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Abstract

Abstract

This thesis delves into the complexity of cancer, necessitating a multidisciplinary
approach for effective understanding and treatment. Central to this exploration is the
use of mathematical tumor modeling to understand and predict the growth of solid
tumors under a variety of therapeutic interventions. First, an introduction to the key
concepts underlying the dynamics of cancer and a thorough review of current treatment
modalities is presented. A comprehensive review of state-of-the-art mathematical
models that portray tumor growth in both unperturbed and perturbed scenarios,
focusing on chemotherapy, immunotherapy, and their combination also takes place. A
key part of this work is the application of optimal control theory to refine cancer therapy
protocols. This includes a detailed examination of the clinically acclaimed Simeoni et al.’s
tumor growth inhibition (TGI) model. That model is enhanced in this thesis with a novel
formulation, the augmented Simeoni et al.’s TGl model, which also incorporates the drug
pharmacokinetics. An optimal non-linear control problem is then introduced and solved,
based on that novel formulation, using the state-dependent Riccati equation (SDRE)
methodology to identify the most effective chemotherapy strategies for tumor
eradication. Additionally, this thesis presents the Adaptive Neuro-Fuzzy Inference
System (ANFIS) and introduces three ANFIS TGl model structures for mathematical
modeling of tumor growth under chemotherapy. Further, a novel method for modeling
TGI under the efficacy of single and in combination chemotherapy drugs is proposed.
Specifically, two autoregressive with exogenous inputs (ARX) TGl models for solid tumor
growth are identified and evaluated. The parameters of these models estimated using
non-linear optimization and laboratory experimental data, have shown high accuracy in
fitting experimental tumor growth data under chemotherapy effects, being a pioneering
contribution of this work. The use of linear quadratic regulator (LQR) optimal control
based on those ARX TG/ models is then introduced and explored for determining optimal
chemotherapy dosages under various periodic and intermittent treatment schedules.
Finally, all the presented in this thesis TGl models' capability for short-term adaptive
tumor growth predictions incorporating also moving (sliding) window techniques, is

thoroughly investigated giving accurate and significative for the clinical practice and the
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new anticancer drug discovery research TGl prediction results. All the simulation results

are presented and extensively discussed, leading to insightful conclusions.

Keywords: cancer, tumor growth inhibition (TGI), tumor growth mathematical
modeling, tumor growth prediction, linear mathematical model, non-linear
mathematical model, parameter estimation, step-ahead predictions, state-space
representation, NNA, COMPLEX method of Box, ARX, ANFIS, optimal control, SDRE, LQR,
chemotherapy, optimal drug dose administration, periodic chemotherapy, intermittent

chemotherapy, metronomic chemotherapy.
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Mepianym

O kapkivog givat pa ToAUTIAOKN a.0BEVELD TIOU OTTALTEL SLETLOTNLOVLKI TIPOCEYYLON yLa
NV Katavonon Kat tn BOeparmeio TnG. Itnv mapolvoa spyacia, kot pe tn Bonbeswa
VPOUUIKWY KOl UN-YPOUUIKWY MOONUATIKWY UOVTEAWY, TPAYHOTOMOLETal pia
MPoomaBela ylo. TNV Katavonon kat tv mpoPAsPn NG avamtuéng CUUMaywV
KOPKIWVLKWY  OYKWV UTO  OladOpeTIKEC OEPAMEVUTIKEG TIPOOEYYIOELS.  APXIKQ,
TIPAYLATOTIOLELTAL L ELOAYWYH OTLG BACIKEC EVVOLECG TIOU SLETIOUV TN «SUVAULKA» TNG
avamntuénc-eEEALENC Tou Kapkivou Kot pia SLe€odikry avaokomnon Twv TIO EUPEWCS
XPNOLUOTIOOUEVWY BepameuTikwy HeBOdwy. Ale€dyetal emiong pia oAoKAnpwUEVN
avaokomnnon twv state-of-the-art paBnpatikwv poviéAwyv, TOU XPNGLUOTIOLOUVTAL YL
v mnepypadn avamtuéng Oykwv  umo  SladopetikéG  popdEG  Beparmeiag,
oupneplhappavopgvng TG xnueloBepameiag, TNG avoocoBepameiag KAl  TOu
ouvduaopoUl toug. EmutAéov, yivetal pla ocuviopn eloaywyn otn Bewpla BéATioTou
eAéyxou, evw mapaAAnAa toviletal n onuooia tng otnv avamtuén kat BeAtiotonoinon
TWV TPWTOKOA WV (oXNUATWYV) amoteAeopatikng Bepameiag tou Kapkivou. Me tn
BonBela pN-YPAUUIKOU HOONUOTIKOU HOVTEAOU yla TNV Tieplypadrn tng e€EAENG
KAPKWIKWV OYKwv (Simeoni et al.’s tumor growth inhibition — TGl model) kat tnv
gloaywyr eMUTA£oV GapUaKoKLVNTIKWY e€lowoswyv otn doun tou (augmented Simeoni
et al.’s TGl model) Stapopdwvetat éva mpoPAnua BEATIOTOU eAEyXOU. 2TOXOC TOU Elval
0 TMPOOCSLOPLOPOG BEATIOTNG oTpaATNYIKAG, UE TN Bonbela tng uebddou SDRE (state-
depended Riccati equation), yta ™ xoprynon BéAtiotwv 66oewv xnueloBepaneiag pe
okomo TNV efAAelPn NG KAKONBELAC UE TIGC €AAXLOTEG TOPEVEPYELEG. ETumAéov,
avarnrtuooovtal Tpla véa povtéla veupo-acadouc Aoyikng (Adaptive Neuro-Fuzzy
Inference System — ANFIS) yia tnv meptypadr Tng avamtuéng Tou KAPKLVLIKWY OYKWVY UTIO
xnUewoBepaneia (ANFIS TGl models) kot aflohoysital n wKavotnta TOUC va
HOVTEAOTIOLOUV-QVOTTAPLOTOUV LE aKPIBELO TIG TIELPAMATIKEG KOUTTUAEG avamtuéng Tou
oykou. Mapouolaletal EMiONG L0 VEQ TIPOCEYYLON YLa TNV TIEPLYpadr) TNG EEEALENC EVOG
OYKOU UTIO TNV eMidpaon eVOG 1 TEPLOCOTEPWV OVTIKAPKLIVIKWY PpapuUdKkwy, TTou Sivovtatl
0€ OUVOUAOUO. ZUYKEKPLUEVA, XPNOLUOTIOLWVTOG AVOSPOULKEG YPAUUIKEG EELOWOELC
Stadopwv pe efwteplkny elcodo (autoregressive with exogenous inputs — ARX)

Snuloupyouvtal Kot afloAoyouvtol LE TN XPNON €PYAOTNPLOKWY Sedopévwv amo
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MEepapata o movtikia dU0 cuoTARATA MOONUATIKAG KOVTEAOTIOINONG KAPKLVIKWY
oykwv (ARX TGI models). MapdAAnAa, PE TN XPHON €VOC YPOUULKOU TETPOYWVLKOU
puBuiotA (linear quadratic regulator - LQR) &tepeuvwvtal mibavég BEATIoTeC SocoAoyieg
XnueloBeparneiag, tO000 ylo Teplodika (periodic) 600 kot yla  SLAKOMTOPEVA
(intermittent) mpoypappata (oxnuata) Bepamneiag. TéEAog, aloAoyeital n KovotTnTa
OAWV QUTWV TWV HOVTEAWV Vo Tpaypatonololv BpoaxunpdBeopéc mpoBAEPELS TG
e€EMENG pilag kokonBoug veomAaoiag pe TNV edapuoyn HeBOSouU «KLvoUpEVOU
napaBupou» (sliding window) otn xpovooelpd twv SedopEVwY. ZNUELWTEOV, TA LOVTEAQ
Bpaxuxpoviag mpoBAedng g e€EAENC Tou Kapkivou, eite umoOKeltal, site OxL, O€
Bepaneia, slval peydAng onuaciag otnv GOPUOKEUTIK €pEuva QVATTUENG VEWV
OVTIKAPKWVIKWYV  Poppakwy. OAo Ta  OMOTEAECOMOTO TWV  TIPOCOMOLWOEWV

napouolalovral Kot avaAUovtal AETTTOUEPWG.
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Chapter 1: Introduction

1.1 Cancer - Solid tumor growth

Despite the major improvements in medicine and health care technologies along with
the increased access to high quality and up-to-date healthcare information, cancer
remains one of the main causes of death. Based on projections by the European
Commission — Joint Research Centre (JRC) in Ispra, Italy, the number of new cancer
cases in the European Union (EU) and the European Free Trade Association (EFTA)
countries is projected to increase by 21%, reaching 3.4 million in 2040. At the same time,
the number of deaths due to cancer is expected to grow dramatically, from 1.3 million
in 2020 to almost 1.7 million by 2040. An increase of this size equals a rise of 32.2% in
20 years’ time. For the lower mortality scenario, this number can potentially increase up

to 35.4% for the same time period.

In layman’s terms, cancer is a collection of no less than 100 diseases that develop across
time and involve the continual unregulated division of the body's cells. Even though each
type of cancer has its very own unique features (e.g., different staging system,
mutational signatures, etc.) and it is possible to be developed anywhere in the body,
there are strong similarities amid the processes that produce cancer. When a normal
cell bypasses the normal route and starts to follow its own proliferation rules, then it is
when cancer begins (see Figure 1.1). The disease primarily results from genetic
mutations in the cellular deoxyribonucleic acid (DNA) which interfere with the internal
cellular control mechanisms [1], [2]. This allows the cells to evade the homeostatic
controls that ordinarily suppress inappropriate proliferation and inhibit the survival of
aberrantly proliferating cells outside their normal niches. The cells escape apoptosis and
grow improperly with or without growth signals from the environment [3], [4]. Of
course, cancer is not developed all at once. It is a multistage process which requires the
accumulation of DNA damage (i.e., genetic mutations) in the genes whose role is to
control cellular growth. A normal cell may undergo 60 or more genetic mutations to
become abnormal [5]. The number of cell divisions that occur during this process can be
astronomically large—human tumors often become apparent only after they have
grown to a size of 10 billion to 100 billion cells [6]. External factors such as chemicals

and environmental carcinogens, exposure to radiation, viruses, and smoking can cause
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damages to DNA and lead to cell immortality [1], [7]. A small number of cancers can also

occur due to genetic mutations inherited by the parents.

Invasive

Normal Hyper plasia Carcinoma carcinoma
epithelium in situ
Mutated

cell

Angiogenesis 6
*\.__ Cell migration p
Intravasation
\ Q

Dormant
Macrometastasis micrometastasis

Figure 1.1. Cancer progression. Adapted from [2], [4].

The uncontrolled proliferation of these cells eventually leads to the development of a
solid mass which is called a tumor or neoplasm. The location where the tumor occurred,
the cell types, as well as the nutrition supply, are crucial for the growth of the neoplasm.
The abnormal cells may remain in the original tumor (i.e., the primary site) a condition
called in situ cancer or in the worst case, break off and invade other surrounding tissues
in a condition called invasive cancer. In the latter case, the tumor is said to be malignant,
and the cancer cells may spread through the bloodstream and the lymphatic system and
establish metastases (i.e., new tumors) in other parts of the body. It has to be noted that
in many cases the primary tumor and the secondary metastases do not progress at the
same pace and in such an instance the primary tumor may manifest itself while the

metastases do not cause symptoms. This way, they might not be detected on time and
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threaten the patient’s life when their growth disrupts the tissues and organs needed for

survival.

As previously mentioned, carcinogenesis is a multistep process during which normal
cells turn into cancer cells. To defend against cancer, the human body itself has
developed a pool of various defense mechanisms. The DNA damage repair system is one
of the most important mechanisms. Two of the main repair processes for DNA repair are
nucleotide-excision repair and base-excision repair (BER) [8]. Once DNA damage is
detected, the cell cycle is blocked in order to completely address the damage. Although,
in most cases, the alterations in DNA are reversible, the repair process might fail, and
the involved genetic mutations might introduce abnormality and transform a normal cell
into a cancerous cell. Studies have found that genes belonging to anti-oncogene (i.e.,
tumor suppressor gene) and proto-oncogene classes, when mutated, can contribute to

the development of cancer [8].

The immune system is the human’s defense mechanism against pathogens (as well as
its own cells that have been infected). It is a highly complex network of biological
processes, mainly composed of white blood cells such as B and T lymphocytes (B and T
cells), natural killer cells (NK), macrophages, dendritic cells (DC) etc. that acts as a shield
against a variety of viruses, bacteria, foreign bodies, as well as tumor cells. Therefore, it
has an important role to play in the fight against cancer. It is comprised of two arms
which are in continuous interaction and interdependence, the innate and the adaptive
immune system. NK cells, dendritic cells, and macrophages are part of the innate

immune system and are the first line of defense against pathogens.

When antigens, molecular structures such as proteins and sugars that may be present
on the surfaces of pathogens enter the body a series of reactions are carried out to
stimulate an immune response and fight the threat off. More specifically, specific
proteins called antibodies or immunoglobins (Ig) are produced as a result of the body’s
immune response. Then, these proteins recognize and stick to those of the pathogens
and either directly destroy them or block them from infecting other cells of the host [9].

NK cells are maybe the first group of immune system cells to defend against intruders.
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They are lymphocytes equipped

potential target cell potential target cell
‘ | with a variety of receptors (e.g.,
activation receptors, see Figure
class | et
\ 1.2 (adapted by [10]), which
/ \
/ ' ) control their actions. Using such
tt { AN ttack attack attack . .
“°a§° ”ja ac N P4 receptors, they can identify
inactive
TN acte /// N potential infectious agents and
(| /|
W\ W/ cancer (potential target cells)
na\tural na\tural and attack them without any
killer cell killer cell

Figure 1.2. Natural killer (NK) cells (yellow) display a prior exposure to them. A way to

killer inhibitory receptor (red) that can recognize MHC | 45 this
receptors on the surface of potential target cells (gray).

In the absence of MCH I, NK cell attacks the target cell histocompatibility complex class
(right). Otherwise, the attack is declined (left). Adapted
by [10].

is by the major

| (MHC I) molecules. The NK cell
binds with the potential target
cell and then it checks whether MHC | molecules are present on it or not. In the absence
of MHC | molecules, kill activating receptors are attached and an attack by the NK cell is
possible. However, in the case where a target cell presents self-antigens in its MHC class
| receptors then it avoids the attack and remains unharmed. Cancer cells are likely to
develop such self-antigens in MHC |, like most of the healthy cells of the body, and
therefore avoid the kill signal from the NK cell [10]. It is common for an infected or
cancer cell to lose its MHC 1. In this case, the cell is vulnerable to attacks by NK cells,
which release special proteins and enzymes (perforin and granzymes), leading
eventually to the death of it. This is also the case in the absence of self-antigens in the
MHC | [10], [11]. Right after the innate immune response, the NK cells secrete some
proteins called cytokines (e.g., interferon gamma (IFNy)) which affect other cells such as

dendritic cells and macrophages to boost the immune response [12].

In contrast to innate system cells that recognize abnormal cells, cells of the adaptive
immune system must be “taught” how to recognize “hostile” cells. Nevertheless, they
are more specific and more effective compared to those of the innate immune system.
B and T lymphocytes such as CD4+ T helper and CD8+ T cytotoxic are included to this

second arm. More specifically, CD8+ T cells are developed in the thymus and present T-
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cell receptors on their surface through which they can identify a specific antigen (e.g.,
produced by cancer cells or viruses). If the specific antigen, e.g., tumor-specific-antigen,
is recognized then it binds to the MHC | molecule — antigen complex of the specific-
antigen-displaying target cell and a killing process is triggered (e.g., through secretion of
perforin, granzymes, INFy, etc.) [10], [13]. It is important to note that the bond of the
two cells is achieved through a glycoprotein called CD8, which is present in the T-cell

receptors [10], [13].

Despite the existence of these natural mechanisms, cancer cells can develop highly
effective strategies, called immunoevasion strategies, in order to avoid immunological

attacks, thus creating large, life-threatening tumors [10].

1.2 Current strategies for cancer therapy

Both primary and secondary prevention of cancer is of great importance for public
health. In the former, lifestyle changes are crucial, as is prophylaxis against infectious
agent-induced cancers. A large number of infectious agents, like human papilloma virus
(HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus
type 1 (HIV-1) and helicobacter pylori (H. pylori) have been identified to cause or
contribute to the development of specific human cancers [14]. According to [14],
infections and the agents causing them are associated with 10% of the types of cancer.
Vaccination, safe sex practices and treatments against microbes have been proven

beneficial in the fight against these infections and can serve as preventive solutions.

In terms of secondary prevention, screening with mammography, colonoscopy, PAP-
testing and other laboratory tests like prostate-specific antigen (PSA) has been shown
to reduce mortality from the respective neoplasms. These screening techniques, when
combined with significant therapeutic developments, may lead to further
improvements in prognosis and increased survival rates. Therefore, the early detection
and diagnosis of cancer, followed by an effective treatment, are crucial for the patient’s

outcome and overall survival (OS).

There are over 100 different kinds of cancer that can be developed in the human body
[3]. However, despite the research efforts and the treatment modalities which have

been developed, there is no specific therapy that treats all forms of cancer. For this
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reason, different strategies are used in the clinical practice, with therapies given either
alone (i.e., monotherapy) or in combination. Some of the most common approaches to
treat cancer are surgery, radiation (or radiotherapy), chemotherapy and

immunotherapy [15], [16].

1.2.1 Surgical operation
Surgical operations are the first method introduced in the battle against cancer. They

aim to directly (i.e., physically) remove solid tumors. During the operation, a healthy,
non-tumorous tissue around the tumor mass is also removed. This way it is ensured that
the cancerous cells are fully removed from the area and the chance of local recurrence
is minimized. This approach is called resection or surgical margin [17], [18]. Even though
surgery reduces the tumor burden, it is a common practice to be followed by another
treatment method such as radiation or chemotherapy in order to achieve better results

and prevent local recurrence of the tumor.

1.2.2 Radiation
Radiation therapy is a non-invasive local treatment for cancer that uses ionizing

radiation. Most of the time, it is used as the first treatment against cancer. It is also
common practice to be applied after other treatment methods like chemotherapy and
surgery to eradicate cancer cells which may have survived. In several cases, when cancer
cannot be fully eradicated, radiation is used to reduce the tumor size, relieve pain, and
improve the patient’s quality of life (QoL). This kind of treatment is called palliative

radiation [19].

1.2.3 Chemotherapy
Chemotherapy was introduced to cancer treatment in the 1940s when nitrogen mustard

was administered to patients with non—Hodgkin’s lymphoma [20]. It involves the use of
single cytotoxic anticancer drugs or a combination of them, usually given intravenously
and sometimes orally, to combat cancer growth. Unlike radiation and surgery which are
local treatments, chemotherapy is considered a systemic treatment. Chemotherapy
drugs travel through the bloodstream and interact with cells, cancerous or not, all over
the host’s body. This way, the abnormal cells that are present in other areas of the body,

i.e., the metastasized cells are also affected and killed by.
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Chemotherapeutic drugs normally inhibit mitosis or induce ribonucleic acid (RNA) or
DNA damage to the cells which makes them unable to divide. The faster the cancer cells
divide, the more likely it is that chemotherapy will kill the cells. Depending on the type
of the drug used in the treatment, chemotherapy may be cell-cycle specific or cell-cycle
non-specific. Drugs that are toxic to cancer cells while they are dividing are called cell-
cycle specific. On the other hand, the drugs that are toxic to cancer cells at any point in
their cell cycle are called cell-cycle non-specific. Chemotherapeutic antineoplastic
agents can be classified based on several factors, including their chemical
composition/structure and their action against cancerous cells. They include alkylating
agents, antimetabolites, plant alkaloids, topoisomerase inhibitors, antibiotics, and

others [21], [22].

+* Antimetabolites are one of the most used and effective group of drugs against
neoplasms. They are cell-cycle specific, meaning they are most effective during
the DNA replication period (S-phase) of cell division. Specifically, antimetabolites
act as substitutes for the actual metabolites that would be used in the normal
metabolism, thereby preventing the synthesis of DNA, RNA, and subsequently,
cell division [23], [24]. They include compounds such as 5-fluorouracil,
gemcitabine, decitabine, 8-chloroadenosine and 6-mercaptopurine [22].

» Alkylating agents: Compared to antimetabolites, alkylating agents are cell-cycle

L)

phase nonspecific drugs that act on the DNA of the cells by preventing the
strands of the double DNA helix from linking correctly. This causes DNA strand
breaks which affect the ability of the cancerous cell to divide and ultimately leads
to cell death. Examples include cyclophosphamide, temozolomide, cisplatin,
carboplatin, busulfan and oxaliplatin [25], [26].

+* Topoisomerase inhibitors: Drugs of this category interfere with topoisomerase
enzymes, i.e., topoisomerase | and Il. These enzymes play a pivotal role in DNA
replication and transcription. By blocking them, it is possible to block the ligation
step during either replication or transcription of the DNA, thus creating a single-
and double-strand break which leads to necrosis or apoptosis. Agents in this

group are irinotecan, topotecan (inhibitors of topoisomerase |), etoposide and

teniposide (inhibitors of topoisomerase Il) [25].
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¢+ Cytotoxic antibiotics are drugs made from natural products. They are considered
cell-cycle non-specific as they act during multiple phases of the cell cycle. Some
commonly used anti-tumor antibiotics in this group are anthracycline antibiotics,

dactinomycin, mitomycin, bleomycin, and doxorubicin [22], [27].

Typically, chemotherapy is administered in cycles near or at the maximum tolerated
dose (MTD). This means the drug is given at the highest dose that yields tolerable side
effects. Although this strategy has been effective in many patients the excess use of
chemotherapy drugs (i.e., the duration of the treatment) in combination with the high
dosage levels may lead to short- and long-term toxicity and severe side effects.
Depending on the drug type, dose and treatment schedule, these side effects can vary.
Healthy cells with high proliferation rates, such those in the gastrointestinal (GlI) tract,
mouth, and throat, as well as blood cells are particularly susceptible. Nausea, vomiting,
oral and GI mucositis and alopecia (loss of hair) are the most common possible adverse

effects. [28], [29]. Fortunately, these side effects usually subside post-treatment.

To mitigate toxicity, an alternative therapeutic strategy involves administering
chemotherapeutic drugs at significantly lower doses. This approach, known as
metronomic chemotherapy (mCHT), differentiates from the conventional
chemotherapy not only in terms of dose levels but also in terms of frequency of the anti-
neoplastic drug administration [30]—[32]. Numerous studies suggest that smaller doses
of chemotherapeutic drugs without extended drug-free time intervals can effectively

manage the disease, lead to prolonged OS and reduce side effects [32]-[34].

1.2.4 Immunotherapy
Cancer immunotherapy, also called immuno-oncology, is described as a class of

therapies designed to strengthen or stimulate the patient’s immune system in the battle
against malignant cells. This comes in contrast with other conventional treatments like
chemotherapy which directly target the cancer cell. Immunotherapy usually involves the
modulation of the immune system response, either by enabling or enhancing it to fight
cancer. Common types of immunotherapies include cytokines, monoclonal antibodies,

and adoptive cell transfer therapy.
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+» Cytokines are natural (i.e., found in the human body) or synthesized (in the lab)
substances that affect the response of the immune system. Due to this reason,
they are also known as immune system response modifiers. They are a group of
proteins that boost the body’s defense mechanism and its response against
cancer. Interferons (IFN), interleukins and colony-stimulating factors (CSF) are
included in this category [35]. Interleukin-2 (IL-2) stands out among the
interleukins. It facilitates the proliferation and function of T-cells while augments
the cytotoxic activity of NK cells. It is primarily produced by CD4* T cells in
response to antigen stimulation. Nevertheless, it is possible to be secreted also
by CD8* T cells and activated DC and NK cells [36], [37].

+* Monoclonal antibodies (mAbs) were first introduced to the treatment of cancer
backin 1980, when administered to a patient with non-Hodgkin lymphoma (NHL)
[25]. In brief, these monoclonal antibodies for cancer are laboratory made
proteins which can identify and trigger an immune response against cancer cells.
They can also be used as a vehicle to deliver anticancer drugs or radiation directly
to the malignant cells using radioactive particles called radionuclides [38], [39].

+» An emerging and highly promising type of cancer immunotherapy is adoptive
cell transfer (ACT). Here, T cells are isolated from the patient’s blood and are in-
vitro genetically modified to display high specificity on tumor cells. Once
multiplied in vast numbers, these tailored T cells are re-infused back to the
patient’s bloodstream to attack the cancer cells without interfering with the
normal cells [40]. A type of ACT therapy with promising results (e.g., 92% of end-
stage patients with acute lymphocytic leukemia (ALL) were fully recovered [41])
is the chimeric-antigen receptor T-cell therapy (CAR). In CAR-T, the extracted T
cells are modified to express chimeric antigen receptors in order to interact with

cancer cells and kill them (see Figure 1.3 [42]) [43].

It is worth mentioning that by 2020 more than 75 anticancer immunotherapeutic agents
had already been approved by the regulatory agencies. Numerous others are currently
under investigation, either as standalone treatments or as adjunct to conventional

therapies [25], [39], [44].
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Figure 1.3. (Left) Diagram showing CAR T-cell therapy. (Right) Diagram showing the T cell
before and after genetic engineering. Adapted from [42].

1.2.5 Chemo-immunotherapy

Even though both immunotherapy and chemotherapy may successfully inhibit the
tumor growth progression, treatments failure remains a challenge in many cases. A
significant reason for this is the ability of cancer cells to develop resistance to
antineoplastic treatments due to continuous drug administration. Genetics and the
tumor microenvironment are two of the many contributing factors [45]-[50]. It is
estimated that drug resistance accounts for treatment failure in over 90% of the patients
with metastatic cancer [51]. Tumor cells can also acquire specific mechanisms through
which they evade immune surveillance and gradually develop resistance to

immunotherapy [52].

Addressing a major problem like this could dramatically improve survival rates and may
even lead to the treatment of the disease. Studies have shown that the use of
combination chemotherapy (i.e., administration of two or more different drugs) can
significantly help towards minimizing the effect of drug resistance [53]-[58]. Yet,
identifying multiple drugs that can be co-administered to effectively arrest tumor

growth and its progression is a challenging task that requires a lot of time and money.

Another rising strategy to deal with tumor resistance and disease progression is the
combination of chemotherapy and immunotherapy. For a long time, most of the
chemotherapy drugs were considered immunosuppressants. For this reason and due to
antagonistic effects, the combination of anti-neoplastic drugs and immunotherapy was

considered unapplicable. However, recent studies have shown that such combinations
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can have positive effects and result in improved clinical outcomes than chemotherapy
alone [59]-[61]. Chemotherapy not only has cytotoxic effects upon the cells but also can
enable immune system’s responses against tumors either by increasing the
immunogenicity of the tumor antigens or by halting the production of
immunosuppressive substances due to debulking of the tumor [59], [61]. Inhibiting the
tumor growth and reducing its mass through chemotherapy, results in smaller
population of cancer cells which is easier to be tackled by the immune system of the
organism, enhanced by immunotherapy. Of course, such a thing also reduces the

possibility of the tumor cells to develop immunoescape mechanisms.

Indeed, clinical trials combining chemotherapy and immunotherapy have reported
enhanced OS. For example, OS prolonged by an average of 4.7 months for lung
adenocarcinoma patients [62], by 3.7 months for breast cancer [63] and by 2.7 months
for small cell lung cancer (SCLC) [64]. Furthermore, when immunotherapy was
administered as a maintenance therapy post-chemotherapy, survival rates also
improved. For instance, the median OS for metastatic urothelial carcinoma patients

increased by nearly 7 months [65].

1.3 Key contributions and novelty of this Thesis

Mathematical modeling and in silico experiments in the field of oncology can optimize
chemotherapy and/or immunotherapy treatments, offering personalized care while at
the same time saving money. To this direction, the challenges of accurately describing
tumor growth inhibition (TGI) under chemotherapy and the identification of optimal
chemotherapy regimens are addressed. For this purpose, the Simeoni et al.’s TGl model
is utilized. Two novel ARX-based mathematical models for describing the growth of solid
tumors under the effect of chemotherapy, both for single and multiple anticancer drug
treatment, using laboratory data from human-to-mouse xenografts are also developed
and evaluated. Moreover, the feasibility of using ANFIS-based TGl models to accurately
model tumor growth is investigated in this work and three new models are introduced.
Lastly, the application of optimal control techniques is employed to extract optimal
chemotherapy dosing schedules, both periodic and intermittent. However, it is worth

mentioning that this research has some limitations, such as the small size of the dataset
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used and the need for further validation in other types of cancer, which are suggested

as potential future research directions.

1.4 Thesis organization

The organization of the thesis is described below:

In Chapter 1, a brief introduction to the complex world of cancer and solid tumor biology
is provided, and some key concepts underlying the biomedical background for the
anticancer treatments considered in this thesis are discussed. Additionally, a thorough
review of the most widely used treatment modalities for cancer and solid tumors is

conducted.

In Chapter 2, there is a comprehensive review of state-of-the-art mathematical models
employed to depict both unperturbed and perturbed tumor growth under different
therapeutic approaches including chemotherapy, immunotherapy, and their
combination. The models are examined in increasing order of complexity, both in terms
of their modeling and mathematical aspects. Furthermore, an introduction to optimal
control theory is provided, and its significance in developing and optimizing cancer

therapy protocols is highlighted.

In Chapter 3, the material and methods employed in this work are presented and
discussed. Specifically, the dataset used in this work is described, followed by a detailed
presentation of the estimation problem for the unknown parameters of mathematical
models, be they linear or non-linear. Last but not least, the short-term ahead forecasting
methodology is analytically described, and the evaluation metrics used are briefly

presented.

In Chapter 4, the well-established in the clinical practice Simeoni et al.’s tumor growth
inhibition mathematical model is presented and described. The model’s parameters are
presented and short-term step ahead predictions of the tumor growth (pancreatic

adenocarcinoma) under the action of gemcitabine are presented and evaluated.

In Chapter 5, a new approach to describe the tumor growth inhibition under the effect
of single and in combination anti-cancer drugs is introduced. Two novel linear systems

of difference equations (autoregressive with exogenous inputs - ARX) which model the
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growth of solid tumors under single and multi-agent chemotherapy treatments are

identified and evaluated using laboratory data of experiments in mice.

In Chapter 6, a short introduction to Adaptive Neuro-Fuzzy Inference System (ANFIS) is
provided and three ANFIS models for tumor growth inhibition under chemotherapy are
introduced and fitted to experimental tumor growth curves. One model simulates the
tumor growth inhibition under the action of a single chemotherapy agent, while the
other two models describe tumor growth under the effect of two drugs given in
combination. The chapter also includes short-term step ahead predictions of the tumor

growth under the effect of chemotherapy treatment.

In Chapters 7 and 8, non-linear and linear optimal control methods are applied for
efficient tumor growth eradication. First, a non-linear optimal control problem is formed
to determine the best (i.e., optimal) chemotherapy treatment strategy for tumor
eradication using advanced non-linear control method and by introducing an
augmented form of the non-linear Simeoni et al.’s TGl model. Then, linear quadratic
regulator (LQR)-based optimal control of tumor dynamics is used along with ARX TG/
models to explore possible optimal chemotherapy dosages for both periodic and
intermittent treatment schedules. Finally, the simulation results are presented,

discussed, and conclusions are drawn.

The last chapter, Chapter 9, presents a thorough discussion about the achievements and
the limitations of the present work. Analysis of the results obtained in this thesis is also

performed, and concluding remarks are provided.
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Chapter 2: Mathematical frameworks in tumor growth
and treatment

2.1 A survey of mathematical models for tumor growth

Mathematical modelling is powerful tool to quantitively describe the current knowledge
of a system or a process through parameters and mathematical equations. It can be used
not only to describe and simulate complex systems but also to test hypotheses and
validate experiments. In addition, the enormous costs of designing and conducting
laboratory experiments in order to simulate complex systems can be off-loaded through

mathematical models which provide relatively fast and costless simulations.

In oncology particularly, mathematical models have been introduced about 60 years ago
in an attempt to understand the highly complex dynamics of cancer. Using available
clinical end experimental data cancer mathematical models can be built, calibrated, and
validated. These data are usually collected through mouse clinical trials (MCTs). MCTs
are population studies that use cell line-derived xenograft (CDX) or patient-derived
xenograft (PDX) models (i.e., models of cancer where the tissue or cells from a patient's
tumor are implanted into an immunodeficient or humanized mouse) to assess efficacy
and predict drug responders in preclinical oncology drug development. The models’
parameters, usually based on biological and physiological grounds, can be estimated and
their prediction ability, i.e., how well a model can predict the tumor growth, can be
explored. As predictive tools, cancer mathematical models can be used also to anticipate
the outcome of new chemical entities and regimens used in treatment [66], [67] in an
attempt to optimize the preclinical experimental design. Finally, the description of the
relationships between treatment (i.e., chemotherapy drug pharmacokinetics (PK) and
pharmacodynamics (PD), i.e., the drug effects), and tumor progression may provide
new, valuable insights and offer several possibilities to understand better the cancer

process and therefore its treatment.

To this day, a plethora of tumor growth mathematical models has been created. This
kind of mathematical models can be classified as empirical (descriptive), mechanistic
and large scale/system biology models [68]. However, this is not the only classification
of the tumor growth models. They can also be grouped based on the scales of the

desired mechanism as continuous (i.e., models that study cancer at the tissue scale),
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discrete (i.e., models that study cancer at the cell scale) and hybrid [67], [69]. Moreover,
there are also a lot of studies that group models based on the type of the equations they
are structured, see [70]-[72]. Therefore, they are usually classified as ordinary
differential equation (ODE), partial differential equation (PDE) and algebraic equation

models.

Some of the first mathematical models for cancer were based on the von Bertalanffy
tumor growth equation and functions like the linear, the exponential and the logistic.
Even though such equations can describe the growth of several processes in living
organisms, their parameters lack the biology relevant information. All these models are
classified as continuous models with tumor to be considered as a set of cancerous cells
and described as the density of volume fraction of these cells. Key benefit of continuous
models is the small number of parameters they are composed of, which can be easily
estimated from the available experimental model system. Continuous models can be
further classified based on the heterogeneity of the cells forming the tumor including
inter and intratumor heterogeneities [73]-[75]. Many of the mathematical models
assume that tumor cells are similar, having common properties and undergo one-

dimensional growth. These models belong to the class of homogenous models.

The linear and the exponential growth are the simplest homogenous models. The linear
model assumes constant growth rate k, of the tumor cells, while in the exponential

model the number of the cancerous cells are increased exponentially with time (see Egs.

below).
Linear growth model d—T =k (2.1)
a9
with T(t) = k4t + Ty wherek; > 0and T, = T(t = 0).
. dT
Exponential growth model - = k,T (2.2)
t

with T(t) = Tye*s where T, = T(t = 0) (i.e., the tumor size at inoculation time t =
0). Initial growth of solid tumors is rapid [76]. However, their growth rate decreases as
the size of the tumor increases mainly due to limitations in nutrients, space and oxygen

[77]. In the above two models all tumor cells are assumed to obtain ample growth
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factors and nutrients, modelling an ideal scenario in which tumor cells proliferate
endlessly. Therefore, the saturation and the reduced growth rate as the tumor size

increases, is not captured.

These equations can be applied to model the initial stages of tumor expansion. For this
reason, alternative model formations in which the rate of tumor growth does not remain
constant have been explored. To capture the saturation of the tumor’s size the logistic
and the Von Bertalanffy models were introduced [66], [71]. In fact, both models describe
the tumor growth in relationship with the host carrying capacity. For example, in logistic
growth model the proliferation rate of the cancerous cells depends on and thus is limited
by a carrying capacity. As long as the tumor size T is smaller than the carrying capacity
Trmax thenits growth is nearly exponential. Things are a bit different as soon as the tumor
cells population size converges to the carrying capacity, where the growth is inhibited,

and the tumor size eventually reaches a plateau.

Logistic growth model ar kT<1 T) (2.3)
ogistic growth mode — = — .
gistice de 9 Trax
daT 2
Von Bertalanffy model — =aTs — BT (2.4)
t

It is worth to mention that in 1964, Anne Kane Laird formulated the Gompertz model of
tumor [77]. Even though the model was introduced by Benjamin Gompertz in 1825 as a
way to describe the human mortality curves [79], Laird was the first scientist to show
that the growth of a tumor, in the absence of therapy (i.e., the unperturbed case) follows
Gompertzian kinetics. This means the model assumes the growth rate of tumor

decelerates over time. The model is described by the following equation:

dT
Gompertz model == kT log(
ompertz mode It k,T log

) (2.5)

Tmax

Following Laird’s work, a series of papers have been presented. Through the works of
Norton and Simon [80]-[82] the Gompertz model was utilized in humans, modeling
breast cancer growth. However, models based on the Gompertz-Laird equation may be
problematic as the plateau is difficult to estimate. It is common, as a matter of ethics in

mouse clinical trials, to kill the mice when tumor sizes exceed a certain threshold (e.g.,
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T > 103 mm3). Usually this happens before the appearance of the plateau, therefore it

is not easy to estimate it.

The above models, i.e., (2.3), (2.4) and (2.5), are in fact special cases of a generalized

empirical model, described by the following ODE [67]:

dT_kng ( T )a (2.6)
t a Tnax '
with
T(t) =T, 1o (2.7)
— Imax Toa + (Tmax _ Toa)e—tkg )

where T, = T(t = 0) and a is a parameter which determines how fast the solid tumor
will reach its maximum size (i.e., saturation). In the case where a = 1 the model is
converted to the logistic model. On the other side, if a tends to 0% the generalized model
is reduced to the Gompertzian model of (2.5). The time curves (simulations) of the tumor

growth models described above are presented in Figure 2.1.

While it is useful to describe the time course of the unperturbed tumor growth, it is vital
to know the effects of the applied treatment (e.g., chemotherapy, immunotherapy, etc.)
upon the tumor cells. In light of this, classical models such as Gompertz have been
modified to include anti-tumor treatments and new models have been introduced. In
general, cancer treatment focuses on either reducing the overall size of the tumor (i.e.,
shrinking the tumor mass) by causing severe damage leading to the death of the
proliferating cancer cells or by decreasing the tumor's ability to grow (i.e., reducing the
carrying capacity). Treatment related tumor size reduction is typically described using
empirical drug-induced shrinkage terms [70] introduced to models’ equations as

follows:

dT

I (tumorGrowth) — (drugTreatment) (2.8)

where (tumorGrowth) denotes the net tumor growth:

(tumorGrowth) = (natural tumor growth) - (natural tumor death) (2.9)

and (drugTreatment) the drug-induced decay processes.
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Figure 2.1. Simulated time curves of tumor size from the linear (top left), exponential (top
right), logistic (bottom left) and Gompertz (bottom right) tumor growth models [71].

A standard approach to describe the anti-tumor treatment effect is through a log-kill
pattern, based on the concept that the tumor’s decay rate, due to treatment is

proportional to its size:

(drugTreatment) =d, T (2.10)

where d,. is the drug-induced decay rate. In its simplest form d, can be a constant
however it often represents a function that reflects the drug exposure, such as the drug

dose or the drug plasma concentration u(t):
de=Bu@®)T (2.11)

with [ to be a constant value or a time related function, describing the decay of the drug
effect over time [83], [84]. There are also other more complicated forms (linear or non-
linear) which describe the drug treatment effects upon tumor cells considering drug

resistance and by in biomarkers [71], [84]-[91].

A large number of the studies on modeling drug treatment effects on malignant tumors

incorporate the action of a single drug. However, the strategy of treating cancer with
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multiple drugs has become widely adopted. This approach aims to maximize treatment
effectiveness and reduce the risk of cancer cells developing resistance to the drugs being
used. To this direction, several mathematical models have been introduced trying to
model and explore possible interactions between the drugs in combination. Koch et al.
[92] and Rossetti et al. [93] are some examples. An extension of [92] and [93] models,
was presented and tested by Terranova et al. [94]. The model is based on the hypothesis
that the co-administered drugs damage the tumor cell populations either alone or in
combination which comes in contrast to [93] where no drug-drug interaction is modeled
(drugs act without interacting to each other). The drug's effect on the tumor divides the
cancer cells into two groups: to those that are damaged and those that are not. The cells
that belong to the first group, i.e., the damaged ones, will eventually die through a
transit compartment model that considers the delayed drug response. The rate of
damage to the tumor cells is described by three terms: two terms proportional to the
drug concentrations and one term that represents the interaction between the co-
administered drugs, which is proportional to the product of the drug concentrations. For
the case where treatment is based on a “cocktail” of two anticancer drugs a and b the

interaction effect is formulated as follows:
v=yu,(Ou,(t) T (2.12)

where y is the drug interaction related parameter, u,(t) and u,(t) are the
concentrations for each drug a and b, respectively and, T is the fraction of the

undamaged tumor cells [94].

Of course, the above equations model an ideal situation. Tumors may be comprised of
blood vessels and other cells subpopulations with which they compete for oxygen and
nutrients and interact not only with each other but also with normal cells such as
immune system cells [74]. The continuous models that are trying to model tumor growth
encapsulating the above theory belong to the family of heterogenous models. Usually,
tumor mass is separated into subpopulations of cells based on their activity (e.g.,
proliferative, quiescent, and necrotic cells) [95], [96]. Other heterogeneous models are
structured based on the assumption that tumor cells may have or acquire resistance to

treatment (i.e., they are not affected) [97]-[103]. This phenomenon is one of the most
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important factors that chemotherapy fails. In such models tumor cells are classified as
drug sensitive and drug resistance cells based on their sensitivity to treatment. Cell
proliferation takes place on both populations however, agents can only act upon and
damage drug sensitive tumor cells. An example of such model is described by the

following set of ODEs [104]:

(2.13)
dT,
—0= (1= (T, + T,))Ty — STy — du(t)T,
with
Se(®) = (e + au(v)) (2.14)

where T,., T are the drug resistant and the drug sensitive tumor cell populations and u
the drug dosage. The growth rate of the resistant cells (with respect to the population
of the sensitive tumor cells) is described by a factor p,- while the term S; models the
sensitive to resistant transitions (e accounts for the drug independent transition rate of
the sensitive to resistant and au(t) the drug related transition rate). Finally, the drug
induced deaths of the sensitive tumor cells are described by du(t) term, where d is the

drug cytotoxicity parameter.

In addition to these forms of models there are other approaches that model how tumors
grow, spread and metastasize [105]-[107] over time taking into account the availability
of vital nutrients and how they can affect tumor cells. A tumor is often modeled through
PDEs as a density of malignant cells in a spatial position (in single or multi-dimensional
space) at the tumor microenvironment or as a fraction of the maximum available volume
at this position. The studies of Burton [108], Casciari et al. [109] as well as the model of
cancer invasion presented by Gatenby and Gawlinski [110], [111] are some of most
important spatial models. For example, in [110] Gatenby describes the cancer cells
growth over time along with the hydrogen ions (H") that are secreted during tumor’s
cells proliferation (anaerobic metabolism). The increase of H* creates an acidic
environment which damages the normal host tissue. Furthermore, the model suggests

that there is a space between tumor and the host, and it is one of the few mathematical
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models that have been tested and confirmed experimentally. Another example is the
spatiotemporal model of presented by Papadogiorgaki et al. in [112]. In this work a
continuous 3-dimenstional mathematical model of a vascular glioma spatiotemporal
evolution is introduced. The model describes the interactions between four
heterogeneous glioma cell populations and their tissue microenvironment investigating
how they can affect tumor growth and invasion. It also includes the effects taking place
on concentration changes of important nutrients in the tumor microenvironment which
lead to the creation of tumor cell populations with varying metabolic profiles and
invasion capabilities. Such nutrients are glucose and oxygen. A brief review of this kind

of mathematical models is presented in the work of Harris et al. [74].

The complexity of the disease and the need to understand in depth its mechanisms led
to the creation of another category of models. Goal of these models is to provide a more
detailed and realistic representation of the complex processes underlying tumor growth.
To achieve this, they describe tumor growth as a series of discrete events scale taking
into account genetic and specific biophysical rules that are involved in its processes. The
mathematical models belonging to this category are classified as discrete models.
However, to build models of this kind may be a challenging and time-consuming task as
it may require significant amount of experimental data to parameterize the model. This
includes data on biochemical pathways, cell cycle, cell division, cell death, and other
intracellular events that control cell survival and death. Data can also be associated with
the spatial and temporal heterogeneity of tumors, as well as the effects of therapy and
the immune system on tumor growth. Obtaining such data often requires a
multidisciplinary approach involving expertise in areas such as cell biology, genetics, and
biochemistry. Despite the difficulties, these models can offer valuable understanding of
the biology behind tumor growth. Examples of such models can be found in [113]-[119].
To overcome such limitations hybrid mathematical models for tumor growth have been
introduced during the last years. Hybrid models or multiscale models — as they also
called — are comprised by both discrete and continuous variables taking advantage of

the strengths of both modeling techniques [120]-[123].

Accurate descriptions and predictions of the unperturbed and perturbed tumor growth

can help towards understanding the underlying biology of cancer evolution, provide
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predictions of response to treatments as well as inform treatment decisions leading to
improved patient care and outcomes. The tumor growth models reviewed in this
chapter comprise only a small portion of the total introduced number. A variety of
mathematical modeling approaches for solid tumors are comprehensively analyzed and

discussed in [67], [68], [70]-[72], [107], [124]-[127].

2.1.1 Mathematical frameworks for tumor-immune interactions
As mentioned in the previous chapter, the immune system is a fundamental unit in the

fight against cancer. Recent progresses in cancer immunology and immunotherapy
suggest that its use may be a key variable to prevent or even cure cancer [128]—-[135].
To this direction, mathematical modeling has also been used to provide a means to
describe and analyze the highly complex interactions between immune system cells
populations and cancerous cells. During the past years several mathematical models
describing the tumor-immune dynamics been developed. Immunotherapy,
chemotherapy their combined action and their effects against cancer have also been
explored and modelled. Some approaches that capture and model these dynamics and
their interactions in the tumor immune microenvironment have been proposed in the
works of [135]-[150]. By such systems clinicians have access to powerful insights into
stimulating and modulating immune responses to prevent or even treat cancer, and

therefore advance the development of tumor-immunotherapies.

One of the first systems that modeled tumor-immune interactions was introduced in
1994 by Kuznetsov et al. [137]. Based on the Lotka-Volterra predator-prey model [152]
Kuznetsov created a system of two ODEs able to describe the interaction of two cell
populations, the tumor cells (i.e., the prey) and the effectors’ cells (i.e., the predator).

The model is expressed by the following set of equations:

T = aT(1 — bT) —nET
(2.15)

E= dE + ET ET
-3 pg+T m

where T represents the population of tumor cells (i.e., prey) and E represents the
population of effector cells (i.e., predator). The aT (1 — bT) factor describes the growth

of tumor cells population while the mass action form —nET describes the fraction of
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tumor cells eliminated by the action of the effector cells. a is the maximum growth rate
of the tumor cell population and b~ the maximum carrying capacity of the tumor. The

size of the effector cells population is described by a constant rate s, and d is the natural

death rate of the effector cells. The term ng% is a Michaelis-Menten form which

describes the growth of the immune system cells due to the presence of the tumor.
Finally, a fraction of the effector cells population is eliminated due to its interaction with

the cancerous cells. This decay is described by the mass action form —mET.

Several mathematical models have then been built on Kuznetsov’'s model, either by
extending the model by adding more cell populations or by modifying terms. For
example, Roesch et al. [153] added first order loss terms, to include chemotherapy
damage to both tumor and immune system cells. Based also on Kuznetsov model,
Kirschner and Panetta introduced a three-population model that encapsulates IL-2
(Interleukin-2) dynamics, describing the interactions not only between tumor cells and
the activated immune system cells such as NK cells and cytotoxic T-cells but also with
cytokine [138]. In a more recent study, Dong et al. [154] used a simpler version of
Kuznetsov’s (as proposed by Gallach [155]) combined with the treatment modelling
approach proposed by Kirschner and Panetta including to the system treatments such

as TIL injections that boost the immune activity against the tumor cell population.

In 2001, De Pillis and Radunskaya [156] introduced a competition model of tumor
growth that includes both the immune system response and chemo drug therapy. It is a
four-population model based on aspects of previously developed models such as the
Kuznetsov model that includes malignant tumor cells, healthy host cells, immune system
cells as well as drug interaction. It incorporates immune response to tumor growth along
with chemotherapy. The growth of the immune cells may be stimulated by the presence
of the tumor and that can destroy tumor cells through a kinetic process. Both normal
cells and tumor cells compete for available resources, while immune cells and tumor
cells compete in a predator-prey fashion (competition terms). The model was used to
analyze the stability of the drug-free equilibria with respect to the immune response and
to simulate qualitatively the asynchronous tumor-drug interaction, i.e., the “Jeff’s

Phenomenon” [156].
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A set of four non-linear differential equations describes the system:

, plT B
I=s+a+—T—cllT—d11—a,(1—e I

T =1r;T(1 = byT) — c,IT — c3TN — a;(1 — e ™)T (2.16)

u=v(t)—du

where I, T and N denote the immune cells (such as CD8+ T cells), the tumor and the
normal cells populations, respectively and u is the concentration of the chemotherapy.

The model parameters are presented in the table below:

Table 2.1. Description of the De Pillis model parameters [156].

a; Fraction immune cell kill by chemotherapy L/mg

ar Fraction tumor cell kill by chemotherapy L/mg

ay Fraction normal cell kill by chemotherapy L/mg

a Immune threshold rate cells

by Tumor cell carrying capacity cells~1
by Normal cell carrying capacity cells~1

Immune source rate ceIIS/day

p Immune response rate day !

c1 Competition term cells"*day~*
c, Competition term cells~tday™?
C3 Competition term cells~tday™?
Cy Competition term cells~tday™?
d, Per capita death rate of immune cells day!

d, Per capita decay rate of the drug day?!

rr Per unit growth rate of tumor cells day™!

Ty Per unit growth rate of normal cells day~!

Cell populations are damaged by constant rates a;, i = I, T, N which differ for each cell
type. Normal cells are being damaged at the lowest rate. On the contrary, tumor cells
are damaged with the highest rate. With treatment terms included in the model,
simulations with hypothetical dosing schedules are possible. This fact along with the
simplicity of the model have made easy to apply optimal control theory and search for

improved treatment protocols. Based on this model, several other, more advanced
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tumor-immune models have been created [142], [35], [157], [52], [158]-[161]. In
addition to that, numerous studies on the optimal control theory for chemotherapy
have been published and used to identify and design practical treatment protocols that
could improve the standard regimens [149], [162]-[169]. Detailed reviews of tumor-
immune interaction models can be found on the works of Adam and Bellomo (1997)
[170], Eftimie et al. (2011) [171], de Pillis et al. (2014) [172], Altrock et al. (2015) [173]
and Mahlbacher et al. (2019) [174].

2.2 Foundations of pharmacokinetic (PK) modeling

Most mathematical models for tumor growth incorporate the effects of chemotherapy
on cancer cells. To do that, the drug plasma concentrations of each dosing regimen are
inputs to the pharmacodynamic model. While it is vital to know how the administered
drug affects the host, it is equally important to know how the body interacts with the
drug. Pharmacokinetics (PK) is defined as a branch of pharmacology that focuses on how
therapeutic agents (i.e., drugs) move during their passage through the body (i.e., in the
blood and subsequently in the tissues), reach their site(s) of action and excreted from

the body.

As soon as a chemical enters the body a series of quite complicated processes begins.
Absorption, distribution, metabolism, and excretion (ADME) are the four processes
which govern the rate of drug accumulation and elimination. A summary of the ADME

stages is presented in Table 2.2.

Table 2.2. Description of the ADME stages [175].

Absorption The drug enters the body and the systemic circulation.
Distribution The drug is distributed to the peripheral tissues.

The drug is transformed to other chemical compounds called

Metabolism >
metabolites.

Excretion The drug is excreted from the body (through kidneys and urine).

2.2.1 Compartment models in drug Kkinetics
Through mathematical modelling, PK can describe the time course of the drug

concentration in the different areas of the body. However, due to the complexity of the

ADME processes some simplifications are essential. A common approach to do this is by
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simulating the body and its processes through compartmental models. More
specifically, the body is divided into discrete parts, i.e., compartments where the drug
kinetics are similar. For example, in organs such as the heart and the liver the drug
kinetics follow a similar pattern, thus they may group into a single compartment. The
concentration of the drug is measured usually in the plasma. For this reason, plasma and
organs like the kidneys, the lungs and the liver are grouped into the same compartment

which is called central or highly blood-perfused compartment [176].

At this point it is important to define drug concentration. Concentration is defined as

amount of the drug per volume, e.g., in mg/L and it is calculated as:

amount of the drug (11?_:)
C = " ( kig ) , (2.17)

where V; in L/kg is the volume of distribution. The volume of distribution is basically the
apparent volume which the chemical compound must be dissolved as soon as it enters

the body in order to reach the measured concentration C [177].

The properties of the administered drug along with its observed concentrations in the
plasma over time can define the number of the compartments required to accurately
describe the PK of the drug. In general, there are one-compartment, two-compartment
and multi-compartment models which can be used to model the concentration of an
agent in the organism over time. The simplest form of such model includes just the
central compartment (see Figure 2.2). In this case both tissues and fluids of the body are
included in the compartment while the drug the drug is assumed to be delivered
instantly. On the contrary, advanced models like two and multi-compartment models
include not only the central, but also other compartments such peripheral and
absorption (see Figure 2.3) in the case of extravascular administration of the drug, i.e.,
intramuscular (i.m.), subcutaneous (s.c.), intraperitoneal (i.p.), oral, etc. A peripheral
compartment may include tissues (e.g., muscles and fat) and fluids such as cerebrospinal

where the distribution of the drug is slower compared to plasma [178], [179].
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D0Se e Central
kos

k1o
Figure 2.2. One-compartment model representing the transfer of the drug to the central

compartment (plasma, etc.). ko1 and kio represent the first-order fractional rates for absorption
and excretion of the drug.

k12
——
Dose ———p | Central Peripheral
Koz <
k21

k1o

Figure 2.3. Two-compartment model representing the transfer of the drug to and from the
central and peripheral compartments. koi, k1o, k12 and kz; represent the first-order fractional
rates for absorption, excretion, distribution, and redistribution.

It is also essential to model the changes in the amount of the drug across the body, i.e.,
in the tissues, the blood (plasma), the organs and the fluids and how it transfers between
the different compartments. For this reason, transfer rates of the drug have been
introduced. For instance, the transfer rate of the drug (over time) between two
compartments is usually described by two first-order rates k2 (ht) and k21 (h?). In most
PK models the elimination of the drug takes place in the central compartment where it
is excretes from the body at a constant rate kio (h2). A two-compartment model for

bolus administration can be described by a system of differential equations, as follows:

G1(t) = —k10q1(t) — k12q1 () + k21q2(t) + koqu(t)

G2(t) = k12q:(t) — k219, (t)

C.(t) = qlv(lt) (2.18)
G (t) = qZV(t)

2
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where ko1, k1o, k12 and k23, in h', represent the first-order transfer rates for absorption,
excretion, distribution, and redistribution, u is the drug dose in mg/kg, q;, q, are the
amounts of the drug in the central and peripheral compartments, and C; and C, in mg/L
are the drug concentrations, respectively. The drug concentration in the central
compartment C; is equal to the concentration in the plasma. Finally, V; and V, in L/kg
are the volumes of distribution for each of the two compartments. More details about

these and other pharmacokinetics parameters can be found on [176], [180].

2.3 Application of optimal control theory in cancer treatment

Optimal control theory (OCT) is a mathematical framework for analyzing dynamic
systems and determining the best control signal overtime that will lead a process to
satisfy certain constraints while at the same time will maximize or minimize (i.e.,
optimize) a predefined performance index. To determine the optimal control signal, it is
necessary to define an optimal control problem (OCP). This involves, in the simplest
case, the optimization of an integral equation J, subject to a set of ODEs describing the

dynamics of the in-study dynamic system D:

tr
Minimize Jp(x,u t) = f F(x,ut)dt
0

(2.19)
. dx
Subject to:  —= = D(x,u,t)

with  x(0) = x,, 0=ty <t<t
Where t is the time, x € R" is the system’s state variables (e.g., tumor mass, cell
populations at time t), u € R™ is the control vector (e.g., drug doses at time t) which
affect the behavior of the system, x; is the system’s states vector valuesat t = t, = 0,

while tr is the simulation end-time.

Once the OCP is formulated, there is a variety of numerical methods that can be used to
solve it. There are two broad categories in which they are fall into: the direct and the
indirect methods [181]. In a direct method a process called “direct transcription” takes
place. The OCP is transformed into a discrete constrained minimization problem. The
system’s states and control variables are discretized to get a non-linear programming

problem (NLP). Then, the NLP problem is solved using iterative non-linear optimization
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algorithms. However, methods of this type can be sensitive to initial conditions making
difficult to find the global optimal solution. Even though they are generally robust they
can also be computationally expensive especially in where the number of the system
states and the control variables is large. Direct Collocation (e.g., Hermite-Simpson),
Direct Single Shooting and Direct Multiple Shooting are some commonly used direct

methods [181].

On the other hand, in indirect methods the problem is transformed into another type of
problem, which then can be solved using numerical methods. Based on the nature of
the given optimal control problem, the optimality conditions typically lead to a two-
point boundary value problem (TPBVP) or a multi-point value boundary problem
(MPBVP). The optimal solution is determined by satisfying optimality conditions rather
than directly minimizing a cost function, as in direct methods. Pontryagin’s maximum
(or minimum)principle (PMP), dynamic programming (DP) and Hamilton-Jacobi-Bellman
(HJB) equation are some of the most well-known indirect methods [182]—-[184]. More
information about direct, indirect, and other type of methods can be found on [185]—

[190].

The solution of the optimal control problem of dynamical systems is well-established for
Linear Time Invariant (LTI) systems subjected to a linear quadratic functional. The
solution of algebraic Riccati equations (ARE) produces necessary information to
compute the optimal feedback gain(s). Hence, the regulation (stabilization) problem of
LTI systems, which is known as linear quadratic regulator (LQR), is solved in optimal way.
The optimal control for non-linear systems, on the other hand, cannot —in general — be
handled in a way similar to LTI systems as the solutions of HIB equations do not yield a
straightforward procedure. Analytical solutions for the optimal control may be obtained
for only a few restricted cases since the governing equations for optimality are also non-
linear and their solutions should satisfy the terminal conditions. It is well known [24]
that even numerical solutions for the optimal control cannot be obtained with precision
for non-linear systems as the number of possible candidates for the optimal solution is
not known [186]. This difficulty brings out many different approaches to approximate
solutions to the HIB equation which are regarded as suboptimal solutions to the optimal

control problem of non-linear dynamical systems.
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One of the approaches to the optimal control of non-linear systems is the use of the
State-Dependent Riccati Equation (SDRE) [191]. In brief, SDRE provides a systematic
approach to design non-linear feedback controllers that can approximate the solution
of the infinite time horizon optimal control problem. It gives time responses of the non-
linear mathematical model in real-time, making it possible to implement the controllers
online. Essentially, SDRE allows for the design of controllers that can control non-linear
systems in real-time by approximating the optimal control solution [192]-[194]. This is
achieved by factoring the non-linearity of the state equations as product of a state-
dependent matrix with the state vector (i.e., the non-linear system of equations is
transformed to a linear structure comprised of state-dependent coefficient matrices).
The simplicity of the algorithm along with its effectiveness make SDRE the ideal tool for
the design of non-linear controllers. In contrast to other strategies which try to solve
Hamilton-Jacobi-Bellman partial differential equations and non-linear two-point
boundary value problems, the SDRE method involves only the factorization of the non-
linear dynamics to a linear structure and an ARE. A detailed description of the LQR and

SDRE methods is presented in Appendix D.

2.3.1 Optimal control theory in tumor growth modeling and treatment
strategies

Despite the significant increase in the number and types of cancer treatments during
the last decades, the precise dosing and timing of administration of the drug remains
imprecise. Treatment regimens are determined through costly and lengthy clinical trials,
which first determine the MTD and then assess the expected effectiveness for the
average patient. However, this approach, within the clinical trial system does not allow
for a systematic evaluation of all possible dosing schemes, leaving the optimal

scheduling of radiation and systemic therapies, such as chemotherapy, largely unknown.

In the context of tumor growth modeling, OCT can be used to determine the optimal
treatment strategy for a given patient. This involves finding the best immunotherapy
and/or chemotherapy drug dose levels and treatment schedules, taking into account the
predicted growth of the tumor and the potential risks and benefits of different
treatment options [195]. Once a tumor growth model has been developed, using

patient-specific data, optimal control theory can be used to determine the optimal
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treatment strategy which may lead to tumor eradication while minimizing any potential
risks or side effects of treatment. In literature, some of the first applications of optimal
control theory to mathematical models of cancer biology and tumor treatment date
back to 1970s [196], [197]. Specifically, the work of Swan and Vincent in 1977 [197] was
the first to apply optimal control in human IgG multiple myeloma. Till this day a plethora
of works on optimal control for mathematical models of cancer therapies such as
chemotherapy and/or immunotherapy have been published. A small pool of such works

can be found on [156], [162], [163], [172], [195], [168], [198]-[217], [218], [219].

Usually, a tumor receiving some kind of treatment, such as chemotherapy, can be
viewed as a control system. The state of the system is given by the population(s) of
cancer cells or the tumor mass(es) at time t, while the control signal(s) at that time ¢, u.
Typically, the variable u represents the amount of the administered drug or its impact
on healthy tissue and cancer cells. Since chemotherapy can affect both types of cells
(normal & cancer cells) the goal of the control problem is to minimize the number of
cancer cells while also maintaining a safe level of toxicity for normal tissue. Overall,
optimal control theory can be a useful tool for optimizing treatment decisions in the
context of tumor growth modeling, helping to improve patient outcomes and increase

survival rates.
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Chapter 3: Material and methods

3.1 Human-to-mouse xenograft data
Experimental data from human-to-mouse cancer xenografts were used in the present
study. The data were obtained from the experimental studies reported by Bilalis et al.

[220] and Rocchetti et al. [93].

In the first case (i.e., data from Bilalis et al.), AsPC-1 human pancreatic cancer cell line
was xenografted subcutaneously at the rear flank of male NOD SCID mice. All mice
received intraperitoneal injections of gemcitabine twice, in a week interval (the days 19
and 26 after the inoculation of the tumor cells). The dose of the drug was at 100
mg/kg/injection/mouse (see Figure 3.1). The pharmacodynamic (PD) data after the two
i.p. injections of 100 mg/kg on days 19 and 26 after the inoculation are given in Table

3.1 below:

Table 3.1. Average tumor masses registered in the experiment of [220] (i.e., gemcitabine given
i.p. at 100 mg/kg on days 19 and 26).

Day Unperturbed Under gemcitabine

15 0.22 0.22
19 0.41 0.43
22 0.83 0.64
26 1.16 0.80
32 1.41 1.00
35 1.34 0.98
39 1.65 1.25

It must be noted that linear interpolation was used to estimate the “unobserved” tumor
masses in the time instants that an observation (tumor measurement) was not carried

out (e.g., at days 0-14, 16-18, 20-21, etc.).

Day 0 19 26 39

| v v |

[Gemcitabine 100mg/kg ]

Figure 3.1. Gemcitabine treatment schedule: 100 mg/kg administered at days 19 and 26 post
tumor inoculation.
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In the second case (data from Rocchetti et al. [93]), HT29 human colon cancer cell lines
were implanted subcutaneously at the left flank of mice. All mice of the experiments
received intravenous injections of irinotecan (CPT-11) and 5-fluorouracil (5-FU) in
combination with an under development anticancer agent C2 (see Figure 3.2 and Figure

3.3).

Day 0 Of 13 17 70
| |
[S-FU 50mg/kg ]

Day O 70
| |
[Drug C2 60mg/kg ]

Figure 3.2. 5-FU and drug C2 treatment schedule: 50 mg/kg of 5-FU administered q4dx3 from
day 9 and 60 mg/kg of drug C2 on days 10, 11, 12 and 14, 15, 16 post tumor inoculation.

Day O Of lf 17 70
| |
[CPT-11 45mg/kg J

Day 0O 70
| |
[Drug C2 60mg/kg ]

Figure 3.3. CPT-11 and drug C2 treatment schedule: 45 mg/kg of CPT-11 administered q4dx3
from day 9 and 60 mg/kg of drug C2 on days 10, 11, 12 and 14, 15, 16 post tumor inoculation.

5-FU and CPT-11 were given iv at doses of 50 mg/kg and 45 mg/kg respectively, three
times at an interval of four days (q4dx3), starting from day 9. On the other hand, drug
C2 was administered orally at 60 mg/kg on days 10, 11, 12 and 14, 15, 16 after the tumor

inoculation.

3.2 The inverse problem: parameters estimation in mathematical
modeling

In many mathematical modeling cases of physical processes, the model parameters are
unknown. Therefore, they must be estimated using the available input-output
experimental observations. This type of problem is often called the “inverse problem”.

It is called “inverse” since it uses the results of actual observations to infer (i.e.,
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calculate) the casual factors that produced them (i.e., the numerical values of the

parameters of the linear/non-linear mathematical model).

Observations — Casual factors (model parameters)

A way to address this is by defining and solving an optimization problem. An
optimization problem is a computational problem in which the object is to select the
optimal solution from among the set of candidate solutions [221]. In order to quantify
and evaluate the goodness of a possible solution an objective/cost function is used. To
be more specific, a set of arguments that minimizes the value of the cost function subject
to a number of constraints is explored. The set which gives the global minimum value
(i.e., the minimal cost function value) is the solution to the optimization problem. This

vector of values is also the solution to the parameter estimation problem.

A standard mathematical representation of the general optimization problem is shown

below [222]:
LetJ] R®->R
Find 2 = argminJ(x), x €R"
Subject to: gi(g) <0, i=1,..,m (3.1)
hj(g) <0, j=1,..,p

Xrmin S Xp S Xpmax T = 1,..,n

where J is the objective function, X is the unique minimizer and the solution to the
problem, gi(g) is an inequality constraint and hj(g) an equality constraint function. The
vector x =[xy, ..., x,] represents the design variables. The adjustment of these

variables inside the design space defined by the constraints leads to the global optimum.

Ideally, for each cost function there is a set of parameters’ values which provides an
optimal solution to the problem. However, in many cases it is very difficult to find a
unique vector of values that provides a global solution to the problem (see Figure 3.4
and Figure 3.5 below). In many applications the objective function can have both a global
minimum and several local minimizers. Hence, it may be hard for optimization
algorithms to identify an optimal solution to the problem. Among optimization
approaches, linear and non-linear, metaheuristic optimization methods have proven

capable of finding near optimal solutions to various problems. In contrast, analytical
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approaches may not detect the optimal solution within a reasonable computational

time, especially when the global minimum is surrounded by many local minima.
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Figure 3.4. A non-convex objective function Figure 3.5. A convex function with one global
with a global minimum and multiple local minimum.
minima.

Metaheuristic algorithms are usually inspired by observations of phenomena and rules
found in nature, such as the Genetic Algorithm (GA), Simulated Annealing (SA), Particle
Swarm Optimization (PSO), Harmony Search (HS), and so on. A relatively new
metaheuristic optimization algorithm capable of finding solutions to complex
constrained and unconstrained optimization problems is the Neural Network Algorithm
(NNA) [223]. This method is based on the biological nervous system and the
structure/configuration of artificial neural networks (ANNs). A detailed description of

the algorithm is given in Appendix A.

In the cases of the experimental data, such as those of Bilalis et al. [220] and Rocchetti
et al. [93], which are studied in this work, the tumor growth curve (i.e., the model
output) in combination with the delivered chemotherapy dosing (i.e., the model input)
are used to estimate the values of the parameters of each model from the experimental
observations (i.e., the physical process). More specifically, an objective function J, which
depends on the model’s unknown parameters values and time, created by the
comparator of Figure 3.6, must be minimized with respect to the vector of the model’s

unknown parameters X.

The vector that minimizes the cost function ](g, t), is the solution to the model

parameters estimation problem.
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inpUtS[t;tend] oupUtSP[t;tend]

Physical process

E[trtend]

m -

Tumor growth
mathematical
model

inpUtS[trtend] oupUtSm[t:tend]

Figure 3.6. Comparator procedure between the physical experimental process of xenografted
mice and the under fitting to the experimental data tumor growth inhibition model.

A commonly used objective function, described by the equation below, is the sum of

square errors:

N-AT
J(@t) = ) E*(xt),wheret = i-AT,i = 01,...,N (3.2)
t=0

where E(g, t) is calculated as the difference between the measured (observed) tumor
mass at each time point t and the tumor mass estimated by the model simulation at the

same time point t.

E(E' t) = OutPUtphysical(t) - Outputmodel(& t) (3'3)

with output,pysica to be the observed tumor mass and outputmodel(g, t) the tumor

mass estimated by the model.

Of course, introducing extra terms in J, such as the regularization term:

L, = Az X2 (3.4)

where A is the regularization strength, can help in preventing overfitting, especially in
cases where a model has a large number of parameters. This term penalizes large values
of parameters to avoid overfitting, with the strength of this penalty determined by 1. A

larger value of A results in stronger regularization.

3.3 Adaptive short-term ahead predictions of tumor growth evolution

Accurate (statistically) forecasting of tumor evolution is essential for evaluating

treatment efficacy. A methodology for statistically robust predictions of tumor growth
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in the near future, based on available experimental data up to a given time instant is
described here. The proposed approach utilizes the parameter estimation of a
mathematical model, linear or non-linear, to simulate and predict tumor growth
inhibition.

Firstly, the parameters of a mathematical model representing tumor growth are
estimated using a subset of experimental data available from day O up to a specific time
instant, denoted as t,, t, < tond, teng being the last day of the experiment. For this
purpose, methods such as NNA and Complex method of Box can be used. Once its
parameters are estimated, the model is numerically integrated (i.e., simulated) using the
available inputs, i.e., the anticancer agent dosing of the experiment delivered up to time
t, (model inputs) for the time periods [0, t, + i], i € N, i being the forecasting horizon,
i.e., the number of steps (e.g., days) ahead. This simulation aims to predict tumor growth
inhibition for different time horizons, such asi = 1, 2, 3,4, or 5 days ahead, leading to
[0,t, +1],[0,t, + 2],[0,t, + 3], [0, t, + 4], and [0, t, + 5] time periods, respectively.
To assess the accuracy of the predictions, commonly used metrics, such as the root
mean square error (RMSE) and the mean absolute percentage error (MAPE), are utilized
for each step ahead. More in information on the metrics used can be found in the
Section 3.4. Following prediction evaluation, the model parameters are updated for the
"new" time period [0, tonew = te + 1]. Specifically, the model parameters are re-
estimated based on a new, extended subset of the experimental data, available until
day te new = te + 1, acting as an extended window. The time instant t, ., is assigned
as the new "time index" t,, and the procedure re-starts and repeated, iteratively
updating the model parameters and predicting tumor growth until the final
experimental day, t, 4o = teng- The above methodology can be understood through

the simple flow diagram, shown in Figure 3.7.

To improve prediction accuracy and computational efficiency, a moving (rolling/sliding)
window technique can also be applied to the experimental data, instead of the extended
window. This technique involves selecting subsets of time-dependent measurements by
considering the most recent [ time instants' measurements (t = n - AT, where n =
0,1,...,N,and [ < N).Thelength of the moving window can be determined either by

trial and error or by using metrics, such as the Akaike's information criterion (AIC) [221].
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Figure 3.7. Flowchart of the proposed procedure for the measurement and the model update,
ensuring effective adaptive short-term ahead tumor growth prediction.
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By continually updating the mathematical model parameters based on the "input-
output" measurements within the moving window formed at each time instant, the
methodology may efficiently capture the changing slopes of the experimental data
curves. This iterative parameter update process enables the model to adapt and align
more closely with the observed tumor growth dynamics, which may result in improved
predictive accuracy. The inclusion of the moving window approach ensures that recent
data points have a stronger influence on parameter estimation, which potentially may

enhance the model's ability to capture temporal variations in tumor evolution.

3.4 Performance evaluation metrics

The performance of the models, their fitting to the tumor growth data as well as the
tumor growth predictions were evaluated using statistical parameters. More
specifically, commonly used scale-dependent and scale-independent metrics such as the
mean square error (MSE), the root mean square error (RMSE) [224] and the mean

absolute percentage error (MAPE) [225] were calculated to measure the fitting error:

1 d
MSE (units?) = EZ(P" — 0;)? (3.5)
i=1
1 d
RMSE (units) = EZ(P"_Oi)Z (3.6)
i=1
1< /|P — 0]
MAPE (%) = — — 1 %100 (3.7)
d ¢ - 0;
L=

where d is the number of the data points in the dataset (e.g., the tumor mass at each
time point (e.g., day)) and P; denotes the prediction (estimation) of the actual
measurement (observation) 0;. The smaller the value of the statistic is (i.e., closer to 0),

the better the identified model performs.
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Chapter 4: Tumor growth inhibition (TGI) mathematical
model

4.1 The Simeoni et al.’s TGI mathematical model

A first order differential equations (i.e., state-space) mathematical model based on a
few biologically pertinent parameters, with only requirement the data collected in
preclinical studies such as the pharmacokinetics (PK) of the anticancer drugs, linking the
progress (i.e., evolution) of the tumor mass with the administrated anticancer agent
during treatment, is the one first presented by Simeoni et al. in 2004 [226], [227]. The
pharmacokinetic-pharmacodynamic (PK-PD) state-space mathematical model (TGl
model, in brief) is described by the set of the non-linear first order differential equations
(4.1) shown below:

dzy(t) Ao * Zo(t)
dt

T — ky - c(t) - z(t)
M
1+ (j—‘i . W(t)) ]

d
5 k) 20 ~ k210 an

dz,(t) _

dr kq [Z1 () — 2, )]
dz;(t) _

T ky - [z,(t) — z3(t)]

w(t) = z(t) + 21 (t) + z,(t) + z3(¢t)
with
zo(0) = wgand z;(0) = z,(0) = 2z3(0) =0

And c(t) = 0, before any treatment administration.

The unperturbed growth of the tumor in xenograft models is characterized by two
phases [226], [228]: a rapid or exponential growth at the early stages of the tumor
development, followed by a linear one, when the tumor mass overcomes a certain
threshold. This behavior is accurately descripted by the equations of TGl model shown
above. It has been observed that the value Y = 20 allows the (4.1) system to pass from
the first order to the zero-order growth sharply enough, during the unperturbed tumor
growth phase. The parameters A, and 4, represent the growth rates of the two phases

described above, i.e.,, the exponential and the linear growth rate, respectively.
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w, represents the tumor mass at the inoculation time, defined as t = 0. In treated
animals, the administrated anticancer agent concentration c¢(t) (in mg/L) is not zero and
thus its effect impinges upon the cycling (proliferating) cancer cells, i.e., the perturbed
tumor growth phase. Due to the action of the anticancer treatment, a portion of these
cells stops proliferation and after passing through three progressive stages of damage
they finally die. At each time instant t (t = 0) the total tumor mass w(t) (i.e., the output
of the model) is calculated as the sum of all state-space variables z. More specifically,
z,(t) is the mass of the proliferating tumor cells and z;, i = 1,2,3 is the mass of the
damaged (by chemotherapy) tumor cells in each stage of damage. The plasma
concentration of the antineoplastic agent is indicated by the variable c(t) (i.e., the input
to the model). The portion of the tumor cells damaged by an anticancer drug is increased
by a parameter k,, which is a measure of the drug’s potency. In case a cancer cell is
affected by the agent action, cell division stops, and it proceeds through three different
states z;, z, and z3, each one defined by different progressive stages of damage. The
transition from a state to another, i.e., the kinetics of cancerous cell death, is described
by a first order rate constant k,, which is inversely proportional to the mean time-to-
death of the tumor cells. In brief, the set of the two parameters (k,, k,) describe the
effects of the anticancer drug to inhibit the tumor growth while (w,, 1,, 4,) describe the
tumor kinetics in absence of treatment (i.e., the unperturbed case).It is important to
note that in the unperturbed case where c(t) = 0 the total tumor growth mass is
calculated as w(t) = z,(t). A diagram, adapted from Simeoni et al. [226] that describes

the TGl model can be seen in Figure 4.1 below:

Chemotherapy
treatment

Proliferating | \_(model input)

i 3 stages of tumor cells progressive damage
cells

kz C(t) kI @ kI @ kI
death

Exponential growth followed by a linear Tumor weight

phase (g) at any time [w(t)=Zo+Z1+Zz+23]

(model output)

Figure 4.1. Diagram of the PK-PD TGl state-space model introduced by Simeoni et al. [226]. ki:
first-order rate constant of transit; k,: anti-tumor potency of the anticancer agent, c(t): plasma
concentration of the anticancer agent and w(t): tumor weight at any time t.
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The set of the above non-linear differential equations (4.1), can be also written in the

following form:

2(6) = f(2(6),x) + B (2(0)) u(®) (4.2)

where z;(t), i = 0,1,2,3, are the four state variables, xT 2 [kq, k,, 19, A1, W] is a vector
of the five biologically relevant principal parameters and u(t) £ c(t) is the input (i.e.,
chemotherapy drug plasma concentration) to the model. A short description of each

parameter of the model is presented in Table 4.1 [226], [227].

Table 4.1. Pharmacodynamic (PD) parameters of the TGl model.

k, First-order rate constant of transit 1/day

k, Anti-tumor potency of the anticancer agent  ml/ng day
Ao Exponential tumor growth rate 1/day

A4 Linear tumor growth rate g/day

W Tumor mass at the inoculation time g

Apart from the five principal pharmacodynamic (PD) parameters described above, two
important and biologically relevant parameters, also called “secondary TGl parameters”
can be obtained from the TGl mathematical model [227]. The first one is a time efficacy
index (TEI) which can be calculated using the following equation:

_ k2 'AUC

TEI ,
Ao

(4.3)

where AUC is the area under the plasma concentration-time curve of the administered
anticancer agent. TEI is a time metric that measures the efficacy of a chemo treatment
using the achieved tumor growth delay, i.e., the time-lag required to achieve a
predetermined tumor mass between treated and untreated animals during the linear

phase of the tumor growth.

Cr is another parameter which can be calculated. It describes a threshold of the
delivered anticancer agent’s concentration in order to achieve tumor eradication.

Treatment schedules with concentrations exceeding Cr for at least some period of time,
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may be capable of delaying significantly the tumor growth and reducing correspondingly
the tumor mass. The threshold concentration can be calculated as follows:

Cr=1o (4.4)

4.2 Model identification - TGI model’s parameters values estimation

The tumor growth inhibition model presented above has been extensively used to
describe the dynamics of the growth of several cancer cells lines (see [226], [227], [229])
under the effects of different chemotherapy compounds administrated in several
different schedules. As in many mathematical modeling cases of physical processes, the
mathematical model parameters are unknown, and they must be estimated using the
available input-output experimental observations. In the case of the experimental data
of Bilalis et al. [220], the gemcitabine regimen (i.e., the TGI model input) in combination
with the tumor growth curve (i.e., the TGl model output) were used in order to estimate
the Simeoni et al’s model’s principal parameters values from the tumor mass

observations (the physical process).

A cost function J depending on time and the TGl model’s unknown parameters values,
created by the comparator procedure of Figure 3.6 and (3.2) and (3.3), was minimized
with respect to the vector of the unknown parameters of the model, xT =
ki, ko, Ao, A1, Wo] £ [xq, ..., x,] (n = 5 in the present case) to be to best fit of the TGI
state-space mathematical model to the experimental data. For any given set (i.e.,
vector x) of the unknown parameters’ values, the non-linear TGl model, when solved
numerically for the same time period as that of the experiments, simulates the tumor
growth for the same time period. The vector of the unknown parameters’ values that
minimizes the cost function ](g, t) is the solution to the TGl mathematical model’s
unknown primary parameters kq, k,, wy, 1, and A, estimation problem. The function
](g, t) formed by the sum of square errors during the xenografted mice experiment
period was minimized using the non-linear optimization algorithm NNA. Further details
on the working principles of NNA can be found in the Appendix A. To achieve the best

fit to the experimental data some hard bounds on the model’s primary parameters
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values was defined. The lower and upper physically imposed bounds for the values of

each parameter are presented in Table 4.2 below.

Table 4.2. Value range of the TGl mathematical model principal parameters.

k4 k, Ao A Wo
Units 1/day ml/ngday 1/day g/day g
Value Range (0,1) (0, 10E-3) (0,1) (0,1) (0,1)

The pharmacokinetic data of gemcitabine were obtained and depicted from the almost
identical experiments found in the literature, i.e., Veerman et al. [230]. The PKs (i.e., the
drug plasma concentration) attained after the i.p. administration of gemcitabine were
described by applying a single-compartment model. The compartmental model is

described by the below set of differential equations:

q(t) = —kq10q(t) + koqu(t)
(4.5)

where koz in hlis a first-order transfer rate, u is the anticancer agent dose in mg/kg, q
is the amount of the drug in the central compartment, and ¢ in mg/L is the drug
concentration in plasma. V is the volume of distribution in L/kg. The in-silico plasma
concentration of gemcitabine after two intraperitoneal (i.p.) injections at 100 mg/kg (in

a 7-day interval) resulted from the above equations is shown in Figure 4.2 below.

As it is shown in Figure 4.3 the identified TGl model could describe with accuracy the
tumor growth experimental curves, with fitting statistical errors to be less than 10% (see
Table 4.3). Using the estimated TGl model’s primary parameters values (Table 4.4), a
threshold concentration C for the tumor eradication of ~336 