243], [244]. Finally, it is also important to note that the tumor weight in 

both cases was higher than in the periodic cases but did not exceed the 0.8 g. In general, 

these schedules demonstrated the ability to achieve cancer cell eradication while 

minimizing drug exposure, and the introduction of chemotherapy holidays can 

potentially help mitigate severe side effects, thus improving the patient's quality of life. 

Table 8.2. Intermittent LQR treatment results (dose schedules and metrics) across Cases 6 and 
7. 

Cases Dose schedule ���(days) ������(mg/kg) ����(g) �����(days) 
Case 6 q3dx5, q5dx5 7 509.29 0.7844 >120 
Case 7 q3dx5, q5dx5 10 582.32 0.7845 96 

 

 

Figure 8.7. ARX’s response (i.e., tumor weight) and optimal control input (i.e., dose level). 
Intermittent treatment: q3dx5, q5dx5 dose administrations with 7 days pauses (Case 6). 
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Figure 8.8. ARX’s response (i.e., tumor weight) and optimal control input (i.e., dose level). 
Intermittent treatment: q3dx5, q5dx5 dose administrations with 10 days pauses (Case 7). 

8.3 Multi-agent chemotherapy optimal control of tumor growth: The 
case of CPT-11 administered in combination with drug C2 

The administration of chemotherapy often involves the complex decision-making 

process of selecting the most effective drug regimen for a given patient. In many cases, 

oncologists opt for a combination chemotherapy approach, in which multiple drugs are 

administered. This combination strategy is favored for several reasons. Firstly, each drug 

in the combination can target a different pathway or mechanism of the tumor, 

increasing the chances of successfully hindering its growth or killing it altogether. This 

multi-faceted attack can also reduce the chances of the tumor developing resistance to 

a single agent. In addition, by using drugs with non-overlapping side effects, the 

therapeutic window can potentially be broadened to maximize the anticancer effects 

while minimizing the damage to healthy cells. 

Combination chemotherapy is common in clinical practice, especially when dealing with 

aggressive or advanced-stage cancers. However, a significant challenge lies in 

determining the optimal dosing for each drug in the combination to achieve the desired 

therapeutic effect without exacerbating toxicity. This is where control strategies, such 
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as the LQR, can have an impact. By using LQR, feedback controls can be derived ensuring 

that the system, in this case, the tumor's response to drugs, stays as close as possible to 

a desired state, while penalizing excessive drug use. 

In this context, multi-input ARX models become particularly relevant. As described and 

identified in Chapter 5, these models can capture the complex dynamics between 

multiple chemotherapy drugs and their combined effects on tumor growth. By 

transforming these models into a state-space form suitable for LQR, we can extract 

optimal drug doses for each agent. This provides a robust and systematic way to improve 

the effectiveness of combination chemotherapy regimens and individualize treatment 

based on the patient's unique response dynamics. 

As with the single-drug case involving gemcitabine, it is essential to convert the multi-

input ARX models into a state-space representation in order to utilize the LQR method. 

Here, the case of CPT-11 with drug C2, which is modeled using an ARX (4,4) is explored. 

The transfer function �� for the ARX system described by (5.3) (5.2) can be derived by 

applying inverse Z-transformation, which is described in detail as follows: 

 

��(�) = ��(�) + H�(z) 

��(�) =
��(�)
��(�) =

��,���� + ��,���� + ��,���� + ��,����

1 − ������ − ������ − ������ − ������ 

��(�) =
��(�)
��(�) =

��,���� + ��,���� + ��,���� + ��,����

1 − ������ − ������ − ������ − ������ 

(8.8) 

For the given transfer function, multiple state-space representations are possible [241]. 

The state-space representation of (8.8) in observable canonical form ensures that the 

observability can be portrayed by the following equations: 

 
��[� + 1] = ����[�] + B���[�] 

��[�] = ����[�] + ����[�] 
(8.9)

where 

�� = �
��� 0

0 ���
� , �� = �

��� 0

0 ���
� , �� = [1 0 0 0], �� = 0 
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with  

��� = ��� =

⎣
⎢
⎢
⎢
⎢
⎡
−��� 1 0 0

−��� 0 1 0

−��� 0 0 1

−��� 0 0 0⎦
⎥
⎥
⎥
⎥
⎤

, ��� =

⎣
⎢
⎢
⎢
⎢
⎡
��,�

��,�

��,�

��,�⎦
⎥
⎥
⎥
⎥
⎤

and ��� =

⎣
⎢
⎢
⎢
⎢
⎡
��,�

��,�

��,�

��,�⎦
⎥
⎥
⎥
⎥
⎤

 

and 

��[�] = [��� ��� … ���]� 

��[�] = [�� ��]. 

with  

⎣
⎢
⎢
⎢
⎡
���

���

���

���⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
−1.6640

   0.2182

   0.1082

   0.3594⎦
⎥
⎥
⎥
⎤

, 

⎣
⎢
⎢
⎢
⎢
⎡
��,�

��,�

��,�

��,�⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
−9.1822

10.8916

−9.9531

5.0423 ⎦
⎥
⎥
⎥
⎤

 and ��,�

⎣
⎢
⎢
⎢
⎢
⎡
��,�

��,�

��,�

��,�⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
−20.1489

      1.9032

      1.9030

   24.1672⎦
⎥
⎥
⎥
⎤

, as calculated in 

Chapter 5. 
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Chapter 9:  Discussion and conclusions 
Cancer, with its multifaceted nature, has always posed a challenge to the understanding 

of its complex dynamics and, consequently, to its treatment. While medicine has been 

the primary focus in the fight against this disease, the importance of a multidisciplinary 

approach cannot be overemphasized. Mathematical tumor modeling emerges as a 

powerful tool in this context, providing insights into the puzzling behavior of tumors and 

guiding the optimization of therapeutic interventions. 

Within this study, three major topics are studied. The first and foremost is the 

description of the dynamics of tumor growth. To achieve this, both linear and non-linear 

mathematical models were employed. Specifically, three distinct model types were 

explored, identified, and used to describe the tumor growth inhibition. Two when a 

single drug is administered and one when combination treatments with two or more 

anticancer drugs are applied. Specifically, these models were identified, and their 

parameters were estimated for the cases of intraperitonously administration of 

gemcitabine to xenografted mice [220], of CPT-11 given in combination with drug C2 

and of 5-FU also administered to mice in combination with the drug C2 [93]. 

The TGI mathematical model, introduced by Simeoni et al. in 2004 [226], is the first 

model used in this study to describe tumor dynamics. It is a well-established, non-linear 

input-output PK-PD mathematical model that accurately describes tumor dynamics 

under the effects of single-agent chemotherapy. This model is based on ODEs with 

parameters that capture the pharmacodynamics of the tumor. The model parameters 

were estimated using data from xenografted mice, demonstrating a strong fit to the 

experimental data (MAPE < 10%). This confirms both the effectiveness of the proposed 

parameter estimation method and the algorithm used (NNA) and the ability of the 

model to capture tumor dynamics. 

In the field of tumor growth modeling, the challenge often lies in striking the right 

balance: capturing the essential dynamics without introducing undue complexity. In 

contrast to complex non-linear systems such as TGI models, ARX models offer a 

compelling solution to this challenge. Their primary advantage stems from their 

dependency on prior observations (e.g., tumor weight) and input terms (e.g., drug 



Prediction of the cancer patients’ response to their therapeutical treatment with non-
linear forecasting techniques 
Chapter 9: Discussion and conclusions 
 

 

Sotirios G. Liliopoulos 2023 110 

doses) to predict tumor growth. In scenarios where the available data are limited and 

deep insights into pharmacokinetics and pharmacodynamics are lacking, ARX models 

provide a robust framework. They simplify the analysis by focusing on observable 

growth patterns instead of getting deep into intricate physiological interactions. For this 

reason, linear mathematical models of cancer growth under single and multi-drug 

administrations were developed, fitted to the experimental tumor growth curves, and 

assessed. Three novel ARX TGI models – each tailored to the single and multi-drug 

scenarios mentioned above – are presented. The results showed an excellent agreement 

to the tumor weight data, with MAPE less than 3% for gemcitabine and 12% in the case 

of CPT-11 administered in combination with drug C2. 

The third category of models pertains to the ANFIS approach. The ANFIS combines the 

benefits of fuzzy logic systems with the learning capability of neural networks. This 

integration allows for the modeling of complex, non-linear systems in a way that's both 

intuitive and adaptive. The introduction, for the first time in this study, of ANFIS models 

in the context of tumor growth provides a more flexible alternative to traditional 

modeling methods, enabling the inclusion of nuanced interactions and subtle variations 

observed in experimental data. Specifically, three novel ANFIS TGI models were 

developed to address both single and multi-agent chemotherapy scenarios. Each of 

these models was trained using the same experimental tumor growth datasets as were 

used for the ARX TGI models. Again, the models indicate a promising potential in 

describing tumor growth trajectories, especially when faced with the complexities and 

variations associated with multiple chemotherapy regimens. 

It's worth pointing out that the ANFIS TGI models demonstrated greater robustness 

when it came to accounting for the complexities and variability inherent in multi-agent 

tumor growth. These models effectively leveraged fuzzy logic principles to address 

uncertainties and nonlinearities within the data, thereby offering a more reliable 

prediction tool for clinical applications. The clear performance advantage demonstrated 

by the ANFIS models suggests that they might be useful for deployment in clinical 

environments where multi-agent tumor growth predictions are required. However, this 

conclusion should be contextualized within the limitations of the current study and 

additional testing should be carried out. 
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The second area of focus is centered on prediction. The prediction ability of each model 

type (namely Simeoni et al.’s TGI, ANFIS TGI and ARX TGI models) for single and multi-

agent chemotherapy treatment schedules was explored, tested, and evaluated. By 

applying an adaptive prediction procedure, the models were tested on forecasting 

tumor growth under treatment over five time periods (days). Each model demonstrated 

accuracy in predicting the future course of the tumor. Such a method holds significant 

promise as a tool to predict tumor growth trajectories, potentially aiding in the 

development of more personalized and efficacious chemotherapy regimens. By utilizing 

a moving window technique on the experimental data, short-term predictions of tumor 

growth for up to five days in advance were achieved. This important outcome arises 

because each model’s parameters are continuously re-fitted to the actual tumor growth 

curves, updating whenever a new laboratory or clinical data becomes available. As 

anticipated, the accuracy of the prediction tends to diminish as the prediction horizon 

lengthens. Yet, even for prediction periods spanning to five days, the error margin 

remained low (below 11%), highlighting the robust predictive capabilities of these 

models and the adaptive methodology. 

For the single drug case (i.e., gemcitabine i.p. administration) the ANFIS model 

outperformed both the Simeoni et al.’s TGI mathematical model and the ARX (3,3) TGI 

model, achieving 3.31% and 6.26% lower MAPE, respectively (as illustrated in the bar 

plot of Figure 9.1).  A reduced prediction error, such as that of ANFIS, suggests that it is 

potentially more reliable in predictions. Finally, the TGI model, although it is not 

achieved the best results, it still performs better than the ARX model by approximately 

2.95 percentage points. A similar trend is observed also in the multi-agent cases (see 

Figure 9.2). It is also important to note that when re-fitting the model using the moving 

window of the last � measurements instead of all the available data points, found to 

improve the prediction performance of the models in the single agent cases of 

gemcitabine as well as in the multi-agent cases (when using ARX models). 

However, the complexity and the resource requirements of each model should also be 

considered when comparing the models. Even though the ARX models have the highest 

errors, they are linear models with a small number of parameters to estimate. As a 
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result, they are much simpler and faster to deploy, making them preferable in situations 

where rapid approximation is more valuable than precision. 

 

Figure 9.1. Prediction errors (MAPE %) for the time period ahead tumor growth inhibition 
predictions in mice given gemcitabine i.p.: A comparison of Simeoni et al.’s TGI, ANFIS (3,50) 
and ARX (3,3) TGI models. One, two, three, four and five time periods ahead. 

To solidify these findings and expand the use of ANFIS and ARX models in clinical decision 

making, further research and validation using larger and more diverse datasets is 

imperative. By incorporating a broader range of data, these studies can improve the 

reliability and generalizability of ARX models, ultimately enhancing their utility in 

informing clinical practice and treatment strategies. To further enhance the predictive 

capabilities of such models and optimize its forecasting accuracy, it is worthwhile to 

further explore and test models of a variety of orders and different window sizes. For 

example, by considering more complex ARX models and varying the size of the data 

window, better results may be derived, enabling improved prediction, and forecasting 

of tumor growth inhibition. 
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Figure 9.2. Prediction errors (MAPE %) for the time period ahead tumor growth inhibition 
predictions in mice given CPT-11 and drug C2: A comparison of TGIadd, ANFIS (5,100) and ARX 
(4,4) TGI models. One, two and three time periods ahead. 

Anti-cancer chemotherapy is an intensive systemic treatment. This means that 

chemotherapy drugs circulate through the patient’s blood stream, potentially affecting 

not just the cancerous cells at the tumor site, but also healthy cells. Therefore, 

prolonged exposure, especially at high drug concentrations, can lead to acute toxicity 

and side effects. Applying mathematical modeling of tumor growth and optimal control 

theory might offer a solution to this challenge. This marks the third and concluding area 

of focus for this study. 

Two well-established optimal control methods, SDRE and LQR, are utilized to determine 

optimal dose regimens that can minimize the tumor size. Optimal control-suggested 

drug dosages are presented and assessed. In the first approach, the non-linear nature 

of the Simeoni et al.’s TGI model makes the SDRE method particularly suitable. To apply 

the SDRE, the model had to be converted to a pseudo-linear form. However, before the 

model transformation to the pseudo-linear form its state vector was expanded 

(augmented) to include a one-compartment PK model, to accurately capture the PKs of 
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the administered drug dosages, forming an augmented TGI model. In the second 

approach, the LQR method is combined with the ARX model to determine optimal 

regimens. Here, it was essential to transform the ARX model into a state-space 

representation. In both cases, periodic and intermittent treatment schedules were 

extensively explored. 

To mitigate excessive toxicity, hard bounds were set on drug dosages suggested by the 

controllers. In all examined scenarios, including continuous, periodic and intermittent 

drug administration with treatment “holidays”, the tumor size was reduced. Adopting 

such intermittent treatment schedules could serve as a potential alternative, aiming to 

decrease toxicity and enhance the patient's overall quality of life.  

In the case of ARX and LQR the tumor weight was minimized. On the other hand, when 

utilizing the TGI model with the SDRE the tumor weight is reduced but it is not ground 

to zero. Instead, it is stabilized on a value around the tumor weight at the inoculation 

time.  Moreover, the SDRE suggested optimal dose levels are higher than those 

calculated by the LQR. The difference of the methods as well as the simplification on 

modeling tumor growth dynamics with an ARX model maybe the cause of these 

differences on the results (i.e., the tumor weight eradication and the suggested optimal 

doses). Nevertheless, prolonged treatments with high dosage levels may result in severe 

side effects for the patient.  

The presented methodologies can provide oncologists with computational tools to 

design optimal and patient-personalized chemotherapy schedules to confront cancer 

successfully, while improving the quality of life of the patients. Studies have shown that 

mCHT (i.e., the continuous or frequent administration of chemo drugs at low dosages) 

may be a promising strategy to control successfully tumor growth [245]–[247]. For this 

reason, scientists should focus on the identifying optimal metronomic schedules using 

not only optimal control but also artificial intelligence and machine learning algorithms 

[247].  

Moreover, the importance of delving deeper into optimal treatment schedules extends 

beyond just chemotherapy. There is a growing interest in combination therapies, such 

as chemo-immunotherapy, which have shown effectiveness. Thus, continuous efforts to 
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integrate mathematical modeling with advanced control strategies, including LQR and 

SDRE, are essential. This cross-disciplinary effort has the potential to enhance the 

efficacy of chemotherapy while reducing its systemic impact. In addition, the rise of 

artificial intelligence and machine learning techniques offers new avenues for optimizing 

mCHT schedules, personalized to each patient's unique profile, and should be a focal 

point of future investigations. Ultimately, as we advance in our understanding of the 

intricate dynamics of cancer and the potential of multi-drug regimens, comprehensive 

research efforts aimed at identifying optimal treatment strategies will remain critical in 

the ongoing battle against this complex disease. 

In conclusion, more studies are needed towards this direction, but ultimately, the choice 

of the antitumor drug doses for each patient could be significantly and more efficiently 

improved by properly integrating similar mathematical/computational approaches such 

as these described herein in the clinical practice. 
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Appendix 
 

Appendix A: Neural Network Algorithm (NNA) 
Introduced by Sadollah et al. [223], the Neural Network Algorithm (NNA) is an 

unsupervised non-linear constraint optimization method  that searches to achieve the 

global minimum value of an objective function �(��, … , ��, �) subject to � constraints of 

the form ��,��� ≤ �� ≤ ��,��� where � = 1, … , �.  

 
Minimize �(��, … , ��, �)
Subject to ��,��� ≤ �� ≤ ��,���

 (A.1)

Each “individual” defined as a set containing a numerical value of each optimization 

variable (unknown parameter) is called “pattern solution” (e.g., in the Genetic 

Algorithms this vector is called “Chromosome”). In a � dimensional optimization 

problem, a pattern solution is a vector of 1 × �, representing the input data of the 

method. This matrix is defined as the �� = [��, … , ��] above.  

To initiate the optimization algorithm, a candidate of pattern solution matrix �with size 

����× � is generated. The matrix � is given as follows: 

 � =

⎣
⎢
⎢
⎢
⎡ ��

��
⋮

�����⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
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⎢
⎢
⎡ ��

� ��
� ⋯ ��

�

��
� ��

� ⋯ ��
�

⋮ ⋮ ⋱ ⋮

��
���� ��

���� ⋯ ��
����⎦

⎥
⎥
⎥
⎥
⎤

, (A.2) 

where the rows and columns are the population size (����) and the dimension size (�), 

respectively. It should be noted that each matrix value is randomly generated within the 

range between the lower and upper bounds of each unknown variable (the lower and 

upper bounds are assumed to be defined by a decision maker). 

Next, their objective function � is evaluated following the procedure outlined in Figure 

3.6 and described by the equations (3.2) and (3.3), and the initial “target” solution 

������� (i.e., the vector initially assumed to correspond to minimum � value) is 

determined.  

Similar to the population of pattern solutions, a weight matrix � is also generated:  
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⎤

, (A.3) 

The weights are randomly generated following uniform distribution and must satisfy the 

constraints imposed by (A.4) below. These constrains are particularly important as they 

prevent the algorithm from getting “stuck” at a local minimum [223]. 

 � ��
�

����

���

= 1, ��
� ∈ �(0,1), �, � = 1,2, … , ����. (A.4) 

Based on the previous population of pattern solutions and inspired by the weight 

summation technique commonly used in ANNs, a new updated � population is 

generated, and the weighting matrix � is updated.  The aforementioned procedure is 

described by the equations (A.5) - (A.7) below: 

 ��
���(� + 1) = � ��

�

����

���

(�)��(�), � = 1,2, … , ����, (A.5)

 ��(� + 1) = ��(�) + ��
���(� + 1), � = 1,2, … , ����, (A.6) 

 
��

������(� + 1) = ��(�) + 2· ����· ��������(�) − ��(�)� ,  

� = 1,2, … , ����

(A.7)

where � is the optimization iteration index.  

A common issue that may occur when searching for an optimum is premature 

convergence of optimization. To prevent the algorithm from an early convergence, a 

bias strategy (using an operator �) is introduced [223]. A portion of the pattern solutions 

and the weights generated in the new population are altered, making the bias operator 

to act as a form of noise in the system and providing the ability to broaden the search 

space and explore other areas that have not yet been visited by the population. As the 

iteration index � increases, the likelihood of modifying and generating new pattern 

solutions using the bias operator decreases. Instead, it is more likely for a solution to be 
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transferred towards the best solution (i.e., the new “target” solution), as described in 

(A.8) below: 

 ��
∗(� + 1) = ��(� + 1) + 2 ·rand · ��������(�) − ��(� + 1)�

� = 1,2, … , ����.
(A.8) 

The new “target” solution and its weight are then determined, and the above update 

procedure is repeated until the maximum number of iterations ���� is reached. The 

parameters estimation procedure is then restarted from the converged solution of the 

previous trial; thus, a "rough check" is performed to see if the solution obtained 

corresponds to the global minimum of the objective function. A flowchart of the NNA 

optimization algorithm is provided in the Figure  A.1 for a visual representation of the 

process and steps involved in the optimization. 
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Figure  A.1. Flowchart of the NNA optimization algorithm. Visual representation of the 
process and steps involved in the optimization. 
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Appendix B: Complex method of Box 
The COMPLEX algorithm is a non-linear global constraint optimization technique 

proposed by M. J. Box in 1965 [245]. The method searches to achieve the minimum 

value of an objective function �(��, … , ��, �) subject to � constraints of the form 

��,��� ≤ �� ≤ ��,���, � = 1, … , �.  

 
Minimize �(��, … , ��, �)
Subject to ��,��� ≤ �� ≤ ��,���, � = 1, … , � (B.1)

In the COMPLEX method a set (population) of ���� ≥ 2� + 1 vectors of the under-

estimation parameters with random values of the unknown parameters, but within the 

value range of each unknown parameter is created. By narrowing down this set of 

vectors to a very small area in the �th dimensional space, the global minimum of the 

objective function �(��, … , ��, �) can be found. The objective then function is evaluated 

for each of these “points” in the set, and the “worst point”, i.e., the point with the 

highest value of the objective function, is replaced by a new one calculated using the 

equations below: 

 �� = (1 + �) ∙ �� + � ∙ �� (B.2) 

 �� =
1

� − 1
∙ � ��

������

���

 (B.3) 

where �� is the current “worst point” to be replaced, �� is the centroid of all vertices 

except ��and � is a constant with an initial value greater than 1. In [248] M. J. Box 

suggested a value of � = 1.3 as a starting point for the procedure. The steps described 

above are referred to as a “reflection process” [249]. 

Whenever a “point” is replaced by a new one, it must be checked to ensure that it does 

not violate any constraints. If a constraint violation is detected at any stage of the 

method, the corresponding “point” is moved into the pre-defined boundaries of the 

under-estimation parameters, as defined by the inequalities in (B.1). The value of the 

objective function corresponding to the “new point” �� is then evaluated and if it 

remains the “worst” of all, the coefficient � is reduced by half and the process is 

repeated.  
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This process described above continues until the “worst point” is improved, that is until 

the corresponding objective function value is no longer the highest. If the value of the 

objective function is improved, then the convergence of the process is checked by 

determining if the swarm of the “points” (i.e., vectors of the initially unknown 

parameters) shrinks to a very small size and if the standard deviation of the objective 

function value (calculated by the equation below) becomes very small: 

 �
1

����
∙ � [�(��) − �(��)]�

����

���

�

�
�

< � (B.4)

where �� is the centroid of all vertices and � is a very small number (i.e., � = 10���). 

However, if there is no significant improvement in the estimated parameters values and 

the value of the coefficient � becomes smaller than a small quantity (i.e., � < 10��), �� 

is discarded completely and the procedure continues with the second “worst point” of 

the swarm until convergence. 
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Appendix C: LQR optimal control 
The linear quadratic regulator (LQR) is a widely used method that provides optimal 

state-feedback laws for linear systems. This practically enables closed-loop stability and 

high-performance design of systems. Given a discrete-time linear system described by 

the equations below:  

 
�[� + 1] = ��[�] + ��[�] 

�[�] = ��[�] 
(C.1)  

where � ∈ ℝ�×�, � ∈ ℝ�×�, � ∈ ℝ�×�, �[�] ∈ ℝ� is the system state vector, �[�] ∈

ℝ� is the input to this system (i.e., the chemotherapy drug amount) and �[�] ∈ ℝ� is 

the output (i.e., the tumor weight) at time �, LQR tries to determine a control input that 

minimizes a performance index. A typical form of this index is the quadratic cost function 

introduced by Kalman in 1958 [250]. It associates weights with the control input � and 

with each of the system’s states �. It is described by the following equation: 

 ���� = �(��[�]��[�] + ��[�]��[�])
�

���

 (C.2)

where � ∈ ℝ�×� and � ∈ ℝ�×� are the real positive semi-definite and positive definite 

weighting matrices for each state � and the control variable �, respectively. The cost 

function ���� is minimized using the state-feedback controller described by the equation 

below: 

 �[�] = −�������[�] ≜ −��[�] (C.3)

where � = ������ is the optimal feedback gain and � is a positive definite symmetric 

matrix and the unique solution of the algebraic Riccati equation (ARE), below: 

 ��� + �� − �������� + � = 0. (C.4)

The uniqueness of the ARE solution is implied by the controllability and observability of 

(�, �) and (�, �), respectively. 

Controllability: A pair of {�, �} is controllable if and only if none of the left eigenvectors 

of � are orthogonal to all columns of �. 
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Observability: A pair of {�, �} is observable if and only if none of the right eigenvectors 

of � are orthogonal to all rows of �. 
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Appendix D: SDRE – State-Dependent Riccati Equation 
The State-dependent Riccati equation (SDRE), originally introduced in 1962 by Pearson 

[251], is a powerful tool used to solve optimal control problems for non-linear systems. 

By transforming the non-linear mathematical model into a pseudo-linear formulation, 

also referred as extended linear form, the SDRE method treats the transformed system 

as a sequence of LTI mathematical models. A suboptimal solution is then computed by 

solving the Riccati equation for each of the LTI models derived in each time step.  

In general, a non-linear state-space mathematical model can be represented as: 

 �̇ = � ��(�)� + � ��(�)� �(�), �(0) = �� (D.1)

where � ∈ ℝ� is the state vector and � ∈ ℝ� is the input vector. In several cases, the 

above equation can be written in the pseudo-linear form: 

 �̇ = ����� + ����� (D.2)

where ���� = ����� and ���� = ����, with ���� ∈ ℝ��� and ���� ∈ ℝ��� where 

���� ≠ 0 ∀ �. ���� and ���� matrices are called state-dependent coefficient (SDC) 

matrices and the (D.2) is said to be represented in SDC form. 

If the non-linear system of (D.1) has an equilibrium point at the origin, so that �(0) = 0, 

then � can be parameterized as ����� and the LQR method can be used. There are 

many alternative parameterizations to choose from when constructing the SDC 

matrices, but the one which will be chosen must ensure point wise controllability for ∀�, 

to apply the SDRE control law. This can be achieved if the state-dependent controllability 

matrix �� has full rank (i.e., rank(��) = �) for the time segment where the control is 

applied. 

 �� = �����   ��������  ⋯  ����������������������� (D.3)

SDRE attempts to determine (using LQR) the sub-optimal controller for the state space 

model (D.2) driving all states to zero by minimizing a cost function �����: 
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 ����� =
1
2

��������� + ������ ����
�

�

, (D.4)

where ���� ∈ ℝ��� and ���� ∈ ℝ��� are state-dependent matrices and determine 

the weight for each state and the control input, thus ���� ≥ 0 and ���� ≥ 0 for ∀� 

[192].  

When the control is applied, if it is unbounded, the cost function � is minimized using 

the state-feedback controller: 

 ���� = −���������������� ≜ −�����, (D.5)

where the term 

 ���� = ��������������� (D.6)

is referred to as feedback gain matrix and ���� ∈ ℝ��� is a symmetric, positive definite 

matrix and the unique solution of the algebraic SDRE: 

 ��������� + �������� − ����������������������� + ���� = 0. (D.7)

The dynamics of the pseudo-linearized closed-loop non-linear state mathematical 

model (D.2) are now described as: 

 �̇ = ����� −  ��������� �. (D.8)

The sub-optimal control input for the state space mathematical model (D.2) in the case 

of a bounded control represented by: 

 ��������� = ���(���(�, ����) , ����), (D.9)

with ���� and ���� being the lower and upper bounds. 

The above procedure (i.e., the SDRE control law computations) is illustrated by the 

flowchart in Figure D.1.  

D.1 SDC parameterization 
SDC parameterization or extended linearization is the process of turning a system of 

non-linear equations to a linear-like (pseudo-linear) form which includes SDC matrices. 
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In the scalar case, the SDC parameterization of the function � as ����� is unique for 

every � ≠ 0 and it is obtained as: 

 ���� =
����

�
. (D.10)

 
Figure D.1. Flowchart of the SDRE control law computations. 

On the other hand, i.e., in multivariate systems, SDC parameterization is not unique and 

there is an infinite number of them, providing flexibility in the design which potentially 

could potentially improve the performance of the controller. Using a vector � of free 

design parameters, �� ∈ ℝ� with � ∈ � it is possible to preserve the dependency of 

terms that contain multiple states (more than 2).  

For any vector � let: 

 ���, ��� = ������� + (1 − ��)����� (D.11)

to represent an infinite number of SDC parameterizations where ����� and ����� are 

two distinct SDC matrices, with �� ∈ ℝ�. A rule of thumb through which a good 
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parameterization of ���� can be acquired is by observing the pointwise stability of 

(����,����). More specifically, this can be achieved by maximizing the pointwise 

controllable and observable spaces of the candidate parameterizations [252]. �’s and 

the corresponding SDC parameterizations which give high absolute values of the 

det(��) can be selected and used in the design process. According to Cimen [252], the 

selection of this vector � affects not only the optimality and the stability of the system, 

but also its flexibility and robustness. More details about this are included in [252]. 

D.2 Non-affine control 
Some control problems involve systems that exhibit nonlinearity in the control input �. 

This nonlinearity can arise due to constraints, such as hard bounds on the control. When 

the input cannot be expressed as a linear combination of the system state variables and 

their derivatives, it becomes challenging to design a control strategy that can properly 

regulate the system's behavior. These systems are non-affine (non-linear) in the control 

inputs and can be expressed mathematically as: 

 �̇ = ���� + ���, ��. (D.12)

Systems of (D.12) can be brought to the SDRE standard form of (D.1) by introducing 

integral control [252], [253]: 

 �̇ = �� + ���. (D.13) 

In the simplest case it is assumed that � = 0 and � = �, which results in �̇ = �� . 

By treating the control input � as a new state variable that is added to the system (D.12), 

an extended form of the system can be created: 

 �
�

�̇

̇
� = �

���� + ���, ��

��
� + �

0

�
� ��   (D.14)

where ��  is the pseudo-control input of the augmented system and the actual control 

input � is an augmented state. Such system conforms to the required SDRE structure, 

being affine (i.e., linear) in the pseudo-control input �� . 
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D.3 Selection of the Q and R weighting matrices 
In most control designs that are based on LQC, weighting (or penalty) matrices � (i.e., 

the state weighting matrix) and � (i.e., the control weighting matrix) are design 

parameters. This means that their values affect the quality of the control design and 

subsequently the system’s performance. Thus, their values need to be chosen carefully. 

For example, selecting a large value for � it means that the system has to be stabilized 

with less effort. In reverse, a small value for � means a smaller penalty on the control 

signal. In the first case an “expensive” control strategy is followed, while in the second 

case a “cheap” control strategy is applied. Similarly, selecting a large value for � means 

that the changes in the system’s states will happen faster as they approach to zero. It is 

important to note that both matrices are real-symmetric, with � being positive semi-

definite and � positive definite in nature. Usually, � and � are chosen to be diagonal 

matrices, with the simplest choice to be: 

 � = �, � = ��, (D.15)

where � is a constant value. However, the selection of � and � matrices is not unique 

and there are many combinations that can ensure the stability of the system and optimal 

closed-loop performance. Commonly, they are selected through trial-and-error, but this 

can sometimes be time-consuming and therefore techniques such as the one proposed 

by Pouliezos [242] and Bryson (Bryson’s rule) [254] can be useful in this process. 

According to this rule,  � and � matrices can be selected as diagonal with values for the 

diagonal elements calculated as: 

 

��� =
1

maximum acceptable value of ��
� , � = 1, 2, … , � 

��� =
1

maximum acceptable value of ��
� , � = 1, 2, … , � 

(D.16)

(D.17)

The variables that appear in the performance criterion � of the linear or non-linear 

optimal regulation (discrete or continuous) are scaled to ensure that the maximum value 

of each term does not exceed one. Even though this rule can provide good results, it is 

often used as a starting point towards obtaining the pair of � and � that results in the 

desired properties for the closed-loop system. Other methods are described in [255]–
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[258]. Another maybe useful methodology for forming a state-dependent weighting 

matrix � in order to find an optimal control solution is proposed by Cloutier et al. [259]. 

However, the application of this methodology it may be difficult for complex systems. 
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Appendix E: State-space realization in control systems 
E.1 Definition and representation 
State-space realization offers a matrix-based framework to capture the dynamics of 

linear time-invariant (LTI) systems. This representation is particularly apt for multi-input, 

multi-output systems and for contexts where the system's internal dynamics are of 

interest alongside its input-output behavior. 

For a given discrete-time LTI system, the state-space realization can be represented as: 

 
�[� + 1]  =  ��[�] +  ��[�] 

�[�] =  ��[�] +  ��[�] 
(E.1)

where �[�] is the state vector at the time instant �, capturing the system's internal 

states, �[�] denotes the input to the system and �[�] represents the system output at 

time �. �, �, � and � are matrices that dictate the relationships between the states, 

inputs, and outputs of the system. 

E.2 Transfer function relationship 
The relationship between the discrete-time system's state-space representation and its 

transfer function can be established using the Z-transform. A system with a transfer 

matrix �(�) has its relationship with state-space matrices �, �, �, and � described as: 

 �(�) = �(�� − �)��� + �. (E.2)

This equation is obtained by applying the Z-transform to the state-space equations and 

expressing the system's output transform �(�) as a function of its input transform �(�). 

E.3 Minimal Realization 
There are an infinite number of possible state-space realizations of any given system, 

i.e., multiple sets of matrices �, �, � and � can represent the same input-output 

behavior [241]. However, not all realizations are equally efficient in capturing the system 

dynamics. A minimal realization refers to the representation where matrix � has the 

smallest possible dimension while retaining the system's input-output behavior. Such a 

realization is compact and often preferred for analysis and control purposes, as it 

eliminates redundant states that do not influence the system's observable behavior. In 
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essence, a system realization �, �, �, � is termed minimal if there isn't another 

realization ��, ��, ��, �� such that �� has fewer dimensions than �′, but both 

representations convey identical input-output dynamics. 

Within the realm of discrete-time state-space realizations, certain minimal realizations 

hold particular significance due to their structured representation. These are termed as 

canonical forms [241]. Canonical forms not only represent the system in its minimal 

state but also structure the matrices in specific patterns that facilitate certain types of 

analysis and system manipulations. The observable and controllable canonical forms 

stand out as standardized system representations that emphasize system observability 

and controllability, respectively. The controllable canonical form is structured such that 

its matrices provide clear insight into the system's controllability, ensuring that the 

system's states can be driven to desired values using suitable inputs. On the other hand, 

the observable canonical form is tailored to illuminate the system's observability, 

indicating the system's ability to have its internal states estimated purely based on its 

outputs [241].  

Let a single-input single-output (SISO) system with a transfer function �(�):  

 �(�) =
�(�)
�(�) =

����� + ����� + ⋯ + �����

1 − ����� − ����� − ⋯ − ����� (E.3)

The observable canonical form ensures the observability of the derived system. Its state-

space representation of (8.1) in canonical form is described by: 

 ���� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

−�� 1 … … 0

−�� 0 1 … 0

⋮ ⋮ ⋮ ⋱ 0

−���� 0 0 … 1

−�� 0 0 … 0⎦
⎥
⎥
⎥
⎥
⎥
⎤

, ���� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

��

��

⋮

����

�� ⎦
⎥
⎥
⎥
⎥
⎥
⎤

, ���� = [1 0 … 0], ���� = 0 (E.4)

In the case of multiple-input multiple-output (MIMO) systems, where the there are 

multiple transfer functions the realization can be found trivially by the realization of 

each element [260]. 

Let a 2-by-2 system, i.e., two inputs and two outputs. The transfer function of such 

system is described by a 2-by-2 matrix: 
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 ��(�) = �
��(�) ��(�)

��(�) ��(�)
� (E.5)

where ��(�) = ��(�� − ��)���� + ��, for � = 1,2,3,4. 

The state realization of the system is given by the following matrices: 

 

�� =

⎣
⎢
⎢
⎢
⎢
⎡
�� 0 0 0

0 �� 0 0

0 0 �� 0

0 0 0 ��⎦
⎥
⎥
⎥
⎥
⎤

, �� =

⎣
⎢
⎢
⎢
⎢
⎡
�� 0

0 ��

�� 0

0 ��⎦
⎥
⎥
⎥
⎥
⎤

 

�� = �
�� �� 0 0

0 0 �� ��
� , �� = �

�� ��

�� ��
�. 

(E.6)

where ��, ��, �� and �� are the realization matrices of each transfer function ��, for � =

1,2,3,4. 

These canonical forms not only simplify system representations but also streamline the 

tasks of analysis, controller design, and observer synthesis by focusing on fundamental 

system properties. More information can be found on [241] and [260]. 


