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Abstract

For 1 < p < oo, we present a reflexive Banach space %f“'; 1) , with an unconditional basis, that admits £, as a unique
asymptotic model and does not contain any Asymptotic £, subspaces. Freeman et al., Trans. AMS. 370 (2018),
6933-6953 have shown that whenever a Banach space not containing ¢1, in particular a reflexive Banach space,
admits cg as a unique asymptotic model, then it is Asymptotic cg. These results provide a complete answer to a
problem posed by Halbeisen and Odell [Isr. J. Math. 139 (2004), 253-291] and also complete a line of inquiry of
the relation between specific asymptotic structures in Banach spaces, initiated in a previous paper by the first and
fourth authors. For the definition of xa(w’;f , we use saturation with asymptotically weakly incomparable constraints,
a new method for defining a norm that remains small on a well-founded tree of vectors which penetrates any infinite
dimensional closed subspace.
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1. Introduction

The purpose of this article is to provide an answer to the following problem of Halbeisen and Odell from
[20] and is, in particular, the last step towards the complete separation of a list of asymptotic structures
from [9]. Given a Banach space X, let #,(X) denote the family of normalised weakly null sequences in
X and %, (X) denote the family of normalised block sequences of a fixed basis, if X has one.

Problem 1. Let X be a Banach space that admits a unique asymptotic model with respect to F(X), or
with respect to F, (X) if X has a basis. Does X contain an Asymptotic £,,, 1 < p < co or an Asymptotic
co subspace?

The following definition from [9] provides a more general setting in which we will describe this
problem, as well as other previous separation results. A property of a Banach space is called hereditary
if it is inherited by all of its closed and infinite dimensional subspaces.

Definition 1.1. Let (P) and (Q) be two hereditary properties of Banach spaces, and assume that (P)
implies (Q).

(1) If (Q) =(P), that is, there exists a Banach space satisfying (Q) and failing (P), then we say that (P)
is separated from (Q).

(ii) If there exists a Banach space satisfying (Q) and whose every infinite dimensional closed subspace
fails (P), then we say that (P) is completely separated from (Q) and write (Q)Z (P).

‘We consider properties that are classified into the following three categories: the sequential asymptotic
properties, the array asymptotic properties and the global asymptotic properties.

Sequential asymptotic properties are related to the notion of a spreading model from [15], which
describes the asymptotic behaviour of a sequence in a Banach space. We say that a Banach space admits
a unique spreading model with respect to some family of normalised sequences &, if whenever two
sequences from & generate spreading models, then those must be equivalent. If this equivalence happens
with some uniform constant, then we say that the space admits a uniformly unique spreading model.

The category of array asymptotic structures concerns the asymptotic behaviour of arrays of sequences
(x;'.) 7,1 € N, in a Banach space. Notions that describe this behaviour are those of asymptotic models
from [20] and joint spreading models from [8]. We define the uniqueness of asymptotic models and
the uniform uniqueness of joint spreading models in a similar manner to the uniqueness and uniform
uniqueness of spreading models, respectively. Although asymptotic models and joint spreading models
are not identical notions, they are strongly related. As Sari pointed out, a Banach space X admits a
uniformly unique joint spreading model with respect to %, (X) or Fy(X) if and only if it admits a
unique asymptotic model with respect to 5 (X) or Fy(X), respectively (see, e.g. [6, Remark 4.21]
or [9, Proposition 3.12]). Notably, the property that a Banach space X with a basis admits some ¢, as
a uniformly unique joint spreading model with respect to %, (X) can be described by the following
statement. The case where this happens with respect to Fy(X) is given by an easy modification.

Proposition 1.2 (Lemma 3.4). Let 1 < p < co. A Banach space X with a basis admits £, (or cq for
p = o0) as a uniformly unique joint spreading model with respect to Fp,(X) if and only if there exist
constants c,C > 0, such that for every { € N, any choice of successive families (F;); of normalised
blocks in X with #F; = {, there is an infinite subset of the naturals M = {m| < my < ...}, such that for
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any choice of x; € Fj, j € M, every G C M withmy < G and #G < k, for k € N, and any choice of
scalars aj, j € G, we have

clltay)eclly < I Y apxjll < Cli(a;)iecllp.
JjeG

Even though this property is very close to the weaker one that X admits £, or ¢ as a uniformly
unique spreading model, it was shown in [9] that these two properties are in fact completely separated
forall 1 < p < co.

Finally, global asymptotic properties describe the behaviour of finite block sequences that are chosen
sufficiently far apart in a space with a basis. We recall the following definition from [25].

Definition 1.3. Let X be a Banach space with a basis (¢;); and 1 < p < co. We say that the basis (e;);
of X is asymptotic £,, (asymptotic co when p = oo) if there exist positive constants D and D>, such that
for all n € N, there exists N(n) € N with the property that whenever N(n) < x; < --- < x,, are vectors
in X, then

1 1 = = 1
oIl <1l 3 il < D2 il 7
i=1 i=1 i=1

where for p = oo, the above inequality concerns the || - ||. Specifically, we say that (e;); is D-asymptotic
¢, (D-asymptotic co when p = co) for D = D1D».

This definition is given with respect to a fixed basis of the space. The coordinate-free notion of
Asymptotic £, and ¢ spaces was introduced in [24], generalising the aforementioned one to spaces with
or without a basis (note the difference between the terms asymptotic £, and Asymptotic £,,). Moreover,
this property is hereditary and any Asymptotic £, (or c() space is asymptotic £, (respectively, cq)
saturated. Given a Banach space X with a basis, we focus on the following properties, where 1 < p < co
and whenever p = oo, then £, should be replaced with cy.

(a) » The space X is Asymptotic .

(b) , The space X admits £,, as a uniformly unique joint spreading model (or equivalently, a unique
asymptotic model, as mentioned above) with respect to F, (X).

(c) p The space X admits ¢,, as a uniformly unique spreading model with respect to % (X).

(d) , The space X admits ¢, as a unique spreading model with respect to F3 (X).

Note that it is fairly straightforward to see that the following implications hold for all 1 < p < co:
(a) p =(b) p, =(c) p =(d) p. It is also easy to see that (d) , =(c) , forall 1 < p < co. In [14] it was
shown that (c) , =(b) ,, forall 1 < p < co and that (b) , =(a) , forall 1 < p < co. The latter was also
shown in [8], as well as that (b) ; =(a) | along with an even stronger result, namely, the existence of a
Banach space with a basis satisfying (b) 1 and, such that any infinite subsequence of its basis generates
a non-Asymptotic €; subspace. However, it was proved in [12] that (d) -~ <(c)  and a remarkable
result from [18] states that (b) . <(a) » for Banach spaces not containing £;. Towards the complete
separation of these properties, it was shown in [9] that (¢) , % (b) , forall 1 < p < co and that (d)
p® (c) pforall 1 < p < co. Hence, the only remaining open question was whether (b) , 7 (a) ,, for
1 < p < oo. We prove this in the affirmative and, in particular, we show the following.

Theorem 1.4. For 1 < p < oo, there exists a reflexive Banach space %(Ei l) with an unconditional basis
that admits €), as a uniformly unique joint spreading model with respect to Fy, (%25 l) ) and contains no

Asymptotic €,, subspaces.

To construct these spaces, we use a saturation method with asymptotically weakly incomparable
constraints. This method, initialised in [8], employs a tree structure, penetrating every subspace of %;\’;1) ,

that admits segments with norm strictly less than the £,,-norm. Thus, we are able to prove that no subspace
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of %g\ﬁ) is an Asymptotic £, space. This saturation method is different from the method of saturation
with increasing weights from [9], used to define spaces with no subspaces admitting a unique asymptotic
model. It does not seem possible to use the method of increasing weights to construct a space with a
unique asymptotic model, that is, it is not appropriate for showing (b) , 7 (a) ,. On the other hand,
the method of asymptotically weakly incomparable constraints yields spaces with a unique asymptotic
model, and thus it cannot be used to show (c) , # (b) ,. This method will be discussed in detail
in Part 1.

Inthe caseof 1 < p < oo, itis possible to obtain a stronger result. Namely, for every countable ordinal
&, the space separating the two asymptotic properties additionally satisfies the property that every block
subspace contains an £;-tree of order w?. This is achieved using the attractors method, which was first
introduced in [3] and later also used in [10]. The precise statement of this result is the following.

Theorem 1.5 ([7]). For every 1 < p < oo and every infinite countable ordinal &, there exists a
hereditarily indecomposable reflexive Banach space P that admits ¢ p as a uniformly unique joint
spreading model with respect to the family of normalised block sequences and whose every subspace
contains an €1-block tree of order w?.

However, in the case of £;, we are not able to construct a space whose every subspace contains a
well-founded tree which is either £,, for some 1 < p < oo or co. This case is more delicate, since as we
mentioned, the two properties are in fact equivalent in its dual problem for spaces not containing ¢;.

The paper is organised as follows: In Section 2, we recall the notions of Schreier families and special
convex combinations and prove some of their basic properties, while Section 3 contains the precise
definitions of the aforementioned asymptotic structures. In Section 4, we recall certain combinatorial
results concerning measures on countably branching well-founded trees from [8], which are a key
ingredient in the proof that %;51) admits £, as a unique asymptotic model for 1 < p < co. We then
split the remainder of the paper into two main parts, each dedicated to the definition and properties of
%i(“}v)l and %;’;1) for p = 2, respectively. The construction of £§£1) for 1 < p < oo and p # 2 follows as
an easy modification of our construction and is omitted. Each of these parts contains an introduction
in which we describe the main key points of each construction. Finally, we include two appendices
containing variants of the basic inequality, which has been used repeatedly in the past in several related
constructions (see, e.g. [3], [9], [10] and [16]).

2. Preliminaries

In this section, we recall some necessary definitions, namely, the Schreier families (S, ), [2] and the
corresponding repeated averages {a(n,L) : n € N, L € [N]*} [11] which we call n-averages, as well
as the notion of special convex combinations. For a more thorough discussion of the above, we refer the
reader to [13]. We begin with some useful notation.

Notation. By N = {1, 2, ...}, we denote the set of all positive integers. We will use capital letters, such as
L,M,N,... (respectively, lower case letters, such as s, 7, u, . . .) to denote infinite subsets (respectively,
finite subsets) of N. For every infinite subset L of N, the notation [L]* (respectively, [L]<*) stands
for the set of all infinite (respectively, finite) subsets of L. For every s € [N]<%, by |s|, we denote the
cardinality of s. For L € [N]® and k € N, [L]* (respectively, [L]=K) is the set of all s € [L]<* with
|s] = k (respectively, |s| < k). For every s,t € [N]<®, we write s < ¢ if at least one of them is the
empty set, or max s < minz. Also for @ # s € [N]<* and n € N, we write n < s if n < min s. We shall
identify strictly increasing sequences in N with their corresponding range, that is, we view every strictly
increasing sequence in N as a subset of N and, conversely, every subset of N as the sequence resulting
from the increasing order of its elements. Thus, for an infinite subset L = {/; < [, < ...} of N and
i € N, we set L(i) = [; and, similarly, for a finite subset s = {n; < ... <ng}of Nandfor 1 <i < k, we
set s(i) = n;.
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Finally, throughout the paper, we follow [23] (see also [1]) for standard notation and terminology
concerning Banach space theory. For x € ¢y (N), we denote supp(x) = {n € N : x(n) # 0}, and by
range(x), the minimum interval of N containing supp(x). Moreover, for x, y € coo(N), we write x < y
to denote that maxsupp(x) < minsupp(y).

2.1. Schreier families

For a family M and a sequence (El-)l.k: , of finite subsets of N, we say that (Ei)l.k=1 is M-admissible if

there is {my,...,mr} € M, suchthat m; < E} < my < E; < --- < my < Er. Moreover, a sequence

(x,-)l.k:l in coo(N) is called M-admissible if (supp(xi))ik:1 is M-admissible. In the case where M is a

spreading family (i.e. whenever E = {my,...,m;} € M and F = {n; < ... < ng} satisfy m; < n;,

i=1,...,k, then F € M), a sequence (El-)l.k:1 is M-admissible if {minE; : i =1,...,k} € M, and

thus a sequence of vectors (xi)l."=1 in ¢gp(N) is M-admissible if {minsupp(x;) :i=1,...,k} € M.
For M, N families of finite subsets of N, we define the convolution of M and A as follows:

MxN = {E C N : there exists an M-admissible finite sequence
(El-)t.k=1 in AV, such that E = Uf.‘zlEi} U {(Z)}
The Schreier families (Sy,),en are defined inductively as follows:
So={{k}:keN}u{0} and S ={EcCN:#E <minE} U {0}
and if S,,, for some n € N, has been defined, then
Spit = 81 %Sy = {E CN:E=Uk E where Ey < ... < E; €S, and k < minEl} U {0).
It follows easily by induction that for every n,m € N,
Sy xS = Snam-

Furthermore, for each n € N, the family S, is regular. This means that it includes the singletons, it is
hereditary, thatis, if E € S, and F C E, then F € S, it is spreading and finally it is compact, identified
as a subset of {0, 1},

For each n € N, we also define the regular family

A, ={E cN:#E <n}.

Then, for n,m € N, we are interested in the family S,, = A,,,, that is, the family of all subsets of N of the
form E = U* | E;, where Ey < ... < Ex, #E; <mfori=1,...,k and {minE; : 1 <i <k} € S,.In
fact, any such E is the union of at most m sets in S,, and moreover, if m < E, then E € S,4, as we
show next.

Lemma 2.1. For every n,m € N,

(i) SpxAm C Ay xS, and

(ii) if E € S, * A, withm < E, then E € S,,11.

Remark 2.2. Let k,m € N and F be a subset of N with#F < km and k < F. Set d = max{l, |#F/m]},
and define F; = {F(n) :n=(j—1)d+1,...,jd} foreach j = 1,...,m — 1 and F,, = F\U;":‘lle.
Then, it is immediate to check that F; € Sy foreveryi=1,...,m.

Proof of Lemma 2.1. Fix n,m € N. We prove (i) by inductiononn € N.Forn = 1,1et E € S| * A,,, that
is, E = Ull.‘zlEi withk < E; < ... < Erp and #E; < m foreveryi =1, ..., k. Since #E < km, Remark
2.2 yields a partition E = UT:]Fj with F; € Sy forevery j =1,...,m, and, hence, E € A, = Si.
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Suppose that (i) holds for some n € Nandlet E € S,41*A,,. Then E = Ul’.‘zlEl- for an S,,,1-admissible
sequence (E,-)l.k:1 with#E; < mforeveryi=1,...,m.Hence, {minE; :i=1,...,k} = U§'=1Fj’ where
FieS,forevery j=1,...,land[ < F; < --- < F;. Define, foreach j = 1,...,/,

Gij=U{E;:i=1,...,kand minE; € F;},

and note that G; € S, * A, since F € Sy- Hence, for every j = 1,...,1, the inductive hypothesis
implies that G ; € A,, * Sy, thatis, G; = Ulr.zle{ withm; < mand G{ € Syforalli =1,...,m;. Define

H={minG}:j=1,...,0,andi=1,...,m;}.

Observe that H € S * A,, and apply Remark 2.2 to obtain a partition H = UZ’:IHq, where H, € S; for
every g = 1, ..., m. Finally, define

Ag=U{G]:j=1,...,0,i=1,...,m;and minG/ € H,},

foreach g = 1,...,m, and observe that £ = UZ“:lAq and that A, € S; * S, = Sp,41 since H; € S1 and
G{ € S,,. Thus, we conclude that E € A,,, * S;41-
Finally, note that (ii) is an immediate consequence of (i). |

2.2. Repeated averages

The notion of repeated averages was first defined in [11]. The notation we use below, however, is
somewhat different, and we instead follow the one found in [13], namely, {a(n,L) : n € N, L € [N]*}.
The n—averages a(n, L) are defined as elements of cgg(N) in the following manner.

Let (e;); denote the unit vector basis of coo(N) and L € [N]*. For n = 0, we define a(0, L) = ¢y,
where /; = min L. Suppose that a(n, M) has been defined for some n € N and every M € [N]*.
We define a(n + 1, L) in the following way: We set L} = L and Ly = Ly \ supp(a(n, Lig_1)) for
k =2,...,1; and finally define

a(n+1,L) = ll(a(n,Ll) +---+a(n,Ly)).
I

Remark 2.3. Let n € N and L € [N]*. The following properties are easily established by induction.

(i) a(n, L) is a convex combination of the unit vector basis of coy(IN).
(ii) |la(n, L)|l¢, =1 and a(n, L)(k) = O for all k € N.
(iii) supp(a(n, L)) is the maximal initial segment of L contained in S,,.
(@iv) |la(n, L)|lo = 17", where [} = min L.
(v) If supp(a(n,L)) ={i; <...<ig}and a(n,L) = Zi:l aj. e;, , then we have thata;, > ... > a;,.

A proof of the following proposition can be found in [13].

Proposition 2.4. Let n € N and L € [N]®. For every F € S,,_1, we have that

Z a(n, L)(k) < 3

min L
keF

2.3. Special convex combinations

Here, we recall the notion of (n, £)-special convex combinations, where n € N and & > 0 (see [5] and

[13]).
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Definition 2.5. For n € N and ¢ > 0, a convex combination ) ;. c;e;, of the unit vector basis (e;); of
coo(N) is called an (n, £)-basic special convex combination (or an (1, £)-basic s.c.c.) if

(i) F €S, and
(i) forany G C F with G € S,_;, we have that } ;.5 ¢; < €.

1/2

We will also call };cp ¢;'"e; a (2, n, £)-basic special convex combination.

As follows from Proposition 2.4, every n-average a(n, L) is an (n,3/min L)-basic s.c.c., and this
yields the following.

Proposition 2.6. Let M € [N]®, n € Nand e > 0. Then there is a k € N, such that for any F C M, such
that F is maximal in S,, and k < min F, there exists an (n, €)-basic s.c.c. x € coo(N) with supp(x) = F.

Clearly, this also implies the existence of (2, n, £)-basic special convex combinations by taking the
square roots of the coefficients of an (n, £)-b.s.c.c.

Definition 2.7. Let x| < ... < x4 be vectors in cgo(N), and define #; = minsupp(x;),i=1,...,d. We
say that the vector Zl‘i | €ix; is an (n, £)-special convex combination (or an (n, &)-s.c.c.) for some n € N
and £ > 0 if Z?:] cjey, is an (n, €)-basic s.c.c. and a (2, n, €)-special convex combination if 2;1:1 ciey,
is a (2, n, £)-basic s.c.c.

3. Asymptotic structures

Let us recall the definitions of the asymptotic notions that appear in the results of this paper and were
mentioned in the Introduction. Namely, asymptotic models, joint spreading models and the notions
of Asymptotic £, and Asymptotic ¢ spaces. For a more thorough discussion, including several open
problems and known results, we refer the reader to [9, Section 3].

Definition 3.1 [20]. An infinite array of sequences (xj.) 7,1 € N, in a Banach space X, is said to generate
a sequence (e;);, in a seminormed space E, as an asymptotic model if for every € > 0 and n € N, there
is a ko € N, such that for any natural numbers kg < k; < --- < k, and any scalars ay, . ..,a, in [-1,1],
we have

n . n
1 asc =13 aieil] < e
i=1 i=1

A Banach space X is said to admit a unique asymptotic model with respect to a family & of normalised
sequences in X if whenever two infinite arrays, consisting of sequences from &, generate asymptotic
models, then those must be equivalent. Typical families under consideration are those of normalised
weakly null sequences, denoted F,(X), normalised Schauder basis sequences, denoted F (X), or the
family of all normalised block sequences of a fixed basis of X, if it has one, denoted F, (X).

Definition 3.2 [6]. Let M € [N]* and k € N. A plegma (respectively, strict plegma) family in [M]* is
a finite sequence (si)l.lz1 in [M]* satisfying the following.

() si,(j1) <si,(jo) forevery 1 < ji < jo <kand 1 <ij,ir <1
(ii) s4,(J) < si,(j) (respectively, s;,(j) < s;,(j)) foralll <ij <ip <land1<j<k.

For each [ € N, the set of all sequences (Si);z | Which are plegma families in [M 1* will be denoted by
Plm;([M]*) and that of the strict plegma ones by S- Plm;([M]¥).

Definition 3.3 [6]. A finite array of sequences (xj.) 7, 1 <7 <1,1in a Banach space X, is said to generate
another array of sequences (e; )j> 1 <i <1, in a seminormed space E, as a joint spreading model if for
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every € > 0 and n € N, there is a kg € N, such that for any (s,v)l.l=l € S- Plm;([N]™) with kg < s1(1)
and for any / X n matrix A = (a;;) with entries in [—1, 1], we have that

! !

WZZ%MJHZZ%%ks

i=1 j=1 i=1 j=1

A Banach space X is said to admit a uniformly unique joint spreading model with respect to a family
of normalised sequences & in X if there exists a constant C, such that whenever two arrays (x ); and

(yj )j»1 <i <1, of sequences from & generate joint spreading models, then those must be C- equ1valent.
Moreover, a Banach space admits a uniformly unique joint spreading model with respect to a family F
if and only if it admits a unique asymptotic model with respect to & (see, e.g. [6, Remark 4.21] or [9,
Proposition 3.12]). In particular, if a space admits a uniformly unique joint spreading model with respect
to some family & satisfying certain conditions described in [6, Proposition 4.9], then this is equivalent
to some £,,. In order to show that a space admits some £,, as a uniformly unique joint spreading model,
it may be more convenient to prove (ii) of the following lemma, thereby avoiding the use of plegma
families.

Lemma 3.4. Let X be a Banach space and F be a family of normalised sequences in X. Let also
1 < p < oco. The following are equivalent.

(i) X admits €, as a uniformly unique joint spreading model with respect to the family F.

(ii) There exist constants c,C > 0, such that for every array (x;.) i, 1 <i <1, of sequences from &,
there is M = {m; < my < ...}, an infinite subset of the naturals, such that for any choice of
1<i; <1, jeM, every F C M withmy < F and |F| < k and any choice of scalars aj, j € F,

clit@pjerlly < || D apx|l < Clitay)jerllp.

jeF

Proof. Note that (i) implies that there are constants ¢, C > 0, such that for every array (x;) i1 <i<l|,
of sequences from &, there is N = {n| < ny < ...}, an infinite subset of the naturals, such that for any
k, any strict plegma family (sl-)l.l:1 € S-Plm;([N]*) with n; < s1(1) and any [ X k matrix A = (aij) of
scalars, we have that

cllCai) iy llp < ||ZZal,xv ol < Clitaps .

i=1 j=1

Let N’ = {myx; : k € N} and observe that for ky,...,k; € N, there is a strict plegma family
(s5i)! ", € S-Plm;([N]%), such that ny; € {si(j) i =1,...,1} forall j = 1,...,d. Hence, we may
find M c N’ satisfying (ii) with constants ¢, C. Finally, by repeating the sequences in the array, it
follows easily that (ii) yields (i). O

We recall the main result from [6], stating that whenever a Banach space admits a uniformly unique
joint spreading model with respect to some family satisfying certain stability conditions, then it satisfies a
property concerning its bounded linear operators called the Uniform Approximation on Large Subspaces
property (see [6, Theorem 5.17] and [6, Theorem 5.23]).

Definition 3.5 [24]. A Banach space X is called Asymptotic £,,, 1 < p < oo, (respectively, Asymptotic
cp) if there exists a constant C, such that in a two-player n-turn game G (n, p, C), where in each turn
k = 1,...,n, player (S) picks a finite codimensional subspace Y; of X, and then player (V) picks a
normalised vector x; € Yi, player (S) has a winning strategy to force player (V) to pick a sequence
(xk )i, thatis C-equivalent to the unit vector basis of £}, (respectively, £5,).
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Although this is not the initial formulation, it is equivalent and follows from [24, Subsection 1.5]. The
typical example of a nonclassical Asymptotic £}, space is the Tsirelson space from [17]. This is a reflexive
Asymptotic {; space, and it is the dual of Tsirelson’s original space from [27] which is Asymptotic cg.
Finally, whenever a Banach space is Asymptotic £, or Asymptotic cy, it admits a uniformly unique joint
spreading model with respect to Fy(X) (see, e.g. [6, Corollary 4.12]).

The above definition is the coordinate-free version of the notion of an asymptotic £,, Banach space
with a basis introduced by Milman and Tomczak-Jaegermann in [25].

Definition 3.6 [25]. Let X be a Banach space with a Schauder basis (e;); and 1 < p < co. We say that
the Schauder basis (e;); of X is asymptotic £, if there exist positive constants D1 and D, such that for
all n € N, there exists N(n) € N with the property that whenever N(n) < x| < --- < x, are vectors in
X, then

1 < 1 S S 1
5o QM7 <1 )il < D2 il ?)7
i=1 i=1 i=1

Specifically, we say that (e;); is D-asymptotic ¢, for D = D1D». The definition of an asymptotic cg
space is given similarly.

It is easy to show that if X has a Schauder basis that is asymptotic ¢, then X is Asymptotic £,.
Moreover, if X is Asymptotic £, then it contains an asymptotic £, sequence. In particular, note that if
X has a Schauder basis and Y is an Asymptotic £, subspace of X, then Y contains a further subspace
that is isomorphic to an asymptotic £, block subspace.

A noteworthy remark is that sequential asymptotic properties, array asymptotic properties and global
asymptotic properties of a Banach space X can alternatively be interpreted as properties of special
weakly null trees. A collection {x4 : A € [N]*"} in X is said to be a normalised weakly null tree of
height n, if for every A € [N]=""1, (x AU{j})j>max(4) is a normalised weakly null sequence. Such a tree
is said to originate from a sequence (x;); if for all A = {ay,...,a;}, we have x4 = x,,. Similarly, a
tree {xa : A € [N]="} is said to originate from an array of sequences (xj.i) )j, 1 < i < nif for all

A ={ai,...,a;}, we have x4 = xff;.). Then, X has a uniformly unique ¢, spreading model if and only

if there exists C > 0, so that every tree {x4 : A € [N]="} originating from a normalised weakly null
sequence (x;); in X has a maximal branch that is C-equivalent to the unit vector basis of ¢};. Similarly,
X has a unique £,, asymptotic model if the same can be said about all trees originating from normalised
weakly null arrays in X. Finally, a Banach space X is an Asymptotic £, space (or an Asymptotic co space
if p = o0) if there exists C > 0, so that every normalised weakly null tree of height n has a maximal
branch x4}, X{a),a}> - - - s X{ay,az.....a,} that is C-equivalent to the unit vector basis of ¢},. For more
details, see [14, Remark 3.11].

.....

4. Measures on countably branching well-founded trees

In this section, we recall certain results from [8] concerning measures on countably branching well-
founded trees. These will be used to prove that for all 1 < p < oo, the space %251) admits £,, as a unique
asymptotic model. In particular, Proposition 4.1 and Lemma 4.6 will be used to prove Lemma 7.2,
which is one of the key ingredients in the proof of the main result, Theorem 1.4.

Let 7 = (A, <7), where A is a countably infinite set equipped with a partial order <. In the sequel,
we use ¢ € T instead of t € A. We assume that < is such that there is a unique minimal element in 7,
and foreach t € T, the set S; = {s € T : s <7 t} is finite and totally ordered, that is, 7 is a rooted tree.
We also assume that 7 is well founded, that is, it contains no infinite totally ordered sets, and countably
branching, that is, every nonmaximal node has countably infinite immediate successors.

Observe that 7 = ({S; : t € T}, <7), where <7 denotes inclusion, is also a tree, and that 7 is in

fact isomorphic to T via the mapping ¢ — S;. Given ¢ € T, we will denote S, by 7, identifying it as
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an element of 7. For each 7 € T, we denote by S(7) the set of immediate successors of 7 in 7. In
particular, if 7 is maximal, then S(f) is empty. Moreover, for 7 € T, we denote Vi={5 € T f <7 §}
and view T as a topological space with the topology generated by the sets V; and 7 \ V;, 7 € T, that
is, the pointwise convergence topology. This is a compact metric topology, such that for each 7 € T,
the sets of the form V; \ (UserVs), F C S(7) finite, form a neighbourhood base of clopen sets for 7. We
denote by M_,(T) the cone of all bounded positive measures u : P(7) — [0,+c0). For up € M, 7).
we define the support of u to be the set supp(u) = {7 € T u({f}) > 0}. Finally, we say that a subset
A of M,(T) is bounded if sup e 1(T) < co.

Proposition 4.1. Let (u;); be a bounded and disjointly supported sequence in M+(7~'). Then for every
&g > 0, there is an L € [N]® and a subset G; of supp(u;) for each i € L, satisfying the following.

(1) yi(7~'\ G;) < e foreveryi € L.
(ii) The sets G;, i € L, are pairwise incomparable.

For the proof, we refer the reader to [8, Proposition 3.1].

Definition 4.2. Let (u;); be a sequence in_ M+(7~') and v € ./\/l+(7~'). We say that v is the successor-
determined limit of (y;); if for all 7 € T, we have v({f}) = lim; u;(S(7)). In this case, we write
v = succ-lim; y;.

Recall that a bounded sequence (y;); in M(T) converges in the w*-topology to a u € _M+(7~') if
and only if for all clopen sets V c T, we have lim; y; (V) = u(V) if and only if for all 7 € T, we have
lim; p; (Vi) = u(Vz). In this case, we write yu = w*-lim; y;.

Lemma 4.3. Let (u;); be a bounded sequence in M+(7~'). There exist a subsequence (i, )n of (i)
and v € M, (T) with v = succ-lim,, y;,,.

Remark 4.4. Itis possible for a bounded sequence (y;); in M+(7~') to satisfy w*- lim; y; # succ-lim; y;.
Take, for example, 7 = [N]=? (all subsets of N with at most two elements with the partial order of
initial segments), and define u; = 6y; j+13, i € N. Then w*-lim; y; = 69, whereas succ-lim; u; = 0.

Although these limits are not necessarily the same, there is an explicit formula relating succ-lim; y;
to w*-lim; y;.

Lemma 4.5. Let (u;); be a bounded and disjointly supported sequence in ./\/l+('7'), such that
w-lim; y; = u exists, and for all t € T, the limit v({t}) = lim; u;(S(7)) exists as well. Then for
every f € T and enumeration (i;); of S(f), we have

u(B) = () +limlim e U (Vi \ (7))- .1

In particular, u({t}) = v({#}) if and only if the double limit in (4.1) is zero.

Lemma 4.6. Let (u;); be a bounded and disjointly supported sequence in M+(ﬁ, such that
succ-lim; y; = v exists. Then there exist an infinite L C N and partitions A;, B; of supp(u;), i € L, such
that the following are satisfied.

(i) If for all i € L, we define the measure ,u} by ,u} (C) = wi(C N A, then v = w*-lim;ep, u} =
succ-lim;ey, p).
(ii) If for alli € L, we define the measure p? by ,u?(C) = u;(C N By), then for all T € T, the sequence
(,u%(S(i)))i is eventually zero. In particular, succ-lim; ¢y, u% =0.
For the proofs, we refer the reader to [8, Lemma 4.10] and [8, Lemma 4.12].

Remark 4.7. Although the results from [8] were formulated for trees 7 defined on infinite subsets of
N, this is not a necessary restriction, and they can be naturally extended to the more general setting of
countably branching well-founded trees.
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PART I. The case of £;
5. Definition of the space %;iv)l

The method of saturation with asymptotically weakly incomparable constraints, that is used in the
construction of both spaces presented in this paper, was introduced in [8], where it was shown that (b)
1 =(a) 1. There, it was also used to prove an even stronger result, namely, the existence of a Banach
space with a basis admitting ¢; as a unique asymptotic model, and in which any infinite subsequence of
the basis generates a non-Asymptotic £; subspace. This method requires the existence of a well-founded
tree defined either on the basis of the space or on a family of functionals of its norming set. In this
section, we define the space %;‘2 by introducing its norm via a norming set, which is a subset of the
norming set of a Mixed Tsirelson space 7 [(m;,Sy,);] for an appropriate choice of (m;); and (n;);
described below. The key ingredient in the definition of this norming set is the notion of asymptotically
weakly incomparable sequences of functionals, which is also introduced in this section. This notion will

allow the space %iw)l to admit £; as a unique asymptotic model, while at the same time, it will force the

norm to be small on the branches of a tree, in every subspace of %éw)i, showing that the space does not
contain Asymptotic £; subspaces.

5.1. Definition of the space %ﬁ}lv)l

Define a pair of strictly increasing sequences of natural numbers (m;);, (n;); as follows:

m1=2 n1=1

mj

— _ A2m;
mj+1—mj I’lj+1—2 J“I’lj.

Definition 5.1. Let V(1) denote the minimal subset of coo(IN) that

(i) contains 0 and all +¢%, j € N and
(ii) is closed under the operations (m;, Sn;)j, thatis, if j € Nand f; <... < f, is an §,,;-admissible
sequence (see Section 2.1) in V(yy \ {0}, then mJ‘.1 2y fiis alsoin V(yy.

Remark 5.2.

(i) If f € Vi \ {0}, then either f € {iej. : j € N}, or it is of the form f = m]‘.1
fi <...< fuan Sy, -admissible sequence in V(;) for some j € N.

(ii) As usual, we view the elements of V(i as functionals acting on coo(N), inducing a norm || - [y,
The completion of (coo(N), || - [lv,,,) is the Mixed Tsirelson space 7 [(m, Sy;);] introduced for the
first time in [5]. The first space with a saturated norm defined by a countable family of operations
is the Schlumprecht space [26], which is a fundamental discovery and was used by Gowers and
Maurey [19] to define the first hereditarily indecomposable (HI) space.

iy fi with

We now recall the notion of tree analysis which appeared for the first time in [4]. This has become
a standard tool in proving upper bounds for the estimations of functionals on certain vectors in Mixed
Tsirelson spaces. However, it is the first time where the tree analysis has a significant role in the
definition of the norming set W(y. Additionally, it is also a key ingredient in the proof that X ;W)l contains
no Asymptotic ¢; subspaces.

Let A be a rooted tree. For a node @ € A, we denote by S(«) the set of all immediate successors of
a, by || the height of «, that is, |a| = #{8 € A : B <4 «a}, and finally, we denote by i(.A) the height
of A, that is, the maximum height over its nodes.

Definition 5.3. Let f € V(;) \ {0}. For a finite tree A, a family (f)ae4 is called a tree analysis of f if
the following are satisfied.
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(i) A has a unique root denoted by 0 and fy = f.
(ii) Each f, isin V(y), and if 8 < a in A, then range(f,) C range(fg).
(iii) For every maximal node a € A, we have that |a| = h(A).
(iv) Forevery nonmaximal node @ € A, either f, is the result of some (m;, S, ) operation of (fg)ges (a)>

ie., fo = m]‘.1 2ges(a) /B> OF fa € {ie; : J € N} and S(a) = {B} with fz = fa.
(v) For every maximal node @ € A, f, € {ie; 1 j €N}
Remark 5.4.

(i) It follows by minimality that every f in V() \ {0} admits a tree analysis, but it may not be unique.
For example, f = (mlmz)‘le*]‘ admits two distinct tree analyses.

(ii) The standard definition of a tree analysis does not include 5.3 (iii). This property is included for
technical reasons and is used below in the equality of Remark 5.8 (i).

Definition 5.5. Let f € V(y).

@) Iff=0orfe€ {iej. : J € N}, then we define the weight w(f) of f as w(f) = 0and w(f) =1,
respectively.

(ii) If f is the result of an (m}, S,,)-operation for some j € N, then w(f) =m;.

Remark 5.6. It is not difficult to see that w( f), for f € V1), is not uniquely determined, that is, f could

be the result of more than one distinct (m, Sp;)-operation. However, if we fix a tree analysis (fo)aca

of f, then for @ € A with f, = (m;,)”! 2pes(a) Jp» the tree analysis determines the weight w(fa),

being equal to m;,. Thus, for f € V(j) and a fixed tree analysis (fa)aca of f, with w(fa), we will
denote the weight m determined by (f4)aec .4, for every @ € A. In addition, we will denote by f, the

pair (fq,mj,).

Definition 5.7. Let f € V(1) and (fy)ae.A be a tree analysis of f. Then for a € A, we define the relative
weight w (fo) of fq as

_Jp<aw(fp) ifa#0
wr (fa) = {1 otherwise.
Remark 5.8. Let f € V() and (fu)aca be a tree analysis of f.

(i) Forevery k =1,...,h(A)
F= wilfa) fa
|a|=k

This can be proved by induction and essentially relies on the fact that (f)qe4 satisfies 5.3 (iii).
(ii) If B is a maximal pairwise incomparable subset of .4, then

F= wife) e
BeB
(iii) For every a € A, whose immediate predecessor (8 in A (if one exists) satisfies [z ¢ {te]*. 1 j €N},
we have wy (fo) 2 2lal,

Fix an injection o that maps any pair (f,w(f)), for f € V(1) and w(f) a weight of f, to some m
with m; > max supp(f) w(f) whenever f # 0.

Definition 5.9. Define a partial order <7 on the set of all pairs (f,w(f)) for f € V(1) and w(f) a
weight of f, as follows: (f,w(f)) <7 (g,w(g)) either if f = 0 or if there exist fj < ... < f, € V(y
and weights w( f1),...,w(fy), such that
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(@) (fi)lL, is Si-admissible,
(11) W(fl) = 0'(0, 0) and W(ﬁ) = O-(fi—l’W(ﬁ'—l)) for every i= 2, ...,
(iii) there are 1 <ij < i, < n,suchthat f = f; and g = f;,.

It is easy to see that < induces a tree structure rooted at 0 = (0,0). Let us denote this tree by 7,
and observe that this is a countably branching well-founded tree, due to 5.9(i). For t = (f,w(f)) € T,
we set f; = fand w(z) = w(f).

It is clear that unlike the case where the tree is defined on the basis of the space, here, incomparable
segments need not necessarily have disjoint supports. This forces us to introduce the notion of essentially
incomparable nodes, which was first defined in [8]. To this end, we first need to define an additional tree
structure that is readily implied by 7 via the projection (f, w(f)) +— w(f).

Definition 5.10. Define a partial order <yy on {m; : j € N} as follows: m; <y m; if there exist
t1,tp € T,suchthatty <7 1o, W(ll) = m; and W(tz) =m;.

As an immediate consequence of the fact that 7 is a countably branching well-founded tree, we have
that <yy also defines a tree structure. Let us denote this tree by ¥V and note that it is also countably
branching and well founded.

Remark 5.11. The above definition implies that if #;,7, € 7 are such that w(¢;) <yy w(t;), then there
exist 13,14 € T, such that 3 <7 4, w(t3) = w(t;) and w(t4) = w(ty). The tree structure of 7 implies
that 3 is uniquely defined, and we will say that #3 generates w(#,). This is not the case, however, for #4,
and, moreover, it is not necessary that 3 <7 1;.

Definition 5.12.

(i) A subset A of 7 \ {0} is called essentially incomparable if whenever t1,7, € A are such that
w(t;) <y w(tz), then for the unique 73 € 7 with w(t3) = w(¢1) that generates w(z;), we have that
fr < fur

(ii) A subset A of T is called weight incomparable if for any #; # #, in A, w(t;) # w(ty) and the
weights w(#1) and w(t,) are incomparable in W.

(iii) A sequence (A;); of subsets of 7 is called pairwise weight incomparable if for every j; # j» in
N,t1 € Aj, and 1, € Aj,, w(t1) # w(t2) and the weights w(¢1) and w(#2) are incomparable in W.

Remark 5.13.

(i) If A is an essentially (respectively, weight) incomparable subset of 7, then every B C A is also
essentially (respectively, weight) incomparable.
(ii) Any subsequence of a pairwise weight incomparable sequence in 7 is also pairwise weight incom-
parable.
(iii) Any weight incomparable subset of 7 is essentially incomparable.
(iv) Let A = {(f,1) : f € {iej. : j € N}}. Then A is essentialy incomparable, and, additionally, if
B c T is essentially incomparable, then the same holds for A U B.

We can finally describe the rule used to define the norming set Wy of x

awi» namely, asymptotically
weakly incomparable constraints.

Definition 5.14. Let J be an initial segment of N or J = N. Then a sequence (f;);es of functionals with
successive supports in V(1) \ {0} is called asymptotically weakly incomparable (AW]I) if each f; admits
a tree analysis (fj a)ac4;, j € J, such that the following are satisfied.

(i) There is a partition { f, jeldt= C? V) Cg, such that C? is essentially incomparable and Cg is
weight incomparable.
(ii) Forevery k,j € J with j > k + 1, there exists a partition
{fi.a: @€ Ajand|a| =k} =Cf,UCy

such that U;i 1€ {‘J is essentially incomparable and (Cé"j)j"; x4 1S pairwise weight incomparable.
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Figure 1. The collection of nodes of a fixed level in rectangles across all tree analyses forms an
essentially incomparable subset, while circles across a fixed level form a family of pairwise weight
incomparable subsets.

Before defining the space %é\z we prove that AWI sequences are stable under taking subsequences

and under taking restrictions of functionals to subsets. This fact will imply the unconditionality of the
basis of xév’v)l

Remark 5.15. Let f € V(j) and (fq)aea be atree analysis of f. Let A be a nonempty subset of supp( f),
and set g = f|a. First, note that g € V(). Moreover, ( fy)qc.4 naturally induces a tree analysis (gq)aes
for g as follows: B = {@ € A : supp(fo) N A # 0} and g, = folr, @ € B. Finally, it is easy to see that
w(g) =w(f).

Proposition 5.16. Let J be an initial segment of N or J = N and (f;)jes be an AWI sequence in V(y).

(i) Every subsequence of (f});cy is also an AWI sequence in V).
(ii) If A is a nonempty subset of supp(f;) and g; = fj|a,, J € J, then (g;);es is an AWI sequence in
V(l).
(iii) If (g;)jes is a sequence in V (1), such that |g ;| = | fj| for all j € J, then (g;);ey is also AWL

Proof. Let for every j € J, (fj.a)aca, be a tree analysis of f; with
{(fi:jelt=Ccucy
and for every k, j € J with j > k
{fia:a€A;and |a| =k} = C{"j UCé"j,

witnessing that (f});cs is AWI. We will define the desired partitions proving the cases (i)—(iii).
To prove (i), let N be a subset of J and define

F)={f;j:jeNnC’, i=1,2.

Then {f; : j € N} = F) U F}, where F} is essentially incomparable and F} is weight incomparable.
For the remaining part, let k € N, and note that for Ny = {j € N : j > k}, Ujen, C {"j is essentially
incomparable and (Cf’j) ieN, is pairwise weight incomparable.

To prove (ii), Remark 5.15 implies that g; € V(1), w(g;) = w(f;), and we let (g;,a)aes, be the tree
analysis of g induced by (fj,a)aea4;,j € J. Define

F)={g;:jeJandg; = fila, with f; € C}}, i=1,2,
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and observethat {g; : j € J} = FIOUFS. Moreover, for j € J, supp(g;) C supp(fj) andw(g;) = w(f;),
and, hence, whenever g; # g; are in F? with w(g;) <w w(g;), we have w(f;) <y w(f;), implying
that the generator #3 € 7 of w(f;) = w(g;) with w(#3) = w(f;) = w(g;) is such that f;; < f;, and thus
f1, < gi. This yields that Flo is essentially incomparable. Clearly, Fg is weight incomparable. Next, for
k,j € J with j > k, define

Filfj = {gj,a c8j,a =fj,a|Aj Withfj,a € Cik,j}» i=1,2.

Note that for each k € J, (sz’j ]i";k .1 1s pairwise weight incomparable, and the proof that U;‘;k aF lk,j is

essentially incomparable is identical to that for FOl Finally, the proof of (iii) is similar that of (ii)). O

Definition 5.17. Let Wy be the smallest subset of V() that is symmetric, contains the singletons and
for every j € N and every S,,;-admissible AWI sequence (f;)'., in W(1), we have that mj_.1 2y fiisin

W(1y. Moreover, let %SV)I denote the completion of cg(IN) with respect to the norm induced by W(y.

Remark 5.18.

n e

(1) =0’ where

(i) The norming set Wy can be defined as the increasing union of a sequence (W
W?l) = {+e} : k € N} U {0} and

Y

WVH—I — Wn

1 . . - . on
1 (Y {m— Z fi:Jj,d € Nand (fl)ld:1 is an Sp,;-admissible AWI sequence in W(l)}.

J =1

(i) Note that Remark 5.13 (iv) implies that any sequence of singletons is AWI. Hence, we have that

1 .
Wl =W, u {m_, Yeeit jeN, E€S, ande € {-1, 1} fork € Ef.
keE

(iii) Proposition 5.16 yields that the standard unit vector basis of cgp(N) forms an 1-unconditional
Schauder basis for X'

awi®

6. Outline of proof

Although unconditionality of the basis of %S\L)l is almost immediate, it is not, however, straightforward

to show that fz(wlv)l admits ¢; as an asymptotic model. Indeed, this requires Lemma 7.2, which is based on
the combinatorial results concerning measures on well-founded trees of Section 4, which first appeared
in [8]. This lemma yields that for any choice of successive families (F;); of normalised blocks in x;\i)l
and for any & > 0, we may pass to a subsequence (F;)jem and find a family (G;);jepar of subsets of
W(1y, such that for any choice of x; € F;, j € M, thereisag; € G; withg;(x;) > 1 —&sothat (g;)jem
is AWI. Thus, we are able to prove, employing Lemma 3.4, the aforementioned result.

To prove the nonexistence of Asymptotic £; subspaces in %ivlv)] , we start with the notion of exact pairs.
This is a key ingredient in the study of Mixed Tsirelson spaces, used for the first time by Schlumprecht
[26].

(1

awi

Definition 6.1. We call a pair (x, ), where x € X
hold.

@ lIxll <3, f(x) =1and w(f) =m;.
(ii) If g € W(1) with w(g) < w(f), then |g(x)| < 18w(g)~'.
(>iii) Ifg € W(]) with W(g) > w(f)’ then Ig(x)l < 6(m;] +mJ‘W(g)7l).

and f € W(y), an m-exact pair if the following

If, additionally, for every g € W(y) that has a tree analysis (g )aea, such that w(g,) # m; forall @ € A,
we have |g(x)| < 18mj_.1, then we call (x, f) a strong exact pair.
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Figure 2. The tree analysis of f and the induced tree analyses of g and h. The circled nodes « are such
that w(fo) = w(fx) and supp(xi) N supp(fo) # O for some k € {1,...,n}.

That is, roughly speaking, for an exact pair (x, f), the evaluation of a functional g in W(y), on x,
admits an upper bound depending only on the weight of g. In the case of an m ;-strong exact pair (x, f),
any g in W(;) with a tree analysis (g4)ac.4, Such that w(g,) # m;, has negligible evaluation on x. We
will consider certain exact pairs which we call standard exact pairs (SEP) (see Definition 8.7) and which
we prove to be strong exact pairs. It is the case that such pairs can be found in any block subspace of
%'V and this is used to prove the reflexivity of %é‘i,)l as well as the following proposition which yields

awi’
the nonexistence of Asymptotic £; subspaces.

Proposition 6.2. Given 0 < ¢ < 1, there is n € N so that in any block subspace Y there is a
sequence (X1, f1),...,(xn, fn) of SEPs, where x; € Y, i = 1,...,n, with fi <7 ... <7 f, such that

[[x1 4+ +x,]| <cn.

To this end, we first employ the following lemma that highlights the importance of the asymptotically
weakly incomparable constraints.

Lemma 6.3. Let (x1, f1), ..., (X, fu) be SEPs with fi <1 ... <7 fy. Then, for any f € Wy with a
tree analysis (fo)aea and k € N, the number of f;’s, i = 1,...,n, such that there exists a € A with
la| =k, w(f;) = w(fa) and supp(x;) N supp(fo) # 0, is at most ek!, where e denotes Euler’s number.

Then, we consider a sequence of standard exact pairs (x1, f1), ..., (X, fu) With fi <7 ... <7 f»

and fix 0 < ¢ < 1. Pick an m € N, such that 3/2" < ¢. For f € W(y), with a tree analysis (fy)aca, We
consider partitions f = g + h and g = g + g as follows: First, set

G = U{range(xy) Nrange(f,) : k € {1,...,n} and @ € A with w(fy) =w(fi)},
and define g = f|g and & = fhng (see Figure 2).
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Figure 3. We consider the m-th level of the induced tree analysis of g. Nodes a with w( fq) = w(fi)
and |a| < m are used to define g\, while such nodes of height greater than m define g, restricted on
each xy fork =1,...,n.

To define g1, consider the tree analysis (ga)ac4, Of g thatis induced by (fa)aca, thatis, go = falc
for @ € Ag and Ay = {@ € A : supp(fo) NG # 0}. Then, we define

B,L ={a e Ag:lal <m, w(fo) =w(fi) and w(fg) # w(fi) forall < @ in A,}
fork=1,...,n,
G =U}_, U {supp(ga) Nsupp(xx) : @ € B, },

and finally g; = g|g, (see Figure 3). Observe that Lemma 6.3 implies that

#{ke{l,...,n};gl(xk)¢0}sf=e2k!. (6.1)
k=1

Moreover, the induced tree analysis (/4)aea, Of h is such that w(hy) # w(fi) forall k = 1,...,n,
and, therefore, the fact that (xg, fi) are strong exact pairs yields

|h(xi)| < k=1,...,n. (6.2)

18
w(fi)
Considering a further partition of g3 |supp(x,)» We show that

18 3
L —+— =1,...,n. .
lg2(xk)| < IR k=1,....n (6.3)
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Hence, (6.1), (6.2) and (6.3) imply

IS

Then, our choice of m yields Proposition 6.2 for sufficiently large n and w( f), where w( f1) is chosen
appropriately to deal with the case where f € {J_re; 1 j e N}

Assuming that Y is a C-asymptotic ¢; block subspace of %;&V)l, we pick a sequence of standard
exact pairs (x1, f1), ..., (X, fu) in ¥ X W(y, satisfying the conclusion of Proposition 6.2 and derive a
contradiction.

The remainder of this part of the paper is organised as follows. In Section 7, we prove that %ivlv)l admits
{1 as a unique asymptotic model. Next, in Section 8, we prove existence and properties of standard exact
pairs. The final section of this part contains the results leading up to the proof that %;\2 does not contain

Asymptotic £; subspaces.

(1

awi

7. Asymptotic models generated by block sequences of X

(1 . . . . . .
We show that the space X ; admits a unique asymptotic model, or equivalently, a uniformly unique
joint spreading model with respect to F, (%g}i) that is equivalent to the unit vector basis of £;. The key
ingredient in the proof is the following lemma concerning bounded positive measures on the tree of

initial segments of 7.

Remark 7.1. Let us first recall some notation from Section 4. We denote by T the tree of initial
segments of 7" equipped with the partial order induced by inclusion and consider the isomorphism
t—>i={seT:s <y}, between T and 7. Similarly, by W, we denote the tree g initial segments of
W and consider the i§£)morphism wiw={veW:v <y w}between W and W. Finally, forr € T,
weset w(t) ={weW:w <y w(t)}.

Lemma 7.2. Let (u;); be a bounded finitely and disjointly supported sequence in M+(7~'). Assume that
the sets U{supp(f;) : T € supp(u;)}, i € N, are disjoint. Then, for every & > 0, there exists an infinite
subset of the natural numbers L and for each i € L subsets G, G? of T, such that

4

@) Gl!, G% are disjoint subsets of supp(u;) for everyi € L,
(i) i (T\ G} U G?) < & foreveryi€ L,
(iii) {reT :fe UieLG}} is essentially incomparable and

(v) if F>={t € T : 7€ G?},i € L, then the sequence (F?);er, is pairwise weight incomparable.
1 L 1

Proof. Passing to a subsequence if necessary, we may assume that the (unique) root of T is not in the
support of any u;, i € N, succ-lim; y; exists and that there exist partitions supp(u;) = A; U B;, i € N,
satisfying the conclusion of Lemma 4.6. Define for each i € N, the measures ,ul!, ,uf € M, (T) given
by 1} (C) = pui(A; N C) and p?(C) = p;(B; N C), and let v = w*-lim; u} = succ-lim; p}. Pick a finite
subset F of T, such that v(’?\ F) < £/2. Then, v = w*- lim; ,u} implies that lim; ,u} (7’) = v(’?:), and,
thus, since v = succ-lim; u}, we have

. ~ =5 ~ €
tim i} (T) = 1} (UrerS@®)| = [y (1) = lim "l (D) =T\ F) < 2.
feF
Hence, we can find iy € N, such that for all i > i,, we have

(40 = i (4 0 (Urer S@))| = [l () = ad Urers@)| < £. .
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WesetX=0({t€T :7€F})and
R={reT :w(r) € X, and there is s € 7 with w(s) € X, such that r <7 s}.

Note that X and R are finite, since F is finite. Thus, using the fact that the sets U{supp(f;) : € supp(u;)}
for i € N are disjoint, find i; € N with i; > i( so that

Urersupp(f) < supp(fz), forall 7 e U,-Zl-,supp(,u}). (7.2)

For G} = A; N (UzepS(D)), (7.1) implies that |u;(A;) — ,ul-(G})| < &/2,i > i;. We will show that
{treT:fe Ui»i,G 11} is essentially incomparable, that is, that (iii) is satisfied. To this end, first observe
that if 7 € uizilG}, then w(r) € X. Let 71,7, € uizilG} with w(t;) <y w(ty). It is immediate that if
t3 € T is the generator of w(#;) with w(#3) = w(t1), thent3 € R, and, hence, (7.2) implies that f;, < f;,,
proving the desired result. _

For the remaining part of the proof, recall the root of 7 avoids the supports of all ,u%, i > ij. This
implies that every 7 € U;»;, supp(,u?) is the successor of some node in 7. Then, since for all i > i}, the
set B; = supp(,u?) is finite (as a subset of the finite support of y;), and for each 7 € T, the sequence
(y?(S(f)))iZ,-] is eventually zero, we may pass to a subsequence so that for all i; < i < j, we have
{w(t) : 7 € supp(p%)} N{w(t) : 7 € supp(,u?)} = (. We can, therefore, define the bounded sequence
of disjointly supported measures (v;);»;, on w given by v;({w}) = ,uiz({f e T : w(t) = w}). Hence,
applying Proposition 4.1 and passing to a subsequence, we obtain a subset E; of supp(v;), such that
viOWW \ E;) < €/2 and the sets E;, i > i;, are pairwise incomparable. It is easy to verify that if
G?={feB;:Ww(t) € Ejyand F? = {t € T : f € G}, i > iy, then (F?);»; is pairwise weight
incomparable and |u; (B;) — u;(G?)| = p?(7~'\ G?) < g/2 for every i > i. o

Lemma 7.3. Let x € %2‘2 f € Wqy and a tree analysis (fo)aca of f, such that fo(x) > 0 for
every a € A. Let 1, ...,&p4) be positive reals and G; be a subset of {a € A : |a| = i}, such that

YaeG; Wi (fa)” Vfa(x) > f(x) — & forevery 1 <i < h(A), and f(x) > Zh( )si. Then, there exists
a g € W) satisfying the following conditions.

(i) supp(g) C supp(f) and w(g) = w(f).
(i) g(x) > f(0) - 25 e
(iii) g has a tree analysis (ga)aca,, Such that for every a € Ay, there is a unique f € G\q| with
supp(ga) C supp(fp) and w(ga) = w(fp)-
Proof. Let Ay denote the set of all nodes in A, such that || = k, 1 < k < h(A). We define g by
constructing the tree analysis (g4 )acA, - First, define by induction By = A; \ G and for 2 < k < h(A):

By ={a € Ay : @ ¢ Gy or there is a B8 € By_1, such that @ € S(B)}.

It follows easily that & € By if and only if there exists 8 < «, suchthat 8 ¢ G g|. LetCq = Ap () \ Br(4)-
Note that f, € {+e : J € N} for every @ € Cyq, and let Ay = U{supp(fa) : @ € Cg}. Then g = fa,
and (ga)acA, is the tree analysis induced by (fq)aeca-

Observe that, by construction, g satisfies (i) and (iii). To see that it also satisfies (ii), we show by
induction that for every 1 < k < h(A)

> f"((;ﬁ) > f(x) - Zsl (13)
@€ A \By a)

This indeed proves (ii), since the left-hand side of (7.3) for k = h(.A) is equal to g(x). We now prove (7.3)
by induction. Assume that the inequality holds for some 1 < k < h(A). Then, for every @ € Ay \ By,
we have
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fz(x) f5(x)
falr) = "t 7D
BES(@)NGryy ¥ BeS(a)\Gra @
and
fp(x) B fp(x)
Wi (fa)w(fa) TS e
ae A \By BeS(aN\Gryy 1 W) o BB Bes(an\Gry T P
Hence

fsx) falx) fz(x)
2 2 wr(fa)w(fa) 2. wr (fa) 2 2, wr (fp)

acAi\Bi BES(a)NGy a€Ai\By a€Ai\By BES(a)\Gr+i

~

> (f(x) - Zé‘i) — k4l

i=1
which, along with the previous inequality, proves the desired result since
{BeA:BeS(a)\ Gy forsome @ € Ag \ Br} = Ags1 \ Brs1-

i

Lemma 7.4. Let (x!) [T (x) i be normalised block sequences in XV For every € > 0, there exists
JJ J o awi

an L € [N]® and a g;. € Wy with g;.(x;.) >1—-¢g 1<i<landj € L, such that for any choice of

1 <ij <, the sequence (g;.j)jeL is AWI.

Proof. Let (&x);2, be a sequence of positive reals, such that 3;”ex < /2. For every 1 < i <[

and j € N, pick an f]’ € W(1) and a tree analysis (f]l",a)cxeAj. of f}, such that ﬁ(xj.) >1- 8/2 and

a e A We

will choose, by induction, an L € [N]* and, forevery 1 <i <[, j € L and k € N, a subset Gf.’i of

Eo(xt L <i< ] L= fi i = fi
fj,a(x])>0f0reverya€.Aj.For1_z_landJEN,wesettJ fjandtj,a G

{a € .Ai. . |a| = k} satisfying the following conditions. For k € N, weset L.y = {j € L : j > k}.

(i) For every j € L, there is a partition {tj. ci=1,...,1} = C(l)’j U Cg such that U]-eLC(l)’j is

2J’
essentially incomparable and (Cg J.) jeL is pairwise weight incomparable.

ki such

(ii) Forevery 1 < i < I, k € N and j € L.k, there is a partition Gf.’i = G]fjl U sz

thaF for any cho.ice of 1 <i; <[,V j€L>k{t;:’; .l € G:(J’J } is essentially incomparable and
({t;:’; W @E Gl;;’ }jeL., is pairwise weight incomparable.
(ili) Foreveryi=1,...,1,j € L and k € N with k < h(.Az.)

D v e @) > £ ) - e

ki
a/EGj

Observe then that (iii) and an application of the previous lemma yield, forevery 1 <i <landje€ L,a
functional gj. € W), such that

00

gy > i) = Y e > 1-s.

k=1
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Fix a choice of 1 <i; <[, j € L. Then, (i) implies that {t;j cjeLIn (UjeLC?’j) is essentially

incomparable, and that {tj.j cJeLyN(Yje ch j) is weight incomparable. Finally, (ii) and Lemma 7.3
(iii) yield that, forevery 1 <i <[, k € Nand j € L., there is a partition

_ij i k k,
g/ ,rae Al and || =k} =C]’ ’f uc, ‘f,
such that Ujer_, C 1,’]1'1 is essentially incomparable and (Cz’]l." )jeL., is pairwise weight incomparable.
Hence, g;, 1 <i<landj € L satisfy the desired conditions.

To obtain L, let us first assume that sup; ; h(A;) = +oo (if sup; ; h(.A;) < +00, then a finite version of
the same proof works). Moreover, passing to a subsequence, we may further assume that max; h(.Aj.) >k

whenever j > k, for j, k € N. Define, for each j € N, the measure ,u? onT given by

!
= Zl HEALS
i=

Applying Lemma 7.2, we obtain an Ly € [N]®, such that, for every j € Lo, there exist disjoint subsets
G0 and GO of supp( ,uo) so that the following hold.

(@0) 1 0T\ G0 U G0 ) < gq for every j € L.

(Bo) Deﬁne C0 ={t e T fe G0 } for j € Lo. Then U; elﬂC . is essentially incomparable.

(yo) Define Cg,j ={teT:fe Gg’j} for j € Ly. Then the sequence (Cz’j)jeL0 is pairwise weight
incomparable.

Note that (ag) implies that supp(,u?.) = G(l)j U ng since f;(x) > 1 —¢/2, thatis, {7} : i =

LI} = O ;Y C0 We proceed by induction on N. Suppose we have chosen Ly, ..., Ly—; and
G(l)jo Gg}o Gll‘ji . G’Z‘]i for some k € N and every j; € L;, fori =0,...,k - 1. SetLg ={je

Ly : h(A‘,.) < kforall 1 <i <1}. Then, foreach j € Li_; \ L, define the following measure on T

211 Z sz o (X )

o s ()
lal= i

Again, applying Lemma 7.2 yieldsan L; € [Lx-1\L}]* and disjoint subsets G| ; and G5 ; of supp(uf),

j € L}, such that

(ag) uf(%\ G’l‘,j U G’g’j) < gy forevery j e L,
Br){teT :fe UjeL}{Gll"j} is essentially incomparable and
(yx) the sequence ({t : 7 € G’zi .})jeLl’ is pairwise weight incomparable.
Then, set Ly = L0 v Ll and Gk ={ae A :|a| =k}, forl <i<landj € LO Finally, choose L

to be a dlagonahsatlon of (Lk)k, that is, L(kS € Ly for k € N. Observe that (8x) and (yx) imply (ii),
while (ay) implies (iii). O

Proposition 7.5. The space %( ) . admits a unique asymptotic model, with respect to F, (%éw)l) equivalent
to the unit vector basis of €.

Proof. Equivalently, we will show that %5\2 admits ¢ as a uniformly unique joint spreading model with

respect to F, (X;Vlv)l) To this end, let (x}.) e (xi.)j be normalised block sequences in EE;VIV)I Passing to
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a subsequence, we may assume that supp(x;.') < supp(xj?ﬂ) for every iy,ip = 1,...,l and j € N. Fix

& > 0 and apply Lemma 7.4 to obtain an L € [N]* and a functional g; € Wy, foreach 1 <i </ and
j € L, such that

1) supp(gj.) c supp(xj.) and gj.(xj.) >1-¢g,foralll <i<landj e L and

(ii) the sequence (gj:’)jeL is AWI for any choice of 1 <i; <[, j € L.

Fix a choice of 1 < i; <[, j € L,andlet k € Nand F c L with L(k) < F and |F| < k. Note
that (gl]:’ )jer is an Sj-admissible sequence in Wy and is in fact AWI, as implied by (ii). Hence,

g=1/2%cr g;j is in W(y, and, thus, for any choice of scalars (a;);cF, we calculate

. . . 1-¢
Zajx;:’ > Z|aj|x;:’ Zg(Zlaﬂx;:’) > > Zlaﬂ.
jeF JjeF jeF jeF
Then, Lemma 3.4 yields the desired result. ]

8. Standard exact pairs

We pass to the study of certain basic properties of Mixed Tsirelson spaces which have appeared in
several previous papers (see [5] and [9]). The goal of this section is to define the standard exact pairs
in %fwlv)l and present their basic properties. In the next section, we will use the existence of sequences of
such pairs in any block subspace of %2\2 to show that it is not Asymptotic ¢;. The proof of the properties
of the standard exact pairs are based on the definition of an auxiliary space and the basic inequality

which are given in Appendix A.

8.1. Special convex combinations

We return our attention to special convex combinations, defined in Section 2.3. These types of vectors

are used to prove the presence of standard exact pairs in every block subspace of %;\L)l

Remark 8.1. Let (xi )i be a block sequence in %;‘3 Then Proposition 2.4 implies that, for every & > 0,
n,m € N and M € [N]™, there exist F ¢ M with m < F and scalars (ax)ier, such that Y ; .y axx is
a (n,¢e)-s.c.c.

Lemma 8.2. Let (xy )x be a normalised block sequence in %x)l For every € > 0, there exists M € [N]*,
such that for every j € N, every Sy, -admissible sequence (xy)xer with F C M and any choice of scalars
(ar)ker, we have

1-¢
| S o] 2 25 b
keF mj ier

Proof. Apply Lemma 7.4 to obtain M € [N]® and an fi € W(y) with fi(xx) > 1 — &, foreach k € M,
such that (fx )xeprr is AWL. We may also assume that supp( fi) C supp(xx), k € M.Pickan F c M, such
that (xy)ker is Sn;-admissible. Then, (fi)ker is Sy, -admissible and clearly (fi)xer is AWIL. Hence,
f= mj‘l Yker fr is in W1y, and we calculate

1Y il =1 laleall = £ Jaxt) = =2 3 gl

keF keF keF J keF

https://doi.org/10.1017/fms.2022.101 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.101

Forum of Mathematics, Sigma 23

Proposition 8.3. Ler Y be a block subspace of %ivlv)l Then, for every n € N and € > 0, there exists a
(n,&)-s.c.c. x = X1 cxxp with ||x]| > 1/2, where x1, . .., X, are in the unit ball of Y.

Proof. Towards a contradiction, assume that the conclusion is false. That is, for any S,-admissible
sequence (xg);~, in the unit ball of Y, such that the vector x = 3" cxxy is a (n, £)-s.c.c., we have that
lx]| < 1/2.

Start with a normalised block sequence (x(,g )k in Y and pass to a subsequence satisfying the conclusion
of Lemma 8.2 for € = 1/2. Using the choice of the sequence (my)x, we may find j € N, such that

211 > dm,. 8.1
Set d = |n;/n] and, using Remark 8.1, define inductively block sequences (xf{)k, i=1,...,d, such
that for each i = 1,...,d and k € N, there is an S,-admissible sequence (x/,!),, . Fi and coefficients

. ‘ i ey o
(cﬁn)meFi, such that ¥} = ZmeFi CXy 18 @ (n, €)-s.c.c. and x = 2%, .

Using the negation of the desired conclusion, it is straightforward to check by induction that ||x;; I <1

foreveryi =1,...,d and k € N. Moreover, note that each vector x;; can be written in the form
i _ i i 0
x, =2 Z dyx,
mEG;;,

for some subset G4 of N, such that (x?n)meG;-c is Spi-admissible and ZmeGi di, = 1. As the sequence
(x(,z)k satisfies the conclusion of Lemma 8.2, we deduce that
2d 2nj/n

P2l 2 o— > :
mj 4mj

since n; — n < dn, and this contradicts (8.1). ]
Proposition 8.4. Let x = 3", ¢;x; be a (n, &)-s.c.c. in x(

i WR x|l < L i=1,....m, and f € W(y)
with w(f) = mj, such that nj < n. Then we have

14+ 2ew(f)
w(f)

Proof. Let f =m ! . fi, where ()2, is an S,,;-admissible AWI sequence in W), and define

FACII[S

A={ie{l,...,m} : thereis at most one 1 < [ < d,

such that range(x;) N range( f;) # (Z)}.

Note that | f(x;)| < 1/m;, foreachi € A, and, hence

‘f(i Cixi) < m% DN (8.2)

i=1 i€A igA

Set B = {1,...,m} \ A. The spreading property of the Schreier families implies that the vec-
tors (X;)ieB\{min(B)} are Sp,-admissible. Moreover, the singleton {xyinp} is So-admissible. Thus,
2ieB\minB Ci < € and cmin g < €. Applying this to (8.2) immediately yields the desired conclusion. O

8.2. Rapidly increasing sequences

These sequences are a standard tool in the study of HI and related constructions. They are the building
blocks of standard exact pairs.
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Definition 8.5. Let C > 1, be an interval of N and (jx )xes be a strictly increasing sequence of naturals.
A block sequence (xg)xes in W s called a (C, (jx)rer)-rapidly increasing sequence (RIS) if

awi

@A) |lxx|] < C forevery k € I,
(i) max supp(xx_1) < /m;, forevery k € I'\ {min/} and
(iii) |f(xx)| < C/w(f) forevery k € I and f € Wy with w(f) < m;,.

Proposition 8.6. Let Y be a block subspace of %L(UIV)Z and C > 2. Then there exists a strictly increasing

sequence (ji)ken of naturals and a (C, (Ji)ken)-RIS (xp)kenw in Y, such that 1/2 < ||xi|| < 1, for all
k eN.

Proof. We define the sequences (i )r and (xi)x inductively as follows. First, choose x;, using Propo-
sition 8.3, to be a (nl,ml‘z)-s.c.c. x1 in Y with 1/2 < ||x1]| £ 1, and set j; = 1. Suppose that we
have chosen ji,...,jr-1 and xq,...,xx—1 for some k € N. Then, choose jix € N with jz > jr_;
and /mj;, > maxsupp(xx-1), and use Proposition 8.3 to find an (njk,m]’.kz)—s.c.c. X in Y with
min supp(xx) > maxsupp(xx—1) and 1/2 < |lxx|| < 1. Proposition 8.4 then yields that x; satisfies
(iii) of Definition 8.5, and, hence, we conclude that the sequences (ji)ren and (xj)xen satisfy the
desired conclusion. O

8.3. Standard exact pairs
(1

We are ready to define standard exact pairs and prove their existence in every block subspace of X .

Definition 8.7. Let C > 1 and jj € N. We call a pair (x, f), forx € %g}l and f € Wy, a (C, m,)-SEP
if there exists a (C, (jx);_,)-RIS (xx)/_, with jo < ji, such that

(i) x =mj, Xj_; axxe and Tj_; agx is a (njy, m?)-s.c.c.,

(i) xg isa (n]-k,m;kz)-s.c.c. and 1/2 < ||xg|| < 1 forevery k = 1,...,n and
(iii) f = m]_-ol Yk1 Ji» where (fi)7_, is an Snjo-admissible AWI sequence in W) with fi (xx) > 1/4,
forevery k =1,...,n.

The following proposition is an immediate consequence of the definition of standard exact pairs, the
existence of seminormalised rapidly increasing sequences in every block subspace of %;&V)l, as follows
from Proposition 8.6 and Lemma 7.4 applied to a sequence.

Proposition 8.8. Let Y be a block subspace of Lf;vlv)l Then, for every C > 2 and jo, m € N, there exists a
(C,mj,)-SEP (x, ) with x € Y and m < min supp(x).

Proof. Applying Proposition 8.6, we obtain a (C, (jx)ken)-RIS (xx)ren in Y, such that m <
minsupp(xy) and 1/2 < |jxg|| < 1, k € N, with jy < j;. Then, applying Lemma 7.4 for £ = 1/2 and
passing to a subsequence, we obtain an AWI sequence ( fi)xew in W1y sothat fi (xx) > (1-¢)/2 = 1/4,
k € N. We may assume that supp(fx) C supp(xx), k € N. Remark 8.1 then yields the desired SEP. O

Definition 8.9. Let / be an interval of N and (x;)x<s be a block sequence in %z(wlv)l For every f € Wy,
we define the sets [y = {k € I : supp(xx) C range(f)}, Jr =If N{k € I : supp(xx) N supp(f) # 0}
and 1} = {k € I : supp(xr) Nrange(f) # 0}.

If (x, f) isa (C,mj,)-SEP and g € W(y), then when we write g or J; we mean I, or J,, respectively,
with respect to the sequence (xg);'_, as in Definition 8.7.

Remark 8.10. Let / be an interval of N and (xg)re; be a block sequence in %5\1,)1 Then, for every
f € W1y, the following hold.

(i) Iy is a finite subset of [ and #{k € I : supp(xx) Nrange(f) # 0} < #I; +2.
(i) If f = m;' 5L, fi, then UL 15 C .
(iii) If there exists k € I, such that range( f) & range(xy), then Iy = 0.
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Proposition 8.11. For every (C,m,)-SEP (x, f), the following hold.
(i) Forevery g € W(y)

,i—jc_o, g = xe; for somei € N
1 mj
lg()| < 12C15-+ i), wle) 2 my,
M?TC;)’ w(g) < m;,

(i) If g € W) with a tree analysis (gqa)aca, such that Iy = 0 for all a € A with w(gqe) = mj, then

6C
lg(x)[ < P
Jo

For the proof, we refer the reader to Appendix A.

Remark 8.12. Proposition 8.11 (ii) remains valid if we replace I3 with Jg .
Corollary 8.13. The space %23 is reflexive.

Proof. The unit vector basis of cgo(IN) forms an unconditional Schauder basis for %ivlv)l and it is also
boundedly complete since the space admits a unique ¢; asymptotic model. Hence, it suffices to show
that %:\L)l does not contain ;. To this end, suppose that Xi‘i/)l contains €| and, in particular, from James’s

¢ distortion theorem [22], there is a normalised block sequence (xy )i in xV such thatfor0 < & < 1 /2

awi’
n n
D k| = (1=e) ) la|
k=1 k=1

for all n € N and any choice of scalars ajy, ..., a,. Choose jy € N, such that 12/m, < 1 — €. Let also
y1 < ... < yn, where each y; is a special convex combination of (xj); for all i = 1,...,n, such
that x = mj, 2%, aryk is a (3,m},)-SEP (note that ||y;|| > 1 —& > 1/2 forall i = 1,...,n). Then,
Proposition 8.11 yields that ||x|| < 12 and, since |[x|| = m || X\, axykll = mj, (1 — ), we derive a
contradiction. m]

9. The space %fwlv)l does not contain asymptotic ¢; subspaces

In this last section of the first part of the paper, we show that %é‘i,)l does not contain Asymptotic ¢
subspaces. It is worth pointing out that unlike the constructions in [8], we are not able to prove the

existence of a block tree which is either cq or £, for some 1 < p < oo, of height greater or equal to w,
(€

in any subspace of X, .

Definition 9.1. We say that a sequence (xy, fi), ..., (Xu, fn), With x; € xé‘i,) and f; € Wy fori =

1
1,...,n, is a dependent sequence if each pair (x;, f;) is a (3,m;)-SEP and f| <7 ... <7 fi.

Definition 9.2. Given a dependent sequence (x1, f1), ..., (X, f), for f € W() with a tree analysis
(fo)aea and each 1 < k < h(A) define

ch = {a/ € A : |a| = k and there exists 1 < i < n, such that
w(fa) = w(f;) and supp(fo) N range(f;) # 0}

and

E;ﬁ ={ie{l,...,n}:w(fa)zw(fi)forsomea/eDfp}.
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Remark 9.3. Let fi,..., f,, f be as in the above definition and fix k € N. If f, and f3 are such that
a,B € Dfp and w(fo) < w(fg), then w(fo) <y w(fp) since w(fo) = w(fi,) and w(fg) = w(fs,)
for some 1 < iy < i < n. This implies that { f,, fg} is not essentially incomparable. Indeed, if it were
essentially incomparable, then f;, < f,, and this contradicts the fact that supp( f,) N range(f;,) # 0 in
the definition of D ; .

Proposition 9.4. Let (x1, f1), ..., (X, fu) be a dependent sequence and f € W(y). Then #E’; < ek! for
every k € N (where e denotes Euler’s number). ‘

Proof. Denote by (ay )i the sequence satisfying the recurrence relation a; = 2 and ay = kag-; + 1,
k > 2. We will show that #E JIE < ay for every k € N. Note that this yields the desired result since
ax = L o k!/j! < ek!.

Let (fa)aea be a tree analysis of f. We proceed by induction. For k = 1, the definition of W(;, and
in particular, that of AWI sequences, yields a partition

{fo:aeAand|a|=1}=C)UCY,

such that C is essentially incomparable and Cj is weight incomparable. Then, note that Remark 9.3
implies that

#w(fo) @ €Dy and fp € C} < 1. 9.1)
Moreover, since Cg is weight incomparable, we have that
#{w(fe) 1 € D} and f, € Cg} <1, 9.2)

and, hence, (9.1) and (9.2) imply that #EJI, <2.
Assume that for some k € N, we have #Eé‘ < ay for all functionals g in Wy, with respect

to the dependent sequence (x1, f1), ..., (X, f,). We will show that #E;i“ < arer. Let {a € A :
lo| = 1} = {ey,...,aq}, where f, < ... < fo, and consider the tree analyses (fy)ae.4,, Where
Ai={a e A:qa; <a}forl <i <d. The fact that f is in W(;y, that is, (fm)il is AWI, implies that
there exist partitions

{fo:a €A with|a| =k} =Cf,UCY,, izk+1,

such that Uf: 1€ {‘i is essentially incomparable and (Céi ; i k.1 I8 pairwise weight incomparable. Here,

|| is the height of a in the tree A;. Then, using Remark 9.3 and arguing as in the previous paragraph,
we have

#w(fo) e D anda e UL, Cf } < 1. 9.3)
Moreover, it follows easily that Df(” N Cé‘ io # 0 for at most one k < iy < d, and, thus, if such an iy
exists, we have

Ek

d
#U; for

i=k+1,i#io <1
If no such iy exists, we have

#ud EX

i=k+1 ~ fo; <L
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In any case, since the inductive hypothesis yields that #E ]]Z < ag, we have

i

Ek

d
#U; for

i=k+1 Sak+l.

Note that the inductive hypothesis also implies that

#EY <ar, 1<i<k,

and, hence, since £ ;ﬁ“ = UlflzlE ;ﬁ S, we conclude that

k
#EKT < N K +# UL, EX <kap+ac+ ]

i=1
This completes the inductive step and the proof. O

Lemma 9.5. Let (x, fo) be a (3, m,)-SEP. If fis a functional in W1y with a tree analysis ( fo)aca and
B=A{a e A:w(fo) =mj, and w(fg) # mj, for every B < a},

then there exists a partition range(f) = G U D, such that

W) |flp ()] < 18/m;, and
(ii) |Za/€B f(X|G(x)| <3.

Proof. Letx =mj, ¥i_; arxy for some (3, (jr)7_;)-RIS (xx);_,, and set

I}‘a ={k e {1,...,n} :supp(x;) C range(fy)}, «a € A.

For every a € B and every k € I’; , Definition 8.5 (iii) implies that

3ak

|[fa(arxi)| < 9.4

Jo
since jo < jx. Set G = U{range(xg) : k € U(,gg]; } and D = range(f) \ G. Then, (9.4) immediately
yields that G satisfies (ii). To see that D satisfies (i), note that if @ € A with w(f,) = mj, and
supp(fo) N D = 0, there exists 8 € B, such that 8 < a and J |, € J% . However, it is easy to see

Ja|D JsID”

that J;ﬁﬁ D= @, and thus J; D= 0. Hence, (i) follows from Proposition 8.11 (ii) and Remark 8.12. O

Proposition 9.6. For every 0 < ¢ < 1, there exists d € N, such that for any dependent sequence
(x1, f1)5 - ., (xn, fu) where d < n, and any f € W(y), we have

1 n
f(;;xi)

Proof. First, pick an m € N, such that 3/2™ < ¢, and fix a dependent sequence (x1, f1), ..., (Xn, fn)-
Let f € Wy with (fo)ac. be a tree analysis of £, and set

<c.

G = U{range(xy) Nrange(fy) : k € {1,...,n} and @ € A with w(fy) = w(fi)}

and H =N\ G. Let g = f|g and h = f|g. Then, consider the tree analysis (g(l)(IE.Ag for g, induced by
(fa)aea, and define

B,lc ={a e Ag:lal <m, w(fo)=w(fk)and w(fg) # w(fx) forall < ain Az}
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fork=1,...,nand
G =Uj_, U {supp(ge) Nsupp(xx) : @ € B,l(}.

Let g1 = glg, and g2 = ghn g, - Recall Remark 5.8 (ii), and observe that for k = 1,...,n,

1 1
g1(xx) = a%;‘l» MgQ(Xk) and  go(xx) = aéz mga(xk),
where
Bi ={a e Ag :|a|l >m, w(fo) =w(fi) and w(fg) # w(fx) forall 8 < ain Ag}. 9.5

Consider the tree analysis (f4)qe.4, of h, induced by (fo)aeca. Note that, for every « in Aj; and
k =1,...,n, such that w(h,) = w(fx), we have range(h,) N range(xx) = 0, and, hence, k ¢ I, .

Proposition 8.11 (ii) then implies that for every k = 1,...,n
18
[h(xi)| £ ——.
w(fi)
Thus, we obtain
1< 18
h(= > x0)l < —. 9.6)
n =1 n
Next, we apply Lemma 9.5 for g, and each (x, fx), K = 1,...,n, to obtain partitions supp(g2) N

supp(xx) = G7 U D3, such that

(a) |g|D§(xk)| < 18/w(fi) and
(b) |23€Bi gﬁ|Gi (xx)] < 3.

Then, (b) and Remark 5.8 (iii) yield that

_ _ 3
oy 501 =1 Y, w5y (01 = Y, Tl (40 =
BeB? peBl

and, hence, using (a) we obtain

1 ¢ 1< 18 3 18 3
- < - — < —+ —. 9.7
|gz<n;xk)|_néw(fk)+2m_n+2m ©.7)

Finally, observe that it follows immediately from Proposition 9.4 that

{ke{l,...,n}:gl(xk);&O}szeik!,
k=1

and, thus, by Proposition 8.11 (i),

1< ¢
Ig1(= ;xk)l < -6, 9.8)
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Then for d, such that
36+6f 3

+— <c,

d 2m
(9.6), (9.7) and (9.8) yield the desired result. m]

Proposition 9.7. The space %(ivlv)l does not contain Asymptotic €| subspaces.

Proof. Suppose that %i(“i)l contains a C’-Asymptotic £; subspace Y. By standard arguments, for every

& > 0, there exists a block subspace of Y which is C’ + & Asymptotic ¢;. Passing to a further block
subspace, we may assume that Y is block and C-asymptotic £; in the sense of [25], that is, ¥ admits
a Schauder basis (y;);, which is a block subsequence of (e;);, such that for every n € N, there exists
N(n) € N with the property that whenever N(n) < x; < ... < x, are blocks of (y;); then

LS el <Y
k=1

n

k=1
Applying Proposition 9.6 for ¢ = 1/2C, we obtain n € N, such that for any dependent sequence
(x1, f1)s .., (xn, fn), we have

. 9.9)

1

X1+ +Xx,
— < =.
2C

n

We apply Proposition 8.8 iteratively to construct a dependent sequence in Y as follows: We find x; € Y
with N(n) < supp(x1) U supp(fi), w(fi) = o(0), and set f; = (f1,0(0)), and for 1 < k < n, we
find xx € ¥ with w(fi) = o(fi-1), and set fi = (fx,o(fk-1)). Note that the sequence (fi)_, is
S1-admissible since n < N(n). Then, (9.9) implies that

1

“x1+~--+xn
—| 2 5=
2C

n
since ||xx|| > 1/2 foreach k = 1,. .., n as follows from Definition 8.7, which is a contradiction. O

Question 9.8. Let ¢ < w; and 1 < p < oo. Does there exist a Banach space X with a Schauder basis
admitting a unique ¢; asymptotic model, such that any block subspace of X contains an £, (or cg if
p = o) block tree of height greater or equal to w? ?

PART II. The case of £,forl < p < oo
10. Introduction

In this second part, we treat the case of 1 < p < oo and, in particular, that of p = 2. The cases where
p # 2 follow as an easy modification. The definition of %;\i)] and the the proofs of its properties are

for the most part almost identical to those of %;‘L)l We start with the 2-convexification of a Mixed
Tsirelson space and define a countably branching well-founded tree on its norming set. Then, employing
the notion of asymptotically weakly incomparable constraints, we define the norming set W,y of X,
To prove that the space admits £, as a unique asymptotic model, we use Lemma 3.4 by first applying
the combinatorial results of Section 4, in a manner similar to that of Section 7, and prove lower ¢,

estimates for arrays of block sequences of %‘Evzv)l by passing to a subsequence. Then, a result similar to
()
awi

[16, Proposition 2.9] shows that any block sequence of X . also has an upper ¢, estimate. Finally, to
prove that %z(li)l does not contain Asymptotic £, subspaces, just like in Part I, we show that any block
subspace contains a vector, that is an ¢;-average of standard exact pairs, with arbitrarily small norm.

The existence of standard exact pairs follows again from similar arguments, while the proof that these
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are strong exact pairs requires a variant of the basic inequality, which we include in Appendix B. In
particular, for a block subspace Y and 0 < ¢ < 1, we show that there is a sequence of standard exact
pairs (x1, f1), ..., (xn, fu) in Y, such that fi <7 ... <7 f, and ||x; + - - - + x,|| < ¢ V. To prove this,
we consider the evaluation of an f in W2y on such a sequence and partition f into g + & and then g into
g1 + &> as in the proof of Proposition 9.6. An upper bound for % follows from the fact that standard
exact pairs are strong exact pairs, while that of g is, again, an immediate consequence of Lemma 9.4.
Finally, for g,, unlike the case of Part I, we cannot estimate its action on each xx, k = 1,...,n using
similar arguments. Instead, we need to carefully apply the Cauchy-Schwarz inequality to provide an
upper estimate for its action on xj + - - - + xx. We demonstrate this in Lemma 14.2.

11. The space x®

awl

Define a pair of strictly increasing sequences of natural numbers (m;);, (n;); as follows:

m1=4 n1=1

mj

— _ n2m;
Mjyl =Mm; I’lj+1—2 .

Definition 11.1. Let V,) denote the minimal subset of co(IN) that

(i) contains 0 and all ie;, j € Nand
(ii) whenever fi <... < f,isanS,;-admissible sequence in V() \ {0} forsome j € Nand 4y, ..., 4, €
Qwith $7L, 47 < 1, then m7' T, A; f; is in Vo).

The notion of the weight w( f) of a functional f in V|, is identical to that in Section 5. We also
define, in a similar manner, the notion of tree analysis of a functional in V), taking into account the
¢, version of the (m, Snj)-operations, in the definition of V(7). Again, it follows from minimality that
every f in V(2 \ {0} admits a tree analysis and finally, for a functional f in V(5 \ {0} admitting a tree
analysis (fo)aea, we define w s (fo) as in Definition 5.5.

Definition 11.2. Let f € V(3) with a tree analysis (fo)acA-

(i) Let 8 € A with 8 # 0. Then, if @ € A is the immediate predecessor of 3, we will denote by Ag the
coefficient of fg in the normal form of f,, that is,

fa:m;1 Z /l/gf/;,
BeS(a)

where S(a) denotes the set of immediate successors of & and w( fo) = m;.
(ii) For each B8 € A, we define

[To<gAas B#0
ﬂf’ﬁz{l <B

Remark 11.3. Let f € V(5 with a tree analysis ( fo)aca.
(i) Forevery k =1,...,h(A)

Af.a
f= ——fa
;k Wy (fa)
(ii) If B is a maximal pairwise incomparable subset of A, then
Af.a
f=
Z W (fa

aeBB
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(iii) Forevery a € A, whose immediate predecessor 8 in A (if one exists) satisfies fz ¢ {J_rej. :j €N},

we have wr (fo) = glel,
(iv) If B is a pairwise incomparable subset of A, then

DRSS

aeB

Next, as in Section 5, we define a tree 7 on the set of all pairs (f,w(f)), for f € V(2 and w(f)
a weight of f and consider the trees 'Af, W and W, which are induced by 7 and defined identically
to those in Section 5. These are countably branching well-founded trees. Finally, let us recall all three
incomparability notions of Definition 5.12, as well as the notion of asymptotically weakly incomparable
sequences in Definition 5.14.

Definition 11.4. Let W, be the smallest subset of V() that is symmetric, contains the singletons and
whenever j € N, fj < ... < f,isan S,,j -admissible AWI sequence in V(3) and 4y, ...,4,, € Q with

- /l? < 1, then m}‘.1 2y Aifi € W(z). Denote by %‘E\i)l completion of cgo(IN) with respect to the norm
induced by Wy).

Remark 11.5.

n o)

(2) =0’ where

(i) The norming set W(,) can be defined as an increasing union of a sequence (W

W?z) ={+e; :i € N} and

1 m m
Wil = Wi U {J S Aifijom €N, () < Qwith Y 22 < 1and
J =1 i=1
(f)iZ; is an S;,;-admissible AWT sequence in W("z) }

(ii) Proposition 5.16 yields that the standard unit vector basis of cog(N) forms an 1-unconditional
Schauder basis for X2

awi®
The following lemma is a result similar to [ 16, Proposition 2.9], in which we prove upper ¢, estimates
(2

for block sequences of X, .

Proposition 11.6. For any block sequence (xy )y in x?

o @Y finite subset F of the naturals and f € W),
we have

£ 0l <2V200 Il

keF keF

Proof. Recall from Remark 11.5 that W,y = U;Q:OW(nD' We will show by induction that for every n € N,

every f € W' and any finite subset F of N, we have

(2)
£ xl < 2V20) Il

keF keF

Clearly, this holds for all f € W&). Hence, let us assume that it also holds for all functionals in W("z)

for some n > 0 and fix f € W(";)l. Then f = m;l 22 Ai fi, where (f;), is an S, -admissible AWI

sequence in W<”2) and A4, ...,4,, € Q with Z;’;l /lf < 1. Define

In ={ie{l,...,m}:supp(xg) Nrange(f;) # 0}, k€F,
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Fi={k e F:#I; <1} and F, = F \ F;. We also define
K; ={k € Fy : supp(xx) Nrange(f;) # 0}, i=1,...,m.

Note that if k € Fy, then k € K; for at most one i € {1,...,m}. Thus, using the inductive hypothesis
and the Cauchy-Schwarz inequality, we have

HOIENIE -1|Zﬁ AOIEN]

keF, keK;
<2 Zu [N APE
keK;
< «F(Zﬂ) (Z PR
i=1 keK;
<V2( ) )z (11.1)
keF,

Moreover, for each k € F», it is easy to see that

_ 1
' > Aifieol < (O] A2kl (11.2)
iely iely
Observe that for each i € {1, ..., m} there are at most two k’s in F>, such that supp(x;) Nrange(f;) # 0

and, thus, applying the Cauchy-Schwarz inequality and (11.2), we have

11O x| =m I|Zzﬁ<2xk>|— w0 Afi)l

keF, keF, keF,iely
<> (Z )7 e
keF, icly
1 1
SONWHHOWADE
keF,iely keF>
< V20 ). (11.3)
keF,
Finally, (11.1) and (11.3) yield the desired result. |

12. Asymptotic models generated by block sequences of x®

awl

In this section, we prove that Xf“i)l admits ¢, as a unique asymptotic model. This follows as an easy
modification of the results of Section 7, which yield lower £, estimates, combined with the upper ¢,
estimates of Proposition 11.6. Let us first recall Proposition 7.2, and note that this in fact holds for the
trees defined in the previous section. Applying this, we obtain the following variant of Lemma 7.3, using
similar arguments.

Lemma 12.1. Let x € %IEW)I, f € W and a tree analysis (fo)aea of f, such that fo(x) > O for every

o€ A Letey,. .., epa) be positive reals and G; be a subset of {a« € A : |a| =i}, such that

f @
2(]; () > £ -
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fori=1,...,h(A), and f(x) > Zh(A) ;. Then, there exists a g € W(y), such that

(i) supp(g) C supp({:) ;md w(g) = w(f).
(i) g(x) > f(x) - T e
(iii) g has a tree analysis (ga)acA,> such that, for every a € Ag with || = i, there is a unique € G;,
such that supp(g ) C supp(fg) and w(ga) = w(fp).

Lemma 12.2. Let (x}.) TN (xﬁ.) i be normalised block sequences in Xﬁv)l For every & > 0, there exists
an L € [N]* and a g‘;. € Wy with gj.(xj.) >1—¢gfori=1,...,land j € L, such that for any choice
ofij € {1,...,1}, the sequence (gj.")jeL is AWI.

Proof. The proof is similar to that of Proposition 7.4 with ,uj? defined as

oy 3 el
fia
i=1 (ZEAL fl (f; a J»
lal=k
and applying Lemma 12.1 instead of 7.3. m}

Proposition 12.3. The space X;i)l admits a unique asymptotic model, with respect to F, (%ﬁv)l) equiv-
alent to the unit vector basis of €;.

Proof. Let (x}) iy e nes (xj. ); be normalised block sequences in %;\i)l Working as in the proof of Propo-
sition 7.5 applying Lemma 12.2, we have that, passing to a subsequence, for any choice of 1 <i; </
for j € N, any F € &) and any choice of scalars (a;);cF, there is a functional g € W2y with

g=%ZLg

1
jeF (Z]EF 612)

such that g/ (x"/) > 1 — & and supp(g"”) c supp(x”) for j € F. Hence, we calculate
U (x pp(g}) < supp(x) for j

> apn, zg(zajxi;;j) > I_E(Z a)t. (12.1)

jeF jeF jeF

Moreover, Lemma 1 1.6 implies that

EH ERACI9Y a)t. (12.2)
jeF jeF
Thus, (12.1), (12.2) and Lemma 3.4 yield the desired result. m]

By the above proposition, %éw)l cannot contain an isomorphic copy of ¢ or ¢;. Therefore, by James’s

theorem [21] for spaces with an unconditional basis, we obtain the following.

Proposition 12.4. The space x? s reflexive.

awi

13. Standard exact pairs

The definitions of rapidly increasing sequences and standard exact pairs in %;\i)l are almost identical to
these in Part I. We show that standard exact pairs are in fact strong exact pairs. This requires a variant
of the basic inequality that we prove in Appendix B.
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Definition 13.1. Let C > 1, I c N be an interval and (ji)rer be a strictly increasing sequence of

naturals. A block sequence (xg)xes in %sw)l is called a (C, (jx)rer)-rapidly increasing sequence (RIS) if

@A) |lxx|] < C forevery k € 1,
(i) max supp(xx_1) < /i, forevery k € I'\ {min/} and
(iii) |f(xx)| < C/w(f) forevery k € I and f € W(y) with w(f) <m;,.

Definition 13.2. Let C > 1 and j, € N. We call a pair (x, f) where x € %E(“i)l and f € W(p),a(2,C,mj,)-
standard exact pair if there exists a (C, (jx)/_,)-RIS (xx);_, with jo < ji, such that
(i) x =mj, Xi_; axxe and Tj_; agx is a (2,nj,,m)-s.c.c.,
(i) xg isa (2, njk,m;,f)-s.c.c. and 1/2 < ||xg|| < 1 forevery k =1,...,n,
(iii) f= m]‘.ol Y%y fr» where fx € W(p) with fi(x) > 1/4 forevery k =1,...,n
(iv) and 48m§0 < min supp(x).
The proof of the following proposition, which demonstrates the existence of SEPs in any subspace

of %;?1 is similar to that of Proposition 8.8 and is omitted.

Proposition 13.3. Let Y be a block subspace of x® Then, for every C > 2 and jo, m € N, there exists

awi®

a(2,C,mj,)-SEP (x, f) withx € Y and m < min supp(x).
Proposition 13.4. For every (2,C,m,)-SEP (x, f), the following hold.
(i) Forevery g € Wy

.
(o] < [ gl o) 2
v})z(g)’ w(g) < mj,.

(i) If g € W(2) with a tree analysis (ga)aca, such that I; =0 for all a € A with w(gq) = mj,, then

6C
lg(x)] < P
Jo

Proof. We refer the reader to Appendix B. O

14. The space X;vzv)l does not contain asymptotic ¢, subspaces

To prove that EE;VZV)I contains no asymptotic £, subspaces, we use almost identical arguments as in the case

of X 2(“1/)1 In particular, we show that any block subspace contains a vector, that is an £,-average of standard
exacts pairs, with arbitrarily small norm. Again, this requires Lemma 9.4. However, in this case, we
employ Lemma 14.2 to carefully calculate certain upper bounds, using the Cauchy-Schwarz inequality.

Definition 14.1. We say that a sequence (x1, f1), ..., (Xu, fn), Where x; %( )1 and f; € Wy for
i=1,...,n,is a dependent sequence if each (x,,ﬁ) isa(2,3,mj,)-SEP and fi<r...<T fu

Lemma 14.2. Let (x, f) be a (2,3,m;)-SEP, where x = mj Y,j_, arxk, and let gy < --- < gm € W(y)
withw(gi) =mj and I3, # 0 foralli =1,...,m. Then, for any choice of scalars Ay, . .., Ay, we have

m m
1> digi@)] < (V2 + (O aD)3
i=1 i=1
Proof. Foreachi=1,...,m,let

/llgg[, Z /ll[ =

ml lel; lel;
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and define
Ki={ke{l,...,n}: kEUerl Urer, I;,»}, K, ={1,...,n}\ Kj.
l

Then, Lemma 11.6 and the Cauchy-Schwarz inequality imply that

|Zm:/1igi(mj Z agxy)| = |Z/1 m; Z Aiegh(m; Z aixy)|
=1

keF, CeL; kel"
[
& 1
<oV2I D4 ) A Y a})?
i=l  (eL; kel”,
8¢
1
<2\/_|Z/1(Z/l Z al)?|
i=1 lel; keUé’eLilxl-
8¢
< 2«/’(242) (> a).
keK;

Foreachk =1,...,n,let

Xi = Z bqull;, Z biq <1.

q€Qk q€Qk

Define foreachi=1,...,mand € € L;
={k € K, : thereis g € Qy with supp(yfl) C range(gé)} and for k € M;
Nl; = {q € Qx : supp(y}) C range(g})}.
Also, for k € K>, define
Or={qeQy: therearei € {1,...,m}and € € L; w1thq€N }.

Finally, also define

Fi = Uy Urer, Ugenrt Ygent supp(yg),  Fa =N\ Fi.

35

(14.1)

Note that the sets N&, i € {1,...,m}, £ € L;, k € M{, are pairwise disjoint with union Ugc,Ox.

Applying Lemma 11.6 and the Cauchy-Schwarz inequality once again, we have

|zm]/ligi|F1 (m; Z agxy)| = |Z/1 Z Aiegl( Z Z akbigyh)l
i=1

keK, i=l  CeL; keM} qeNkE

< 2\/§iai Dldie YD aibp )

i=1  leL; keM{ geNk

<2\/‘Z/1(Z/12 ”2(2 Z Z azbi )"

i=1 tel; FEleEquENk
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<2\/'ZA(Z Z Z arbi )'"?

i=1 CeLi keM! qeNK

RIS

i=l (eL; keM/ geN]|

_2\/'(2/12 1/2(2 ak Z 1/2

kekK; q €0
<2\/'(Z/12)1/2(Z a)'2, (14.2)
k€K2

Foreachi=1,...,m and k € K>, define

Q;; ={q € Qg : thereisan ¢ € L;, such that supp(y];) N supp(gé) # 0 and supp(y];) ¢ supp(gi))}.

Observe that, since (gé)geLi is Snj—admissible, (y]‘;)Qi is Snj+1—admissible foralli =1,...,m, and
Proposition 2.4 thus implies that

3
b < ——
Z_ ka = min supp(xx)
qeQ;

Fori € {1,...,m}, put Ké = {k € K, : range(g;) Nrangex; # 0}. The condition i € {1,...,m},
Iy # 0, fori € {1,...,m} implies that each k € K, is in at most two sets Ké We then calculate

|i/ligi|Fz(mj Z aixi)| = |i/1igi(mj Z ag Z bqu§)|
im1

kekK; i=1 keKanly,; qu;;

SZ\/Eijm:/l,-( Z ai Z biq)l/z

i=1 keKanlg,; qu;‘(

< 2V2m, (Zf)‘/%z D, mlnsupp(Xk)>‘/2

i=1 keKnly,

< 4V3m; (Zaz (Y g ———)'?

P K min supp(xk)

< (Z 2 12 Fvamy 4‘/—’"1

min supp(x)!/2
< (Z %)% (by Definition 13.2 (iv)). (14.3)
i=1
Hence, (14.1), (14.2) and (14.3) yield the desired result. O

Proposition 14.3. For every 0 < ¢ < 1, there exists d € N, such that whenever d < n and
(x15 f1) - - > (X, fn) is a dependent sequence, then

||—Zx,|| <e.
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Proof. Pick an m € N, such that
27 <o (14.4)

and fix a dependent sequence (x1, f1), ..., (xn, fn). Let f € W\ W, and consider the partitions f = h+g
and g = g1 + g» as in the proof of Proposition 9.6. Then, the same arguments and Proposition 13.4 yield
that

1 <& 18
- —. 14.
|h(\/ﬁk§:1xk)| < N7 (14.5)

Moreover, Proposition 9.4, again, implies that

#{ke{l,...,n}:g1(xx) # 0} SK:eik!
k=1

and, thus, by Propositions 11.6 and 13.4 (i),

1 Ve 20
gl —= > xi || <2V2=24 = 48,/ =. (14.6)
(‘/ﬁ ; ) Vi n
Finally, we treat g, differently from Proposition 9.6. Recall that for k = 1, .. ., n,

B ={a € As : |a| > m,w(fa) = w(fi), and w(fg) # w(fi) for B < ain As}.
Define
Gy = Uj_, U {range(x;) Nrange(f,) : @ € Bi},
so that g» = g|g,. We further split G, as follows
Gé = Uj_; U {supp(xx) Nsupp(fo) : @ € Bi and 1;: =0} and G% =G\ Gé.

Proposition 13.4 (ii) implies that for k € {1,...,n},

18
e (xXk)| £ ———,
82l (o)1 < s
and, thus,
1 18
8211 (—= xe)| £ —. (14.7)
4G5 2=

To complete the computation, we need to evaluate the action of g |G§. Tothatend, fors = m+1,m+2, ...
and k € {1,...,n}, put

B, ={a€B;:lal=s},
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so that for each s > m, the sets Bi o k € {1,...,n} are pairwise disjoint and the set UZ:IBi s 1s
pairwise incomparable. We use Lemma 14.2 and the definition of G% to calculate

2lg2 (—= me \FZ

4‘/_+1 f(z )12
Z(Z f(f )2

=1

lg2 (1)

IA

s(4«/’+1)(z Z (f;‘; B )12
lareBz
< (4V2 +1)( Z yn Z A3
s=m+1 aeuz lgis
4V2+1 4
< (4V2+1)( W= —— < —. (14.8)
s;{—l Zm\/§ 2

Then, (14.5), (14.6), (14.7) and (14.8) yield that

36+48V2¢ 4 36+48V20 ¢

Lf(o] < NG +2—mST+§,
and, thus, for d, such that
36+48V20 ¢
Vd 2
we have the desired result. O

Proposition 14.4. The space xéf}t does not contain Asymptotic €, subspaces.

Proof. It is an immediate consequence of Proposition 14.3, using similar arguments as
in Proposition 9.7. O

Remark 14.5. Unlike the case of £|, for every 1 < p < oo, it is in fact possible to define a reflexive
Banach space with a Schauder basis, admitting a unique £,, asymptotic model with respect to the family
of normalised block sequences, whose any block subspace contains an ¢; block tree of height w? . Such a
space can be defined using the attractors method, which was first introduced in [3] and later used in [10].

15. Appendix A

In this section, we prove the properties of standard exact pairs in X(W), given in Proposition 8.11. This
requires three steps. First, we need to define an auxiliary space which is also a Mixed Tsirelson space.
Then, on the special convex combinations of its basis, we give upper bounds on the evaluations of the
functionals in its norming set W;&i Finally, for a standard exact pair (x, f), via the basic inequality, we
reduce the upper bounds of the evaluations of functionals in Wy acting on x, to the corresponding one

of a functional g in Wefl},z on a normalised special convex combination of the basis of the auxiliary space.
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15.1. The auxiliary space
Definition 15.1. Let Wa(l},z be the minimal subset of coy(IN), such that

i) +e; isin w') for all i € N and

@ aux

(i) for every j € N and every S,,+1-admissible sequence of functionals ( ﬁ)lf‘i , in Wa(ul,z, we have that
f=m'TL, fiisin Wi,

The purpose of the following two lemmas is to provide upper bounds for the norms of linear
combinations of certain vectors in the auxiliary space.

Lemma 15.2. Let j € Nand € > O with e < m;". For every (nj, g)-basic s.c.c. X = Ypcf Crek, the
Jollowing hold.

(i) Forevery f € W,ﬁj}
g, f = xe] for somei € N

Ol <{wtm WD zm
W(fz)mj, w(f) <mj.

i) If f € W,gux with a tree analysis (fo)aeca, Such that w(fq) # m; foralla € Aand & < mj_.2, then
£l < 2m
Proof. We may assume that supp(f) C F and f(e;) > O for every i € N. If f = +e’ for some i € F,

then | f(x)| = ¢; < &, since x is an (n}, €)-basic s.c.c. and {i} € Sp.
Suppose that m; < w(f). Then || f]lo < 1/w(f), and, hence

7)) < I llellxlly < ﬁf)

In the case where w(f) = m; < mj,let f = ml.‘1 Zld:l f; with (fl)ld:1 an S, ,1-admissible sequence in
W) Forl=1,...,d define D; = {k € F : fi(ex) > m7;'} and D = UL, D;. Then, [13, Lemma

3.16] implies that D; € S(iog, (m;)-1)(n;_y+1) for each I =1,...,d and, hence, since (fl)ld:l is Sp;_y+1-
admissible (recall that i < j since m; < m;) and D; C supp(f;), ! = 1,...,d, we conclude that the
sequence (Dl)ld: | 18 Su;_,+1-admissible and

d
D =Uj_ Dy € Su;_i+1 % S(iog, (m;)-1) (n;1+1) = Slog, (m;) (n;_1+1)-

Since x is an (n;, £)-basic s.c.c. and log,(m;)(n;j_1 + 1) < nj, the above implies that };cp cx < &,
and, thus

OE Zﬁ(cheu——(ZmD(Zckek>+2ﬁ|N\D(chek>>

1=1 keF keF keF
2
<—<ch+—> < —<s+—> <
i ©o mm,

Finally, if there is a tree analysis (fo)aoeca of f With w(f,) # m; forevery a € A, [13, Lemma 3.16]
impliesthat D = {k € F : f(ex) > m;z} € S(210g, (mj)-1) (n;_1-1)> and since (2log, (m;)—-1)(nj-1—1) <
nj, we have that 3, . ¢; < &. Hence, we conclude that

flx) = Z crf(xp) + Z crflxp) € (~3+L2 < %
keD keF\D m; j O
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15.2. The basic inequality

Proposition 15.3 (basic inequality). Let (xx)ke; be a (C,(ji)ker)-RIS in %ivlv)l with 4 <
min supp(xming), (ar)ker be a sequence of nonzero scalars and f € Wy with Iy # 0. Define
tr = max supp(xg), k € 1. Then there exist

() ge WLEBC U {0} withw(g) =w(f) ifg # 0and {k : t; € supp(g)} C Iy,

(i) h € {sign(ar)e;, : k € Iy} U {0} with ko € Iy and ko < minsupp(g) if h = sign(ako)e;‘ko and
(iii) jo > min{jx : k €I},

such that

1
£ arx)l < C(1+ \/m_)[h+g(z aker,)]. (15.1)

kEIf Jo kGIf

Proof. Recall that Wy is the increasing union of the sequence (W7,);~, defined in Remark 5.18. We

)
prove the statement by inductiononn =0, 1, ... forevery f € W/ and every RIS.

n
(1

Forn=0and f € W(0 ) the fact that 7, # 0 implies that I = {ko}, that is, f = et*ko or f = —e;‘ko
for some kg € I. In either case, it is immediate to check that & = sign(ako)e:ko’ g =0and jo = ji, are
as desired.

Fix n € N, and assume that the conclusion holds for every f € Wfl) and every RIS. Pick an f € W("S'

with f = m; ™! Z;’zl fi, where ( fl)l‘i | is an S, -admissible sequence in Wﬁ). We will first treat the two
extreme cases, namely, the cases where i > max{jx : k € Iy} andi <min{jx : k € I }.

For the first case, set ko = max Iy and jo = j, and choose kj € I that maximises the quantity |ay|
for k € Iy. Then, since (xi)res is a RIS, items (i) and (ii) of Definition 8.5 yield that

1
FC Y, axo)l < — maxsupp(ag-ll Y arxell

kelp\{ko} kel \{ko}
max supp(xXx,—1)
<—" 7 Clak1| < |ak1 l,
M, Tk
and, thus
XN s, + 1 f (i) (15.2)

m;j,

kely Jko

1
|ak1 | + C|ak1| = C(l + —)lak1|

ijk()
1 . .
— )mgn(akl)e,k1 ( Z ager,).

Jko kely

C
V M jiy

=C(1+

That is, h = sign(ax, )e;‘kl , & = 0 and jy, yield the conclusion.

For the second case, the inductive hypothesis implies that, for every [ = 1,...,d with I; # 0, there
are g, h; and jo; as in (i)—(iii) of the statement, that satisfy the conclusion for the functional f;. Define
Jr={k el : f(xx) #0}\ Uldzllﬁ- Then, for every k € J¢, Definition 8.5 (iii) yields that

C C .
|f(arxi)| £ —lax| = —sign(ax)e;, akey, |,
k
mi mi kel
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and, hence, we calculate

PO ax)l < 1FC DY) axi)l +1F( D axxi)] (15.3)
kEIf kEUd lf kGJf
< £ 3 signtaoe; () axey) + —Z[(l # =) +0)] 10)" akey,)
i keds kely I=1 v kely
<C(l+ —— —( Z sign(az)e;, + Z hr+gn)]( Z agey,).
Vm.]mmlf mi kEJf kGIf
Define
= —( Z sign(ag)e;, + Z hy +g1).
i kels
Moreover, foreach/ = 1,...,d, define
K; = {k €Jr min{l’=1,...,d : supp(xx) Nrange(fy) # 0} = l}

and

I = {1 = k € Ki} U {supp(hy)} U {min supp(gr)}.

Let us make the following remarks. First, observe that #K; < 2. In particular, consider the case where
K; = {ky,ky} forsome ! =1,...,d. Then, ky < min/; < maxI; < ky, and since supp(/;) U supp(g;)
is a subset of {tx : k € I3}, we have tx, < supp(h;) < supp(g;) < t,. Moreover, if I < d and
range( fi+1) N supp(xg,) # 0, then ko ¢ Kj4q and clearly ko < Ij41. In the case where K] is a singleton
for some [ = 1,...,d, then either supp(h;) < supp(g;) < k or k < supp(h;) < supp(g;) holds for
K; = {k}. Hence, we conclude that I} < --- < I;. Moreover, let us finally note that min supp(f;) < I
and #I; < 4 forevery [ = 1,...,d. Foreach [ = 1,....,d, let K; = {k!, k}}, where k} or k} can be
ommited if necessary. Then,

Z(mgn(akz)e, ; +h +g+ 51gn(ak1)et 1) (15.4)
D

We will show that the sequence (e; ke, “(hl)ld: 1A(gl)li | i Sy, +1-admissible, when the functionals
ordered as implied by (15.4), that is, according to the minimum of their supports. This yields that
g € ngul)z, and thus 2 = 0, g and jo = jmin Iy satisfy the conclusion, as follows from (15.3). More
specifically, we will show that U;l:]II € Sn,,+1.Tb this end, note that (Il)l‘i | is Sp;-admissible, since ( fl)ld:' |
is Sy, -admissible, | < --- < Iz and minsupp(f;) < [; forevery [ = 1,...,d. Thus, Uldzllz €Sy, * Ag,
since #I; < 4 forall / = 1,...,d. Using item (ii) of Lemma 2.1 and the fact that 4 < min supp(xmin7),
we conclude that Uld:] I} € Spv1.

Finally, in the remaining case where min{jx : k € Iy} <i < max{jx : k € Iy}, define I} ={k e
Ir @ ji < i}and IJZC = {k € Iy : ji > i}, and observe that [; = IJL UIf,max{jk t ke I}} <i
and i < min{jj : k € 1]2( }. Applying the result of the first case for (xj )¢, ! and that of the second for
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(xk)kE,J% , we have

O axol < 1Y axo)l+1£( ) axxi)l (15.5)
kely kel} kelfz.
1
< €1+ ) D% aken) + (D awxe)l
maxlf kEIf kEIz
<O+~ ———)h( ) axey) + C(1+ ——==)g( ), axe)
maxlf kEIf JmmI% kEIf

<Cc(1+ m;)[h +8( > aey)),

Jmax l}. k €lf

where h = sign(akl)e;‘kl, ki € I} maximises the quantity |ax| for k € I} and g € Wa(l}z with
w(g) =w(f). o
Remark 15.4. Let (x¢)re; and f be as in the statement of Proposition 15.3.

(i) Define E = range(f), and note that the sequence (xk)kd/ where x/ = xi|g, k € I, is also a
(C, (Ji)ker; )-RIS. Then,

FO arxi) = £ axxy)

’
kel kelf

and {k € I’ : supp(x;) C range(f)} = I’ Hence, the basic inequality yields 4, g and jj as in
items (i)— (111) such that

1FO o)l < €1+ v_)[h+g( > aes,)l,

kel keI’

where z; = maxsupp(x;), k € I}.

(i) Let j € N. It follows from the proof of Proposition 15.3 that if f has a tree analysis (fy)qea, Such
that /4, = 0 for every o € A with w(f,) = m;, then the functional g € W;J,Z U {0} that the basic
inequality yields for (xx)res and f has a tree analysis (gg)ges With w(gg) # m; for every § € B,
whenever g # 0.

15.3. Evaluations on standard exact pairs
We prove the following lemma, which yields Proposition 8.11 as an immediate corollary.
Lemma 15.5. For every (C,m ,)-SEP (x, f), the following hold.
(i) Forevery f' € Wy
Soego.
|f’(x)| < C(1+Tlo)[ml() w(}o)]’ w(f’) = mj,
C(1+ W)[mlm oyl w() <mj,.

’ _ * .
f' = xe; for somei € N

https://doi.org/10.1017/fms.2022.101 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.101

Forum of Mathematics, Sigma 43

(i) If f' € Wy with atree analysis (f,)aeca, such that Iz, = 0 for every a € Awithw(f;,) = mjy, then

3
< S ——).
Jo

Jo

Proof. Let (x¢);_, bea (C, (jx);_,)-RIS witnessing that (x, f) is a (C, m ,)-SEP. Applying Proposition
15.3, we obtain & and g as in items (i) and (ii), respectively, that satisfy (15.1) for x and f’, namely,

£/ ()] < Cmjy(1+ v%-o)[m) +5®].

where X = 3\ c; axez, , Zx = Max supp(Xx |range(sny) and I = {k = 1,...,n : supp(xg) Nrange(f’) # 0}.
Note that % is a (1, m7’)-b.s.c.c. and, hence, since supp(h) € So, we have A(X) < m’>.

To prove (i), first observe that if g = 0, which is the case, for example, when [’ = +e; for somei € N,
then we already have established a valid upper bound for |f’(x)|. Hence, suppose that g # 0. Then,
using Lemma 15.2 and the fact that w(g) = w(f”), we obtain the following upper bounds for g (%)

v w(f’) = mj,
g(x) < 2 ’
e WU <mj,
which yield the desired upper bounds for | f/(x)].
Finally, item (ii) of Remark 15.4 implies that g admits a tree analysis (gg)gen, such that w(gg) # m

for every B € B. We derive the desired upper bound using item (ii) of Lemma 15.2, which yields that

< -2
lg(®)] < 2m72. -

16. Appendix B

We prove another version of the basic inequality that reduces evaluations on standard exact pairs of X;i)l
to evaluations on the basis of an auxiliary space. The results are almost identical to those of Appendix
A, and we include them for completeness.

16.1. The auxiliary space

Definition 16.1. Let szuz,z be the minimal subset of coy(IN), such that

(i) +e}isin Wéuz,z for alli € N and

(ii) whenever j € N, ( fi)id: , is an Sy, ,1-admissible sequence in Wa(uz,z and A,...,4q € Q with
42 < 1 then f =2m; ' XL A fi is in Wi

Remark 16.2. For each f € Wﬁ,{, the weight of f is defined as w(f) = 0if f = +e] for somei € N and
w(f) =m;/2 in the case where f = 2mj‘.l Zl‘il A fi.

The following lemma is a slightly modified version of [13, Lemma 3.16]. We use it to prove
Lemma 16.4.

Lemma 16.3. Let f € th,f))c with a tree analysis (fo)aeA.
(i) Forall j € N, we have

{k € supp(f) : wy(er) < mj} € Stiog,(m;)-1)(n;1+1)-

(i) If j € N is such that w( f) # m;j for each a € A, then

{k € supp(f) : wy(e}) < m7} € Saogy(m)-1)(nj1+1)-
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Proof. The proof is similar to [13, Lemma 3.16 ]. m]

Next, we prove a lemma similar to 15.2, for the evaluations of functionals in Wdux on the ¢, version
of basic special convex combinations.

Lemma 16.4. Let j € N and € > O with e < m; 2. For every (2, nj, €)-basic s.c.c. X = Y pep Crey, the
following hold.

(i) Forevery f € W,g,f))c

1
W’ W(f) > mj/2
()] < {W(ﬁm_,., W) < myf2.

i) If f € ng,ﬂ with a tree analysis (fo)aea, such that w(fo) # m;j forall @ € Aand & < m; 4 then
@ < 27,

Proof. Without loss of generality, we may assume that supp(f) C F and f(ex) > O forevery k € F.If
mj/2 <w(f), then || fll2 < 1/w(f), and, hence

[F ] < 1 lllxll2 < (f)

Suppose now that m; < m, and let f = 2mi‘1 Zf:l Ay fi, where (fl)lﬁ“i1 is an Sp,+1-admissible sequence
in Wd(f,z Forl=1,...,d, define

= {k € supp(f1) : ws(ey) <mj;}, F;=supp(f;)\D;.

Then, Lemma 16.3 (i) implies that D; € S(QIOgZ(mJ.)_])(,,HH) foreach [ =1,...,d, and, hence, since
(fl)ld:1 is Sp,_,+1-admissible (recall thati < j since m; < mj)and D; C supp(fi),/=1,...,d, we have

D=UL D e Snj+1 % S2log, (m)~1) (nj1+1) = S2log, (m;) (n_1+1) -

Therefore, since x is an (2, n;, )-basic s.c.c. and 2log,(m;)(n;j_1 + 1) < n;, we have 3 ;p ci < e.
Moreover, observe that for/ = 1,...,dand k € F;

/lflaflk </lfl’(lk
wiler) = my ]

filex) =

where ay is the node in the induced tree analysis of f; with fj o, =€), and

d
Z/l Z/lfaks

I=1  keF,

We then calculate, using the Cauchy-Schwarz inequality

fx) = —<Z Afilp () cer) + ZalmN\D(Z crex))

mi 93 keF keF
d
2 Ckdfi,ay CkAfi,a
SO PEARP AP
i3 kep, WAVe) I ker WhAlCk
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d
mii(z/ll Z Ckdfap + —Z/ll Z Ck/lﬁ,ﬂk)

<
I=1  keDy mj i keF;
< —(ZMZ A OIINE +—Z@<ch> (> 22,00
=1 keD; keDy =1 keF; keF;
e NIENIELE 0 IR N DIL IR
keD J I=1 keF; =1 keF;
s—(\/5+—)s i
nm; m; mim;

Finally, if there is a tree analysis (fo)ae.4 Of f; such that w(fy) # m; for every @ € A, Lemma 16.3
(ii) implies that

D = {k € supp(f) : ws (e}) < m}} € S(alog,(m)~1)(n-1-1)»

and since (2log,(m;) — 1)(nj-1 — 1) < nj, we have that 3, cp ci < &. Hence, using similar arguments
as above, we conclude that

1 2
f) < Ve+ — < —.

16.2. The basic inequality

Proposition 16.5 (basic inequality). Let (xt)ier be a (C,(ji)ker)-RIS in X2 with 4 <
min supp(xmin1), (ar)ker be a sequence of nonzero scalars and f € Wy with Iy # 0. Define
tr = max supp(xg), k € 1. Then there exist

(i) g € Wi U {0} with w(g) = w(f)/2if g # 0 and {k : t; € supp(g)} < I,

(i) h € {sign(ax)e;, : k € I} U {0} with ko € Iy and ko < minsupp(g) if h = sign(ako)e;‘k0 and
(iii) jo = min{jx : k € If},
such that

arey)].

ey

kEIf kEIf

Proof. As in Proposition 15.3, we prove the statement by inductiononn =0, 1, ... for every f € W(Q)
and every RIS. The case of n = 0 follows easily.

Fix n € N, and assume that the conclusion holds for every f € W/ and every RIS. Pick an

2

f e W(”z’;' with f = m;~ Zl | Afi, where ( fl)z | is an S, -admissible AWI sequence in W(z) and

A1, ..., g € Q with Zle /1% < 1. The proof of the case where i > max{jx : k € Iy } is identical to that
of Proposition 15.3.

Suppose then that i < min{jx : k € Iy }. The inductive hypothesis implies that, forevery / = 1,...,d
with Iy # 0, there are g;, h; and jo; as in (i)—(iii) of the statement, that satisfy the conclusion for the
functional f;. Define Jy = {k € Iy : f(xx) # 0} \ Uf:]Iﬁ. For every k € Jy, since i < j, Definition
8.5 (iii) yields that

flarx)l < () ah? —|ak| =0 ﬁ)z—mgn(ak)etk( > arey),

leLy lely kel
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where

r={le{l,...,d} :supp(xr) Nsupp(f;) # 0}.

Hence, we calculate

£ ax)l < 1O ax)l +1£C Y arxi)]

kely keJg keud I
< £ 3 Bybsign(ane, (Y agen) + —Z[“ * il + ) (). axer)
i keJy leLy kely Mi 3 v kely,
<C(l+—— —( DO ) sign(a)e;, + thz + gDl ) axes,).
V ]mmlf mi kE]f leLy kEIf
Define
= Slgn ag)é; 1+ =81
— 2y (Zw (ax) k+22h+ ).
Y kedy T leLg
Then, observe thateach [ = 1, ..., d, belongs to Ly for at most two k € J¢, and thus, using the same

arguments as in Proposition 15.3, we have that g € Wa(uz,z, and this completes the proof for cases where
i< jiforallk €ly.
Finally, the proof of the remaining case is the same as in Proposition 15.3. O

16.3. Evaluations on standard exact pairs

Finally, we prove the following lemma which shows that standard exact pairs are in fact strong exact
pairs.

Lemma 16.6. For every (2,C,m,)-SEP (x, f), the following hold.

(i) Foreveryge W

20(1 +

o) < [0 T lag + il ) 2 m
)l gl we) <my,.

(ii) If g € W with a tree analysis (§a)acA, Such that Iy = 0 for every a € A with w(go) = mj,, then

g0l < S (14—

).
m jy V™ jo

Proof. Apply the basic inequality and the evaluations of functionals in Wﬁ; on 2-b.s.c.c. from Lemma
16.4. The proof is identical to that of Lemma 15.5. O
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