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Abstract
For 1 ≤ 𝑝 < ∞, we present a reflexive Banach space 𝔛 (𝑝)awi , with an unconditional basis, that admits ℓ𝑝 as a unique
asymptotic model and does not contain any Asymptotic ℓ𝑝 subspaces. Freeman et al., Trans. AMS. 370 (2018),
6933–6953 have shown that whenever a Banach space not containing ℓ1, in particular a reflexive Banach space,
admits 𝑐0 as a unique asymptotic model, then it is Asymptotic 𝑐0. These results provide a complete answer to a
problem posed by Halbeisen and Odell [Isr. J. Math. 139 (2004), 253–291] and also complete a line of inquiry of
the relation between specific asymptotic structures in Banach spaces, initiated in a previous paper by the first and
fourth authors. For the definition of 𝔛 (𝑝)awi , we use saturation with asymptotically weakly incomparable constraints,
a new method for defining a norm that remains small on a well-founded tree of vectors which penetrates any infinite
dimensional closed subspace.
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1. Introduction

The purpose of this article is to provide an answer to the following problem of Halbeisen and Odell from
[20] and is, in particular, the last step towards the complete separation of a list of asymptotic structures
from [9]. Given a Banach space X, let ℱ0 (𝑋) denote the family of normalised weakly null sequences in
X and ℱ𝑏 (𝑋) denote the family of normalised block sequences of a fixed basis, if X has one.

Problem 1. Let X be a Banach space that admits a unique asymptotic model with respect to ℱ0 (𝑋), or
with respect to ℱ𝑏 (𝑋) if X has a basis. Does X contain an Asymptotic ℓ𝑝 , 1 ≤ 𝑝 < ∞ or an Asymptotic
𝑐0 subspace?

The following definition from [9] provides a more general setting in which we will describe this
problem, as well as other previous separation results. A property of a Banach space is called hereditary
if it is inherited by all of its closed and infinite dimensional subspaces.

Definition 1.1. Let (P) and (Q) be two hereditary properties of Banach spaces, and assume that (P)
implies (Q).

(i) If (Q)�(P), that is, there exists a Banach space satisfying (Q) and failing (P), then we say that (P)
is separated from (Q).

(ii) If there exists a Banach space satisfying (Q) and whose every infinite dimensional closed subspace
fails (P), then we say that (P) is completely separated from (Q) and write (Q) �⇒←↪ (P).

We consider properties that are classified into the following three categories: the sequential asymptotic
properties, the array asymptotic properties and the global asymptotic properties.

Sequential asymptotic properties are related to the notion of a spreading model from [15], which
describes the asymptotic behaviour of a sequence in a Banach space. We say that a Banach space admits
a unique spreading model with respect to some family of normalised sequences ℱ, if whenever two
sequences fromℱ generate spreading models, then those must be equivalent. If this equivalence happens
with some uniform constant, then we say that the space admits a uniformly unique spreading model.

The category of array asymptotic structures concerns the asymptotic behaviour of arrays of sequences
(𝑥𝑖𝑗 ) 𝑗 , 𝑖 ∈ N, in a Banach space. Notions that describe this behaviour are those of asymptotic models
from [20] and joint spreading models from [8]. We define the uniqueness of asymptotic models and
the uniform uniqueness of joint spreading models in a similar manner to the uniqueness and uniform
uniqueness of spreading models, respectively. Although asymptotic models and joint spreading models
are not identical notions, they are strongly related. As Sari pointed out, a Banach space X admits a
uniformly unique joint spreading model with respect to ℱ𝑏 (𝑋) or ℱ0 (𝑋) if and only if it admits a
unique asymptotic model with respect to ℱ𝑏 (𝑋) or ℱ0 (𝑋), respectively (see, e.g. [6, Remark 4.21]
or [9, Proposition 3.12]). Notably, the property that a Banach space X with a basis admits some ℓ𝑝 as
a uniformly unique joint spreading model with respect to ℱ𝑏 (𝑋) can be described by the following
statement. The case where this happens with respect to ℱ0 (𝑋) is given by an easy modification.

Proposition 1.2 (Lemma 3.4). Let 1 ≤ 𝑝 ≤ ∞. A Banach space X with a basis admits ℓ𝑝 (or 𝑐0 for
𝑝 = ∞) as a uniformly unique joint spreading model with respect to ℱ𝑏 (𝑋) if and only if there exist
constants 𝑐, 𝐶 > 0, such that for every ℓ ∈ N, any choice of successive families (𝐹𝑗 ) 𝑗 of normalised
blocks in X with #𝐹𝑗 = ℓ, there is an infinite subset of the naturals 𝑀 = {𝑚1 < 𝑚2 < . . .}, such that for
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any choice of 𝑥 𝑗 ∈ 𝐹𝑗 , 𝑗 ∈ 𝑀 , every 𝐺 ⊂ 𝑀 with 𝑚𝑘 ≤ 𝐺 and #𝐺 ≤ 𝑘 , for 𝑘 ∈ N, and any choice of
scalars 𝑎 𝑗 , 𝑗 ∈ 𝐺, we have

𝑐‖(𝑎 𝑗 ) 𝑗∈𝐺 ‖𝑝 ≤ ‖
∑
𝑗∈𝐺

𝑎 𝑗𝑥 𝑗 ‖ ≤ 𝐶‖(𝑎 𝑗 ) 𝑗∈𝐺 ‖𝑝 .

Even though this property is very close to the weaker one that X admits ℓ𝑝 or 𝑐0 as a uniformly
unique spreading model, it was shown in [9] that these two properties are in fact completely separated
for all 1 ≤ 𝑝 ≤ ∞.

Finally, global asymptotic properties describe the behaviour of finite block sequences that are chosen
sufficiently far apart in a space with a basis. We recall the following definition from [25].

Definition 1.3. Let X be a Banach space with a basis (𝑒𝑖)𝑖 and 1 ≤ 𝑝 ≤ ∞. We say that the basis (𝑒𝑖)𝑖
of X is asymptotic ℓ𝑝 (asymptotic 𝑐0 when 𝑝 = ∞) if there exist positive constants 𝐷1 and 𝐷2, such that
for all 𝑛 ∈ N, there exists 𝑁 (𝑛) ∈ N with the property that whenever 𝑁 (𝑛) ≤ 𝑥1 < · · · < 𝑥𝑛 are vectors
in X, then

1
𝐷1
(

𝑛∑
𝑖=1
‖𝑥𝑖 ‖ 𝑝)

1
𝑝 ≤ ‖

𝑛∑
𝑖=1

𝑥𝑖 ‖ ≤ 𝐷2 (
𝑛∑
𝑖=1
‖𝑥𝑖 ‖ 𝑝)

1
𝑝 ,

where for 𝑝 = ∞, the above inequality concerns the ‖ · ‖∞. Specifically, we say that (𝑒𝑖)𝑖 is D-asymptotic
ℓ𝑝 (D-asymptotic 𝑐0 when 𝑝 = ∞) for 𝐷 = 𝐷1𝐷2.

This definition is given with respect to a fixed basis of the space. The coordinate-free notion of
Asymptotic ℓ𝑝 and 𝑐0 spaces was introduced in [24], generalising the aforementioned one to spaces with
or without a basis (note the difference between the terms asymptotic ℓ𝑝 and Asymptotic ℓ𝑝). Moreover,
this property is hereditary and any Asymptotic ℓ𝑝 (or 𝑐0) space is asymptotic ℓ𝑝 (respectively, 𝑐0)
saturated. Given a Banach space X with a basis, we focus on the following properties, where 1 ≤ 𝑝 ≤ ∞
and whenever 𝑝 = ∞, then ℓ𝑝 should be replaced with 𝑐0.

(a) 𝑝 The space X is Asymptotic ℓ𝑝 .
(b) 𝑝 The space X admits ℓ𝑝 as a uniformly unique joint spreading model (or equivalently, a unique
asymptotic model, as mentioned above) with respect to ℱ𝑏 (𝑋).
(c) 𝑝 The space X admits ℓ𝑝 as a uniformly unique spreading model with respect to ℱ𝑏 (𝑋).
(d) 𝑝 The space X admits ℓ𝑝 as a unique spreading model with respect to ℱ𝑏 (𝑋).

Note that it is fairly straightforward to see that the following implications hold for all 1 ≤ 𝑝 ≤ ∞:
(a) 𝑝 ⇒(b) 𝑝 ⇒(c) 𝑝 ⇒(d) 𝑝 . It is also easy to see that (d) 𝑝 �(c) 𝑝 for all 1 ≤ 𝑝 < ∞. In [14] it was
shown that (c) 𝑝 �(b) 𝑝 for all 1 ≤ 𝑝 ≤ ∞ and that (b) 𝑝 �(a) 𝑝 for all 1 < 𝑝 < ∞. The latter was also
shown in [8], as well as that (b) 1 �(a) 1 along with an even stronger result, namely, the existence of a
Banach space with a basis satisfying (b) 1 and, such that any infinite subsequence of its basis generates
a non-Asymptotic ℓ1 subspace. However, it was proved in [12] that (d) ∞ ⇔(c) ∞ and a remarkable
result from [18] states that (b) ∞ ⇔(a) ∞ for Banach spaces not containing ℓ1. Towards the complete
separation of these properties, it was shown in [9] that (c) 𝑝 �⇒←↪ (b) 𝑝 for all 1 ≤ 𝑝 ≤ ∞ and that (d)
𝑝 �⇒←↪ (c) 𝑝 for all 1 ≤ 𝑝 < ∞. Hence, the only remaining open question was whether (b) 𝑝 �⇒←↪ (a) 𝑝 for
1 ≤ 𝑝 < ∞. We prove this in the affirmative and, in particular, we show the following.

Theorem 1.4. For 1 ≤ 𝑝 < ∞, there exists a reflexive Banach space 𝔛 (𝑝)awi with an unconditional basis
that admits ℓ𝑝 as a uniformly unique joint spreading model with respect to ℱ𝑏 (𝔛 (𝑝)awi ) and contains no
Asymptotic ℓ𝑝 subspaces.

To construct these spaces, we use a saturation method with asymptotically weakly incomparable
constraints. This method, initialised in [8], employs a tree structure, penetrating every subspace of 𝔛 (𝑝)awi ,
that admits segments with norm strictly less than the ℓ𝑝-norm. Thus, we are able to prove that no subspace
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of 𝔛 (𝑝)awi is an Asymptotic ℓ𝑝 space. This saturation method is different from the method of saturation
with increasing weights from [9], used to define spaces with no subspaces admitting a unique asymptotic
model. It does not seem possible to use the method of increasing weights to construct a space with a
unique asymptotic model, that is, it is not appropriate for showing (b) 𝑝 �⇒←↪ (a) 𝑝 . On the other hand,
the method of asymptotically weakly incomparable constraints yields spaces with a unique asymptotic
model, and thus it cannot be used to show (c) 𝑝 �⇒←↪ (b) 𝑝 . This method will be discussed in detail
in Part 1.

In the case of 1 < 𝑝 < ∞, it is possible to obtain a stronger result. Namely, for every countable ordinal
𝜉, the space separating the two asymptotic properties additionally satisfies the property that every block
subspace contains an ℓ1-tree of order 𝜔𝜉 . This is achieved using the attractors method, which was first
introduced in [3] and later also used in [10]. The precise statement of this result is the following.

Theorem 1.5 ([7]). For every 1 < 𝑝 < ∞ and every infinite countable ordinal 𝜉, there exists a
hereditarily indecomposable reflexive Banach space 𝔛 (𝑝)𝜉 that admits ℓ𝑝 as a uniformly unique joint
spreading model with respect to the family of normalised block sequences and whose every subspace
contains an ℓ1-block tree of order 𝜔𝜉 .

However, in the case of ℓ1, we are not able to construct a space whose every subspace contains a
well-founded tree which is either ℓ𝑝 for some 1 < 𝑝 < ∞ or 𝑐0. This case is more delicate, since as we
mentioned, the two properties are in fact equivalent in its dual problem for spaces not containing ℓ1.

The paper is organised as follows: In Section 2, we recall the notions of Schreier families and special
convex combinations and prove some of their basic properties, while Section 3 contains the precise
definitions of the aforementioned asymptotic structures. In Section 4, we recall certain combinatorial
results concerning measures on countably branching well-founded trees from [8], which are a key
ingredient in the proof that 𝔛 (𝑝)awi admits ℓ𝑝 as a unique asymptotic model for 1 ≤ 𝑝 < ∞. We then
split the remainder of the paper into two main parts, each dedicated to the definition and properties of
𝔛 (1)awi and 𝔛 (𝑝)awi for 𝑝 = 2, respectively. The construction of 𝔛 (𝑝)awi for 1 < 𝑝 < ∞ and 𝑝 ≠ 2 follows as
an easy modification of our construction and is omitted. Each of these parts contains an introduction
in which we describe the main key points of each construction. Finally, we include two appendices
containing variants of the basic inequality, which has been used repeatedly in the past in several related
constructions (see, e.g. [3], [9], [10] and [16]).

2. Preliminaries

In this section, we recall some necessary definitions, namely, the Schreier families (S𝑛)𝑛 [2] and the
corresponding repeated averages {𝑎(𝑛, 𝐿) : 𝑛 ∈ N, 𝐿 ∈ [N]∞} [11] which we call n-averages, as well
as the notion of special convex combinations. For a more thorough discussion of the above, we refer the
reader to [13]. We begin with some useful notation.

Notation. ByN = {1, 2, . . .}, we denote the set of all positive integers. We will use capital letters, such as
𝐿, 𝑀, 𝑁, . . . (respectively, lower case letters, such as 𝑠, 𝑡, 𝑢, . . .) to denote infinite subsets (respectively,
finite subsets) of N. For every infinite subset L of N, the notation [𝐿]∞ (respectively, [𝐿]<∞) stands
for the set of all infinite (respectively, finite) subsets of L. For every 𝑠 ∈ [N]<∞, by |𝑠 |, we denote the
cardinality of s. For 𝐿 ∈ [N]∞ and 𝑘 ∈ N, [𝐿]𝑘 (respectively, [𝐿] ≤𝑘 ) is the set of all 𝑠 ∈ [𝐿]<∞ with
|𝑠 | = 𝑘 (respectively, |𝑠 | ≤ 𝑘). For every 𝑠, 𝑡 ∈ [N]<∞, we write 𝑠 < 𝑡 if at least one of them is the
empty set, or max 𝑠 < min 𝑡. Also for ∅ ≠ 𝑠 ∈ [N]<∞ and 𝑛 ∈ N, we write 𝑛 < 𝑠 if 𝑛 < min 𝑠. We shall
identify strictly increasing sequences inNwith their corresponding range, that is, we view every strictly
increasing sequence in N as a subset of N and, conversely, every subset of N as the sequence resulting
from the increasing order of its elements. Thus, for an infinite subset 𝐿 = {𝑙1 < 𝑙2 < . . .} of N and
𝑖 ∈ N, we set 𝐿(𝑖) = 𝑙𝑖 and, similarly, for a finite subset 𝑠 = {𝑛1 < . . . < 𝑛𝑘 } of N and for 1 ≤ 𝑖 ≤ 𝑘 , we
set 𝑠(𝑖) = 𝑛𝑖 .
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Finally, throughout the paper, we follow [23] (see also [1]) for standard notation and terminology
concerning Banach space theory. For 𝑥 ∈ 𝑐00 (N), we denote supp(𝑥) = {𝑛 ∈ N : 𝑥(𝑛) ≠ 0}, and by
range(𝑥), the minimum interval of N containing supp(𝑥). Moreover, for 𝑥, 𝑦 ∈ 𝑐00 (N), we write 𝑥 < 𝑦
to denote that maxsupp(𝑥) < minsupp(𝑦).

2.1. Schreier families

For a family M and a sequence (𝐸𝑖)𝑘𝑖=1 of finite subsets of N, we say that (𝐸𝑖)𝑘𝑖=1 is M-admissible if
there is {𝑚1, . . . , 𝑚𝑘 } ∈M, such that 𝑚1 ≤ 𝐸1 < 𝑚2 ≤ 𝐸2 < · · · < 𝑚𝑘 ≤ 𝐸𝑘 . Moreover, a sequence
(𝑥𝑖)𝑘𝑖=1 in 𝑐00 (N) is called M-admissible if (supp(𝑥𝑖))𝑘𝑖=1 is M-admissible. In the case where M is a
spreading family (i.e. whenever 𝐸 = {𝑚1, . . . , 𝑚𝑘 } ∈ M and 𝐹 = {𝑛1 < . . . < 𝑛𝑘 } satisfy 𝑚𝑖 ≤ 𝑛𝑖 ,
𝑖 = 1, . . . , 𝑘 , then 𝐹 ∈M), a sequence (𝐸𝑖)𝑘𝑖=1 is M-admissible if {min 𝐸𝑖 : 𝑖 = 1, . . . , 𝑘} ∈M, and
thus a sequence of vectors (𝑥𝑖)𝑘𝑖=1 in 𝑐00 (N) is M-admissible if {min supp(𝑥𝑖) : 𝑖 = 1, . . . , 𝑘} ∈M.

For M, N families of finite subsets of N, we define the convolution of M and N as follows:

M ∗N =
{
𝐸 ⊂ N : there exists an M-admissible finite sequence

(𝐸𝑖)𝑘𝑖=1 in N , such that 𝐸 = ∪𝑘𝑖=1𝐸𝑖

}
∪
{
∅
}
.

The Schreier families (S𝑛)𝑛∈N are defined inductively as follows:

S0 =
{
{𝑘} : 𝑘 ∈ N

}
∪
{
∅
}

and S1 =
{
𝐸 ⊂ N : #𝐸 ≤ min 𝐸

}
∪ {∅}

and if S𝑛, for some 𝑛 ∈ N, has been defined, then

S𝑛+1 = S1 ∗ S𝑛 =
{
𝐸 ⊂ N : 𝐸 = ∪𝑘𝑖=1𝐸𝑖 where 𝐸1 < . . . < 𝐸𝑘 ∈ S𝑛 and 𝑘 ≤ min 𝐸1

}
∪ {∅}.

It follows easily by induction that for every 𝑛, 𝑚 ∈ N,

S𝑛 ∗ S𝑚 = S𝑛+𝑚.

Furthermore, for each 𝑛 ∈ N, the family S𝑛 is regular. This means that it includes the singletons, it is
hereditary, that is, if 𝐸 ∈ S𝑛 and 𝐹 ⊂ 𝐸 , then 𝐹 ∈ S𝑛, it is spreading and finally it is compact, identified
as a subset of {0, 1}N.

For each 𝑛 ∈ N, we also define the regular family

A𝑛 =
{
𝐸 ⊂ N : #𝐸 ≤ 𝑛

}
.

Then, for 𝑛, 𝑚 ∈ N, we are interested in the family S𝑛 ∗A𝑚, that is, the family of all subsets of N of the
form 𝐸 = ∪𝑘𝑖=1𝐸𝑖 , where 𝐸1 < . . . < 𝐸𝑘 , #𝐸𝑖 ≤ 𝑚 for 𝑖 = 1, . . . , 𝑘 and {min 𝐸𝑖 : 1 ≤ 𝑖 ≤ 𝑘} ∈ S𝑛. In
fact, any such E is the union of at most m sets in S𝑛, and moreover, if 𝑚 ≤ 𝐸 , then 𝐸 ∈ S𝑛+1, as we
show next.
Lemma 2.1. For every 𝑛, 𝑚 ∈ N,
(i) S𝑛 ∗A𝑚 ⊂ A𝑚 ∗ S𝑛 and

(ii) if 𝐸 ∈ S𝑛 ∗A𝑚 with 𝑚 ≤ 𝐸 , then 𝐸 ∈ S𝑛+1.
Remark 2.2. Let 𝑘, 𝑚 ∈ N and F be a subset ofNwith #𝐹 ≤ 𝑘𝑚 and 𝑘 ≤ 𝐹. Set 𝑑 = max{1, �#𝐹/𝑚�},
and define 𝐹𝑗 = {𝐹 (𝑛) : 𝑛 = ( 𝑗 − 1)𝑑 + 1, . . . , 𝑗 𝑑} for each 𝑗 = 1, . . . , 𝑚 − 1 and 𝐹𝑚 = 𝐹 \ ∪𝑚−1

𝑗=1 𝐹𝑗 .
Then, it is immediate to check that 𝐹𝑗 ∈ S1 for every 𝑖 = 1, . . . , 𝑚.
Proof of Lemma 2.1. Fix 𝑛, 𝑚 ∈ N. We prove (i) by induction on 𝑛 ∈ N. For 𝑛 = 1, let 𝐸 ∈ S1 ∗A𝑚, that
is, 𝐸 = ∪𝑘𝑖=1𝐸𝑖 with 𝑘 ≤ 𝐸1 < . . . < 𝐸𝑘 and #𝐸𝑖 ≤ 𝑚 for every 𝑖 = 1, . . . , 𝑘 . Since #𝐸 ≤ 𝑘𝑚, Remark
2.2 yields a partition 𝐸 = ∪𝑚𝑗=1𝐹𝑗 with 𝐹𝑗 ∈ S1 for every 𝑗 = 1, . . . , 𝑚, and, hence, 𝐸 ∈ A𝑚 ∗ S1.
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Suppose that (i) holds for some 𝑛 ∈ N and let 𝐸 ∈ S𝑛+1∗A𝑚. Then 𝐸 = ∪𝑘𝑖=1𝐸𝑖 for anS𝑛+1-admissible
sequence (𝐸𝑖)𝑘𝑖=1 with #𝐸𝑖 ≤ 𝑚 for every 𝑖 = 1, . . . , 𝑚. Hence, {min 𝐸𝑖 : 𝑖 = 1, . . . , 𝑘} = ∪𝑙𝑗=1𝐹𝑗 , where
𝐹𝑗 ∈ S𝑛 for every 𝑗 = 1, . . . , 𝑙 and 𝑙 ≤ 𝐹1 < · · · < 𝐹𝑙 . Define, for each 𝑗 = 1, . . . , 𝑙,

𝐺 𝑗 = ∪{𝐸𝑖 : 𝑖 = 1, . . . , 𝑘 and min 𝐸𝑖 ∈ 𝐹𝑗 },

and note that 𝐺 𝑗 ∈ S𝑛 ∗ A𝑚 since 𝐹𝑗 ∈ S𝑛. Hence, for every 𝑗 = 1, . . . , 𝑙, the inductive hypothesis
implies that 𝐺 𝑗 ∈ A𝑚 ∗S𝑛, that is, 𝐺 𝑗 = ∪

𝑚 𝑗

𝑖=1𝐺
𝑗
𝑖 with 𝑚 𝑗 ≤ 𝑚 and 𝐺

𝑗
𝑖 ∈ S𝑛 for all 𝑖 = 1, . . . , 𝑚 𝑗 . Define

𝐻 = {min𝐺 𝑗
𝑖 : 𝑗 = 1, . . . , 𝑙, and 𝑖 = 1, . . . , 𝑚 𝑗 }.

Observe that 𝐻 ∈ S1 ∗A𝑚 and apply Remark 2.2 to obtain a partition 𝐻 = ∪𝑚𝑞=1𝐻𝑞 , where 𝐻𝑞 ∈ S1 for
every 𝑞 = 1, . . . , 𝑚. Finally, define

Δ𝑞 = ∪{𝐺 𝑗
𝑖 : 𝑗 = 1, . . . , 𝑙, 𝑖 = 1, . . . , 𝑚 𝑗 and min𝐺 𝑗

𝑖 ∈ 𝐻𝑞},

for each 𝑞 = 1, . . . , 𝑚, and observe that 𝐸 = ∪𝑚𝑞=1Δ𝑞 and that Δ𝑞 ∈ S1 ∗ 𝑆𝑛 = 𝑆𝑛+1 since 𝐻𝑞 ∈ S1 and
𝐺

𝑗
𝑖 ∈ S𝑛. Thus, we conclude that 𝐸 ∈ A𝑚 ∗ S𝑛+1.
Finally, note that (ii) is an immediate consequence of (i). �

2.2. Repeated averages

The notion of repeated averages was first defined in [11]. The notation we use below, however, is
somewhat different, and we instead follow the one found in [13], namely, {𝑎(𝑛, 𝐿) : 𝑛 ∈ N, 𝐿 ∈ [N]∞}.
The 𝑛−averages 𝑎(𝑛, 𝐿) are defined as elements of 𝑐00 (N) in the following manner.

Let (𝑒 𝑗 ) 𝑗 denote the unit vector basis of 𝑐00 (N) and 𝐿 ∈ [N]∞. For 𝑛 = 0, we define 𝑎(0, 𝐿) = 𝑒𝑙1 ,
where 𝑙1 = min 𝐿. Suppose that 𝑎(𝑛, 𝑀) has been defined for some 𝑛 ∈ N and every 𝑀 ∈ [N]∞.
We define 𝑎(𝑛 + 1, 𝐿) in the following way: We set 𝐿1 = 𝐿 and 𝐿𝑘 = 𝐿𝑘−1 \ supp(𝑎(𝑛, 𝐿𝑘−1)) for
𝑘 = 2, . . . , 𝑙1 and finally define

𝑎(𝑛 + 1, 𝐿) = 1
𝑙1

(
𝑎(𝑛, 𝐿1) + · · · + 𝑎(𝑛, 𝐿𝑙1)

)
.

Remark 2.3. Let 𝑛 ∈ N and 𝐿 ∈ [N]∞. The following properties are easily established by induction.

(i) 𝑎(𝑛, 𝐿) is a convex combination of the unit vector basis of 𝑐00 (N).
(ii) ‖𝑎(𝑛, 𝐿)‖ℓ1 = 1 and 𝑎(𝑛, 𝐿) (𝑘) ≥ 0 for all 𝑘 ∈ N.

(iii) supp(𝑎(𝑛, 𝐿)) is the maximal initial segment of L contained in S𝑛.
(iv) ‖𝑎(𝑛, 𝐿)‖∞ = 𝑙−𝑛1 , where 𝑙1 = min 𝐿.
(v) If supp(𝑎(𝑛, 𝐿)) = {𝑖1 < . . . < 𝑖𝑑} and 𝑎(𝑛, 𝐿) =

∑𝑑
𝑘=1 𝑎𝑖𝑘 𝑒𝑖𝑘 , then we have that 𝑎𝑖1 ≥ . . . ≥ 𝑎𝑖𝑑 .

A proof of the following proposition can be found in [13].

Proposition 2.4. Let 𝑛 ∈ N and 𝐿 ∈ [N]∞. For every 𝐹 ∈ S𝑛−1, we have that∑
𝑘∈𝐹

𝑎(𝑛, 𝐿) (𝑘) < 3
min 𝐿

.

2.3. Special convex combinations

Here, we recall the notion of (𝑛, 𝜀)-special convex combinations, where 𝑛 ∈ N and 𝜀 > 0 (see [5] and
[13]).
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Definition 2.5. For 𝑛 ∈ N and 𝜀 > 0, a convex combination
∑

𝑖∈𝐹 𝑐𝑖𝑒𝑖 , of the unit vector basis (𝑒𝑖)𝑖 of
𝑐00 (N) is called an (𝑛, 𝜀)-basic special convex combination (or an (𝑛, 𝜀)-basic s.c.c.) if

(i) 𝐹 ∈ S𝑛 and
(ii) for any 𝐺 ⊂ 𝐹 with 𝐺 ∈ 𝑆𝑛−1, we have that

∑
𝑖∈𝐺 𝑐𝑖 < 𝜀.

We will also call
∑

𝑖∈𝐹 𝑐1/2
𝑖 𝑒𝑖 a (2, 𝑛, 𝜀)-basic special convex combination.

As follows from Proposition 2.4, every n-average 𝑎(𝑛, 𝐿) is an (𝑛, 3/min 𝐿)-basic s.c.c., and this
yields the following.

Proposition 2.6. Let 𝑀 ∈ [N]∞, 𝑛 ∈ N and 𝜀 > 0. Then there is a 𝑘 ∈ N, such that for any 𝐹 ⊂ 𝑀 , such
that F is maximal in S𝑛 and 𝑘 ≤ min 𝐹, there exists an (𝑛, 𝜀)-basic s.c.c. 𝑥 ∈ 𝑐00 (N) with supp(𝑥) = 𝐹.

Clearly, this also implies the existence of (2, 𝑛, 𝜀)-basic special convex combinations by taking the
square roots of the coefficients of an (𝑛, 𝜀)-b.s.c.c.

Definition 2.7. Let 𝑥1 < . . . < 𝑥𝑑 be vectors in 𝑐00 (N), and define 𝑡𝑖 = min supp(𝑥𝑖), 𝑖 = 1, . . . , 𝑑. We
say that the vector

∑𝑑
𝑖=1 𝑐𝑖𝑥𝑖 is an (𝑛, 𝜀)-special convex combination (or an (𝑛, 𝜀)-s.c.c.) for some 𝑛 ∈ N

and 𝜀 > 0 if
∑𝑑

𝑖=1 𝑐𝑖𝑒𝑡𝑖 is an (𝑛, 𝜀)-basic s.c.c. and a (2, 𝑛, 𝜀)-special convex combination if
∑𝑑

𝑖=1 𝑐𝑖𝑒𝑡𝑖
is a (2, 𝑛, 𝜀)-basic s.c.c.

3. Asymptotic structures

Let us recall the definitions of the asymptotic notions that appear in the results of this paper and were
mentioned in the Introduction. Namely, asymptotic models, joint spreading models and the notions
of Asymptotic ℓ𝑝 and Asymptotic 𝑐0 spaces. For a more thorough discussion, including several open
problems and known results, we refer the reader to [9, Section 3].

Definition 3.1 [20]. An infinite array of sequences (𝑥𝑖𝑗 ) 𝑗 , 𝑖 ∈ N, in a Banach space X, is said to generate
a sequence (𝑒𝑖)𝑖 , in a seminormed space E, as an asymptotic model if for every 𝜀 > 0 and 𝑛 ∈ N, there
is a 𝑘0 ∈ N, such that for any natural numbers 𝑘0 ≤ 𝑘1 < · · · < 𝑘𝑛 and any scalars 𝑎1, . . . , 𝑎𝑛 in [−1, 1],
we have 


�� 𝑛∑

𝑖=1
𝑎𝑖𝑥

𝑖
𝑘𝑖

�� − �� 𝑛∑
𝑖=1

𝑎𝑖𝑒𝑖
��


 < 𝜀.

A Banach space X is said to admit a unique asymptotic model with respect to a familyℱ of normalised
sequences in X if whenever two infinite arrays, consisting of sequences from ℱ, generate asymptotic
models, then those must be equivalent. Typical families under consideration are those of normalised
weakly null sequences, denoted ℱ0 (𝑋), normalised Schauder basis sequences, denoted ℱ(𝑋), or the
family of all normalised block sequences of a fixed basis of X, if it has one, denoted ℱ𝑏 (𝑋).

Definition 3.2 [6]. Let 𝑀 ∈ [N]∞ and 𝑘 ∈ N. A plegma (respectively, strict plegma) family in [𝑀]𝑘 is
a finite sequence (𝑠𝑖)𝑙𝑖=1 in [𝑀]𝑘 satisfying the following.

(i) 𝑠𝑖1 ( 𝑗1) < 𝑠𝑖2 ( 𝑗2) for every 1 ≤ 𝑗1 < 𝑗2 ≤ 𝑘 and 1 ≤ 𝑖1, 𝑖2 ≤ 𝑙.
(ii) 𝑠𝑖1 ( 𝑗) ≤ 𝑠𝑖2 ( 𝑗) (respectively, 𝑠𝑖1 ( 𝑗) < 𝑠𝑖2 ( 𝑗)) for all 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑙 and 1 ≤ 𝑗 ≤ 𝑘 .

For each 𝑙 ∈ N, the set of all sequences (𝑠𝑖)𝑙𝑖=1 which are plegma families in [𝑀]𝑘 will be denoted by
𝑃𝑙𝑚𝑙 ([𝑀]𝑘 ) and that of the strict plegma ones by S- 𝑃𝑙𝑚𝑙 ([𝑀]𝑘 ).

Definition 3.3 [6]. A finite array of sequences (𝑥𝑖𝑗 ) 𝑗 , 1 ≤ 𝑖 ≤ 𝑙, in a Banach space X, is said to generate
another array of sequences (𝑒𝑖𝑗 ) 𝑗 , 1 ≤ 𝑖 ≤ 𝑙, in a seminormed space E, as a joint spreading model if for
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every 𝜀 > 0 and 𝑛 ∈ N, there is a 𝑘0 ∈ N, such that for any (𝑠𝑖)𝑙𝑖=1 ∈ 𝑆- 𝑃𝑙𝑚𝑙 ([N]𝑛) with 𝑘0 ≤ 𝑠1(1)
and for any 𝑙 × 𝑛 matrix 𝐴 = (𝑎𝑖 𝑗 ) with entries in [−1, 1], we have that




�� 𝑙∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑥
𝑖
𝑠𝑖 ( 𝑗)

�� − �� 𝑙∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑒
𝑖
𝑗

��


 < 𝜀.

A Banach space X is said to admit a uniformly unique joint spreading model with respect to a family
of normalised sequences ℱ in X if there exists a constant C, such that whenever two arrays (𝑥𝑖𝑗 ) 𝑗 and
(𝑦𝑖𝑗 ) 𝑗 , 1 ≤ 𝑖 ≤ 𝑙, of sequences fromℱ generate joint spreading models, then those must be C-equivalent.
Moreover, a Banach space admits a uniformly unique joint spreading model with respect to a family ℱ

if and only if it admits a unique asymptotic model with respect to ℱ (see, e.g. [6, Remark 4.21] or [9,
Proposition 3.12]). In particular, if a space admits a uniformly unique joint spreading model with respect
to some family ℱ satisfying certain conditions described in [6, Proposition 4.9], then this is equivalent
to some ℓ𝑝 . In order to show that a space admits some ℓ𝑝 as a uniformly unique joint spreading model,
it may be more convenient to prove (ii) of the following lemma, thereby avoiding the use of plegma
families.

Lemma 3.4. Let X be a Banach space and ℱ be a family of normalised sequences in X. Let also
1 ≤ 𝑝 < ∞. The following are equivalent.

(i) X admits ℓ𝑝 as a uniformly unique joint spreading model with respect to the family ℱ.
(ii) There exist constants 𝑐, 𝐶 > 0, such that for every array (𝑥𝑖𝑗 ) 𝑗 , 1 ≤ 𝑖 ≤ 𝑙, of sequences from ℱ,

there is 𝑀 = {𝑚1 < 𝑚2 < . . .}, an infinite subset of the naturals, such that for any choice of
1 ≤ 𝑖 𝑗 ≤ 𝑙, 𝑗 ∈ 𝑀 , every 𝐹 ⊂ 𝑀 with 𝑚𝑘 ≤ 𝐹 and |𝐹 | ≤ 𝑘 and any choice of scalars 𝑎 𝑗 , 𝑗 ∈ 𝐹,

𝑐‖(𝑎 𝑗 ) 𝑗∈𝐹 ‖𝑝 ≤
��∑
𝑗∈𝐹

𝑎 𝑗𝑥
𝑖 𝑗
𝑗

�� ≤ 𝐶‖(𝑎 𝑗 ) 𝑗∈𝐹 ‖𝑝 .

Proof. Note that (i) implies that there are constants 𝑐, 𝐶 > 0, such that for every array (𝑥𝑖𝑗 ) 𝑗 , 1 ≤ 𝑖 ≤ 𝑙,
of sequences from ℱ, there is 𝑁 = {𝑛1 < 𝑛2 < . . .}, an infinite subset of the naturals, such that for any
k, any strict plegma family (𝑠𝑖)𝑙𝑖=1 ∈ 𝑆-𝑃𝑙𝑚𝑙 ([𝑁]𝑘 ) with 𝑛𝑘 ≤ 𝑠1(1) and any 𝑙 × 𝑘 matrix 𝐴 = (𝑎𝑖 𝑗 ) of
scalars, we have that

𝑐‖(𝑎𝑖 𝑗 )𝑙,𝑘𝑖=1, 𝑗=1‖𝑝 ≤
�� 𝑙∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖 𝑗𝑥
𝑖
𝑠𝑖 ( 𝑗)

�� ≤ 𝐶‖(𝑎𝑖 𝑗 )𝑙,𝑘𝑖=1, 𝑗=1‖𝑝 .

Let 𝑁 ′ = {𝑛2𝑘𝑙 : 𝑘 ∈ N} and observe that for 𝑘1, . . . , 𝑘𝑑 ∈ N, there is a strict plegma family
(𝑠𝑖)𝑙𝑖=1 ∈ 𝑆-𝑃𝑙𝑚𝑙 ([𝑁]𝑑), such that 𝑛2𝑘 𝑗 𝑙 ∈ {𝑠𝑖 ( 𝑗) : 𝑖 = 1, . . . , 𝑙} for all 𝑗 = 1, . . . , 𝑑. Hence, we may
find 𝑀 ⊂ 𝑁 ′ satisfying (ii) with constants 𝑐, 𝐶. Finally, by repeating the sequences in the array, it
follows easily that (ii) yields (i). �

We recall the main result from [6], stating that whenever a Banach space admits a uniformly unique
joint spreading model with respect to some family satisfying certain stability conditions, then it satisfies a
property concerning its bounded linear operators called the Uniform Approximation on Large Subspaces
property (see [6, Theorem 5.17] and [6, Theorem 5.23]).

Definition 3.5 [24]. A Banach space X is called Asymptotic ℓ𝑝, 1 ≤ 𝑝 < ∞, (respectively, Asymptotic
𝑐0) if there exists a constant C, such that in a two-player n-turn game 𝐺 (𝑛, 𝑝, 𝐶), where in each turn
𝑘 = 1, . . . , 𝑛, player (S) picks a finite codimensional subspace 𝑌𝑘 of X, and then player (V) picks a
normalised vector 𝑥𝑘 ∈ 𝑌𝑘 , player (S) has a winning strategy to force player (V) to pick a sequence
(𝑥𝑘 )𝑛𝑘=1 that is C-equivalent to the unit vector basis of ℓ𝑛𝑝 (respectively, ℓ𝑛∞).

https://doi.org/10.1017/fms.2022.101 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.101


Forum of Mathematics, Sigma 9

Although this is not the initial formulation, it is equivalent and follows from [24, Subsection 1.5]. The
typical example of a nonclassical Asymptotic ℓ𝑝 space is the Tsirelson space from [17]. This is a reflexive
Asymptotic ℓ1 space, and it is the dual of Tsirelson’s original space from [27] which is Asymptotic 𝑐0.
Finally, whenever a Banach space is Asymptotic ℓ𝑝 or Asymptotic 𝑐0, it admits a uniformly unique joint
spreading model with respect to ℱ0 (𝑋) (see, e.g. [6, Corollary 4.12]).

The above definition is the coordinate-free version of the notion of an asymptotic ℓ𝑝 Banach space
with a basis introduced by Milman and Tomczak-Jaegermann in [25].

Definition 3.6 [25]. Let X be a Banach space with a Schauder basis (𝑒𝑖)𝑖 and 1 ≤ 𝑝 < ∞. We say that
the Schauder basis (𝑒𝑖)𝑖 of X is asymptotic ℓ𝑝 if there exist positive constants 𝐷1 and 𝐷2, such that for
all 𝑛 ∈ N, there exists 𝑁 (𝑛) ∈ N with the property that whenever 𝑁 (𝑛) ≤ 𝑥1 < · · · < 𝑥𝑛 are vectors in
X, then

1
𝐷1
(

𝑛∑
𝑖=1
‖𝑥𝑖 ‖ 𝑝)

1
𝑝 ≤ ‖

𝑛∑
𝑖=1

𝑥𝑖 ‖ ≤ 𝐷2 (
𝑛∑
𝑖=1
‖𝑥𝑖 ‖ 𝑝)

1
𝑝 .

Specifically, we say that (𝑒𝑖)𝑖 is D-asymptotic ℓ𝑝 for 𝐷 = 𝐷1𝐷2. The definition of an asymptotic 𝑐0
space is given similarly.

It is easy to show that if X has a Schauder basis that is asymptotic ℓ𝑝 , then X is Asymptotic ℓ𝑝 .
Moreover, if X is Asymptotic ℓ𝑝, then it contains an asymptotic ℓ𝑝 sequence. In particular, note that if
X has a Schauder basis and Y is an Asymptotic ℓ𝑝 subspace of X, then Y contains a further subspace
that is isomorphic to an asymptotic ℓ𝑝 block subspace.

A noteworthy remark is that sequential asymptotic properties, array asymptotic properties and global
asymptotic properties of a Banach space X can alternatively be interpreted as properties of special
weakly null trees. A collection {𝑥𝐴 : 𝐴 ∈ [N] ≤𝑛} in X is said to be a normalised weakly null tree of
height n, if for every 𝐴 ∈ [N] ≤𝑛−1, (𝑥𝐴∪{ 𝑗 }) 𝑗>max(𝐴) is a normalised weakly null sequence. Such a tree
is said to originate from a sequence (𝑥 𝑗 ) 𝑗 if for all 𝐴 = {𝑎1, . . . , 𝑎𝑖}, we have 𝑥𝐴 = 𝑥𝑎𝑖 . Similarly, a
tree {𝑥𝐴 : 𝐴 ∈ [N] ≤𝑛} is said to originate from an array of sequences (𝑥 (𝑖)𝑗 ) 𝑗 , 1 ≤ 𝑖 ≤ 𝑛 if for all
𝐴 = {𝑎1, . . . , 𝑎𝑖}, we have 𝑥𝐴 = 𝑥 (𝑖)𝑎𝑖 . Then, X has a uniformly unique ℓ𝑝 spreading model if and only
if there exists 𝐶 > 0, so that every tree {𝑥𝐴 : 𝐴 ∈ [N] ≤𝑛} originating from a normalised weakly null
sequence (𝑥 𝑗 ) 𝑗 in X has a maximal branch that is C-equivalent to the unit vector basis of ℓ𝑛𝑝. Similarly,
X has a unique ℓ𝑝 asymptotic model if the same can be said about all trees originating from normalised
weakly null arrays in X. Finally, a Banach space X is an Asymptotic ℓ𝑝 space (or an Asymptotic 𝑐0 space
if 𝑝 = ∞) if there exists 𝐶 > 0, so that every normalised weakly null tree of height n has a maximal
branch 𝑥 {𝑎1 }, 𝑥 {𝑎1 ,𝑎2 }, . . . , 𝑥 {𝑎1 ,𝑎2 ,...,𝑎𝑛 } that is C-equivalent to the unit vector basis of ℓ𝑛𝑝 . For more
details, see [14, Remark 3.11].

4. Measures on countably branching well-founded trees

In this section, we recall certain results from [8] concerning measures on countably branching well-
founded trees. These will be used to prove that for all 1 ≤ 𝑝 < ∞, the space 𝔛 (𝑝)awi admits ℓ𝑝 as a unique
asymptotic model. In particular, Proposition 4.1 and Lemma 4.6 will be used to prove Lemma 7.2,
which is one of the key ingredients in the proof of the main result, Theorem 1.4.

Let T = (𝐴, <T ), where A is a countably infinite set equipped with a partial order <T . In the sequel,
we use 𝑡 ∈ T instead of 𝑡 ∈ 𝐴. We assume that <T is such that there is a unique minimal element in T ,
and for each 𝑡 ∈ T , the set 𝑆𝑡 = {𝑠 ∈ T : 𝑠 ≤T 𝑡} is finite and totally ordered, that is, T is a rooted tree.
We also assume that T is well founded, that is, it contains no infinite totally ordered sets, and countably
branching, that is, every nonmaximal node has countably infinite immediate successors.

Observe that T̃ = ({𝑆𝑡 : 𝑡 ∈ T }, <T̃ ), where <T̃ denotes inclusion, is also a tree, and that T is in
fact isomorphic to T̃ via the mapping 𝑡 ↦→ 𝑆𝑡 . Given 𝑡 ∈ T , we will denote 𝑆𝑡 by 𝑡, identifying it as
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an element of T̃ . For each 𝑡 ∈ T̃ , we denote by 𝑆(𝑡) the set of immediate successors of 𝑡 in T̃ . In
particular, if 𝑡 is maximal, then 𝑆(𝑡) is empty. Moreover, for 𝑡 ∈ T̃ , we denote 𝑉𝑡 = {𝑠 ∈ T̃ : 𝑡 ≤T̃ 𝑠}
and view T̃ as a topological space with the topology generated by the sets 𝑉𝑡 and T̃ \ 𝑉𝑡 , 𝑡 ∈ T̃ , that
is, the pointwise convergence topology. This is a compact metric topology, such that for each 𝑡 ∈ T̃ ,
the sets of the form 𝑉𝑡 \ (∪𝑠∈𝐹𝑉𝑠), 𝐹 ⊂ 𝑆(𝑡) finite, form a neighbourhood base of clopen sets for 𝑡. We
denote by M+(T̃ ) the cone of all bounded positive measures 𝜇 : P (T̃ ) → [0, +∞). For 𝜇 ∈M+(T̃ ),
we define the support of 𝜇 to be the set supp(𝜇) = {𝑡 ∈ T̃ : 𝜇({𝑡}) > 0}. Finally, we say that a subset
A of M+(T̃ ) is bounded if sup𝜇∈A 𝜇(T̃ ) < ∞.

Proposition 4.1. Let (𝜇𝑖)𝑖 be a bounded and disjointly supported sequence in M+(T̃ ). Then for every
𝜀 > 0, there is an 𝐿 ∈ [N]∞ and a subset 𝐺𝑖 of supp(𝜇𝑖) for each 𝑖 ∈ 𝐿, satisfying the following.

(i) 𝜇𝑖 (T̃ \ 𝐺𝑖) ≤ 𝜀 for every 𝑖 ∈ 𝐿.
(ii) The sets 𝐺𝑖 , 𝑖 ∈ 𝐿, are pairwise incomparable.

For the proof, we refer the reader to [8, Proposition 3.1].

Definition 4.2. Let (𝜇𝑖)𝑖 be a sequence in M+(T̃ ) and 𝜈 ∈ M+(T̃ ). We say that 𝜈 is the successor-
determined limit of (𝜇𝑖)𝑖 if for all 𝑡 ∈ T̃ , we have 𝜈({𝑡}) = lim𝑖 𝜇𝑖 (𝑆(𝑡)). In this case, we write
𝜈 = succ-lim𝑖 𝜇𝑖 .

Recall that a bounded sequence (𝜇𝑖)𝑖 in M+(T̃ ) converges in the 𝑤∗-topology to a 𝜇 ∈M+(T̃ ) if
and only if for all clopen sets 𝑉 ⊂ T̃ , we have lim𝑖 𝜇𝑖 (𝑉) = 𝜇(𝑉) if and only if for all 𝑡 ∈ T̃ , we have
lim𝑖 𝜇𝑖 (𝑉𝑡 ) = 𝜇(𝑉𝑡 ). In this case, we write 𝜇 = 𝑤∗- lim𝑖 𝜇𝑖 .

Lemma 4.3. Let (𝜇𝑖)𝑖 be a bounded sequence in M+(T̃ ). There exist a subsequence (𝜇𝑖𝑛 )𝑛 of (𝜇𝑖)𝑖
and 𝜈 ∈M+(T̃ ) with 𝜈 = succ-lim𝑛 𝜇𝑖𝑛 .

Remark 4.4. It is possible for a bounded sequence (𝜇𝑖)𝑖 inM+(T̃ ) to satisfy 𝑤∗- lim𝑖 𝜇𝑖 ≠ succ-lim𝑖 𝜇𝑖 .
Take, for example, T̃ = [N] ≤2 (all subsets of N with at most two elements with the partial order of
initial segments), and define 𝜇𝑖 = 𝛿{𝑖,𝑖+1}, 𝑖 ∈ N. Then 𝑤∗- lim𝑖 𝜇𝑖 = 𝛿∅, whereas succ-lim𝑖 𝜇𝑖 = 0.

Although these limits are not necessarily the same, there is an explicit formula relating succ-lim𝑖 𝜇𝑖
to 𝑤∗- lim𝑖 𝜇𝑖 .

Lemma 4.5. Let (𝜇𝑖)𝑖 be a bounded and disjointly supported sequence in M+(T̃ ), such that
𝑤∗- lim𝑖 𝜇𝑖 = 𝜇 exists, and for all 𝑡 ∈ T̃ , the limit 𝜈({𝑡}) = lim𝑖 𝜇𝑖 (𝑆(𝑡)) exists as well. Then for
every 𝑡 ∈ T̃ and enumeration (𝑡 𝑗 ) 𝑗 of 𝑆(𝑡), we have

𝜇({𝑡}) = 𝜈({𝑡}) + lim
𝑗

lim
𝑖

𝜇𝑖

(
∪𝑘≥ 𝑗 (𝑉𝑡𝑘 \ {𝑡𝑘 })

)
. (4.1)

In particular, 𝜇({𝑡}) = 𝜈({𝑡}) if and only if the double limit in (4.1) is zero.

Lemma 4.6. Let (𝜇𝑖)𝑖 be a bounded and disjointly supported sequence in M+(T̃ ), such that
succ-lim𝑖 𝜇𝑖 = 𝜈 exists. Then there exist an infinite 𝐿 ⊂ N and partitions 𝐴𝑖 , 𝐵𝑖 of supp(𝜇𝑖), 𝑖 ∈ 𝐿, such
that the following are satisfied.

(i) If for all 𝑖 ∈ 𝐿, we define the measure 𝜇1
𝑖 by 𝜇1

𝑖 (𝐶) = 𝜇𝑖 (𝐶 ∩ 𝐴𝑖), then 𝜈 = 𝑤∗- lim𝑖∈𝐿 𝜇1
𝑖 =

succ-lim𝑖∈𝐿 𝜇1
𝑖 .

(ii) If for all 𝑖 ∈ 𝐿, we define the measure 𝜇2
𝑖 by 𝜇2

𝑖 (𝐶) = 𝜇𝑖 (𝐶 ∩ 𝐵𝑖), then for all 𝑡 ∈ T̃ , the sequence
(𝜇2

𝑖 (𝑆(𝑡)))𝑖 is eventually zero. In particular, succ-lim𝑖∈𝐿 𝜇2
𝑖 = 0.

For the proofs, we refer the reader to [8, Lemma 4.10] and [8, Lemma 4.12].

Remark 4.7. Although the results from [8] were formulated for trees T defined on infinite subsets of
N, this is not a necessary restriction, and they can be naturally extended to the more general setting of
countably branching well-founded trees.
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PART I. The case of ℓ1

5. Definition of the space 𝔛 (1)awi

The method of saturation with asymptotically weakly incomparable constraints, that is used in the
construction of both spaces presented in this paper, was introduced in [8], where it was shown that (b)
1 �(a) 1. There, it was also used to prove an even stronger result, namely, the existence of a Banach
space with a basis admitting ℓ1 as a unique asymptotic model, and in which any infinite subsequence of
the basis generates a non-Asymptotic ℓ1 subspace. This method requires the existence of a well-founded
tree defined either on the basis of the space or on a family of functionals of its norming set. In this
section, we define the space 𝔛 (1)awi by introducing its norm via a norming set, which is a subset of the
norming set of a Mixed Tsirelson space T [(𝑚 𝑗 ,S𝑛 𝑗 ) 𝑗 ] for an appropriate choice of (𝑚 𝑗 ) 𝑗 and (𝑛 𝑗 ) 𝑗
described below. The key ingredient in the definition of this norming set is the notion of asymptotically
weakly incomparable sequences of functionals, which is also introduced in this section. This notion will
allow the space 𝔛 (1)awi to admit ℓ1 as a unique asymptotic model, while at the same time, it will force the
norm to be small on the branches of a tree, in every subspace of 𝔛 (1)awi, showing that the space does not
contain Asymptotic ℓ1 subspaces.

5.1. Definition of the space 𝔛 (1)awi

Define a pair of strictly increasing sequences of natural numbers (𝑚 𝑗 ) 𝑗 , (𝑛 𝑗 ) 𝑗 as follows:

𝑚1 = 2 𝑛1 = 1
𝑚 𝑗+1 = 𝑚

𝑚 𝑗

𝑗 𝑛 𝑗+1 = 22𝑚 𝑗+1𝑛 𝑗 .

Definition 5.1. Let 𝑉(1) denote the minimal subset of 𝑐00(N) that

(i) contains 0 and all ±𝑒∗𝑗 , 𝑗 ∈ N and
(ii) is closed under the operations (𝑚 𝑗 ,S𝑛 𝑗 ) 𝑗 , that is, if 𝑗 ∈ N and 𝑓1 < . . . < 𝑓𝑛 is an S𝑛 𝑗 -admissible

sequence (see Section 2.1) in 𝑉(1) \ {0}, then 𝑚−1
𝑗

∑𝑛
𝑖=1 𝑓𝑖 is also in 𝑉(1) .

Remark 5.2.

(i) If 𝑓 ∈ 𝑉(1) \ {0}, then either 𝑓 ∈ {±𝑒∗𝑗 : 𝑗 ∈ N}, or it is of the form 𝑓 = 𝑚−1
𝑗

∑𝑛
𝑖=1 𝑓𝑖 with

𝑓1 < . . . < 𝑓𝑛 an S𝑛 𝑗 -admissible sequence in 𝑉(1) for some 𝑗 ∈ N.
(ii) As usual, we view the elements of 𝑉(1) as functionals acting on 𝑐00 (N), inducing a norm ‖ · ‖𝑉(1) .

The completion of (𝑐00 (N), ‖ · ‖𝑉(1) ) is the Mixed Tsirelson space T [(𝑚 𝑗 ,S𝑛 𝑗 ) 𝑗 ] introduced for the
first time in [5]. The first space with a saturated norm defined by a countable family of operations
is the Schlumprecht space [26], which is a fundamental discovery and was used by Gowers and
Maurey [19] to define the first hereditarily indecomposable (HI) space.

We now recall the notion of tree analysis which appeared for the first time in [4]. This has become
a standard tool in proving upper bounds for the estimations of functionals on certain vectors in Mixed
Tsirelson spaces. However, it is the first time where the tree analysis has a significant role in the
definition of the norming set𝑊(1) . Additionally, it is also a key ingredient in the proof that 𝔛 (1)awi contains
no Asymptotic ℓ1 subspaces.

Let A be a rooted tree. For a node 𝛼 ∈ A, we denote by 𝑆(𝛼) the set of all immediate successors of
𝛼, by |𝛼 | the height of 𝛼, that is, |𝛼 | = #{𝛽 ∈ A : 𝛽 <A 𝛼}, and finally, we denote by ℎ(A) the height
of A, that is, the maximum height over its nodes.

Definition 5.3. Let 𝑓 ∈ 𝑉(1) \ {0}. For a finite tree A, a family ( 𝑓𝛼)𝛼∈A is called a tree analysis of f if
the following are satisfied.
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(i) A has a unique root denoted by 0 and 𝑓0 = 𝑓 .
(ii) Each 𝑓𝛼 is in 𝑉(1) , and if 𝛽 < 𝛼 in A, then range( 𝑓𝛼) ⊂ range( 𝑓𝛽).

(iii) For every maximal node 𝛼 ∈ A, we have that |𝛼 | = ℎ(A).
(iv) For every nonmaximal node𝛼 ∈ A, either 𝑓𝛼 is the result of some (𝑚 𝑗 ,S𝑛 𝑗 ) operation of ( 𝑓𝛽)𝛽∈𝑆 (𝛼) ,

i.e., 𝑓𝛼 = 𝑚−1
𝑗

∑
𝛽∈𝑆 (𝛼) 𝑓𝛽 , or 𝑓𝛼 ∈ {±𝑒∗𝑗 : 𝑗 ∈ N} and 𝑆(𝛼) = {𝛽} with 𝑓𝛽 = 𝑓𝛼.

(v) For every maximal node 𝛼 ∈ A, 𝑓𝛼 ∈ {±𝑒∗𝑗 : 𝑗 ∈ N}.

Remark 5.4.

(i) It follows by minimality that every f in 𝑉(1) \ {0} admits a tree analysis, but it may not be unique.
For example, 𝑓 = (𝑚1𝑚2)−1𝑒∗1 admits two distinct tree analyses.

(ii) The standard definition of a tree analysis does not include 5.3 (iii). This property is included for
technical reasons and is used below in the equality of Remark 5.8 (i).

Definition 5.5. Let 𝑓 ∈ 𝑉(1) .

(i) If 𝑓 = 0 or 𝑓 ∈ {±𝑒∗𝑗 : 𝑗 ∈ N}, then we define the weight 𝑤( 𝑓 ) of f as 𝑤( 𝑓 ) = 0 and 𝑤( 𝑓 ) = 1,
respectively.

(ii) If f is the result of an (𝑚 𝑗 , 𝑆𝑛 𝑗 )-operation for some 𝑗 ∈ N, then 𝑤( 𝑓 ) = 𝑚 𝑗 .

Remark 5.6. It is not difficult to see that 𝑤( 𝑓 ), for 𝑓 ∈ 𝑉(1) , is not uniquely determined, that is, f could
be the result of more than one distinct (𝑚 𝑗 ,S𝑛 𝑗 )-operation. However, if we fix a tree analysis ( 𝑓𝛼)𝛼∈A
of f, then for 𝛼 ∈ A with 𝑓𝛼 = (𝑚 𝑗𝛼 )−1∑

𝛽∈𝑆 (𝛼) 𝑓𝛽 , the tree analysis determines the weight 𝑤( 𝑓𝛼),
being equal to 𝑚 𝑗𝛼 . Thus, for 𝑓 ∈ 𝑉(1) and a fixed tree analysis ( 𝑓𝛼)𝛼∈A of f, with 𝑤( 𝑓𝛼), we will
denote the weight 𝑚 𝑗𝛼 determined by ( 𝑓𝛼)𝛼∈A, for every 𝛼 ∈ A. In addition, we will denote by 𝑓𝛼 the
pair ( 𝑓𝛼, 𝑚 𝑗𝛼 ).

Definition 5.7. Let 𝑓 ∈ 𝑉(1) and ( 𝑓𝛼)𝛼∈A be a tree analysis of f. Then for 𝛼 ∈ A, we define the relative
weight 𝑤 𝑓 ( 𝑓𝛼) of 𝑓𝛼 as

𝑤 𝑓 ( 𝑓𝛼) =
{∏

𝛽<𝛼 𝑤( 𝑓𝛽) if 𝛼 ≠ 0
1 otherwise.

Remark 5.8. Let 𝑓 ∈ 𝑉(1) and ( 𝑓𝛼)𝛼∈A be a tree analysis of f.

(i) For every 𝑘 = 1, . . . , ℎ(A)

𝑓 =
∑
|𝑎 |=𝑘

𝑤 𝑓 ( 𝑓𝛼)−1 𝑓𝛼 .

This can be proved by induction and essentially relies on the fact that ( 𝑓𝛼)𝛼∈A satisfies 5.3 (iii).
(ii) If B is a maximal pairwise incomparable subset of A, then

𝑓 =
∑
𝛽∈B

𝑤 𝑓 ( 𝑓𝛽)−1 𝑓𝛽 .

(iii) For every 𝛼 ∈ A, whose immediate predecessor 𝛽 in A (if one exists) satisfies 𝑓𝛽 ∉ {±𝑒∗𝑗 : 𝑗 ∈ N},
we have 𝑤 𝑓 ( 𝑓𝛼) ≥ 2 |𝛼 | .

Fix an injection 𝜎 that maps any pair ( 𝑓 , 𝑤( 𝑓 )), for 𝑓 ∈ 𝑉(1) and 𝑤( 𝑓 ) a weight of f, to some 𝑚 𝑗

with 𝑚 𝑗 > max supp( 𝑓 ) 𝑤( 𝑓 ) whenever 𝑓 ≠ 0.

Definition 5.9. Define a partial order <T on the set of all pairs ( 𝑓 , 𝑤( 𝑓 )) for 𝑓 ∈ 𝑉(1) and 𝑤( 𝑓 ) a
weight of f, as follows: ( 𝑓 , 𝑤( 𝑓 )) <T (𝑔, 𝑤(𝑔)) either if 𝑓 = 0 or if there exist 𝑓1 < . . . < 𝑓𝑛 ∈ 𝑉(1)
and weights 𝑤( 𝑓1), . . . , 𝑤( 𝑓𝑛), such that
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(i) ( 𝑓𝑖)𝑛𝑖=1 is S1-admissible,
(ii) 𝑤( 𝑓1) = 𝜎(0, 0) and 𝑤( 𝑓𝑖) = 𝜎( 𝑓𝑖−1, 𝑤( 𝑓𝑖−1)) for every 𝑖 = 2, . . . , 𝑛,

(iii) there are 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑛, such that 𝑓 = 𝑓𝑖1 and 𝑔 = 𝑓𝑖2 .
It is easy to see that <T induces a tree structure rooted at 0̄ = (0, 0). Let us denote this tree by T ,

and observe that this is a countably branching well-founded tree, due to 5.9(i). For 𝑡 = ( 𝑓 , 𝑤( 𝑓 )) ∈ T ,
we set 𝑓𝑡 = 𝑓 and 𝑤(𝑡) = 𝑤( 𝑓 ).

It is clear that unlike the case where the tree is defined on the basis of the space, here, incomparable
segments need not necessarily have disjoint supports. This forces us to introduce the notion of essentially
incomparable nodes, which was first defined in [8]. To this end, we first need to define an additional tree
structure that is readily implied by T via the projection ( 𝑓 , 𝑤( 𝑓 )) ↦→ 𝑤( 𝑓 ).
Definition 5.10. Define a partial order <W on {𝑚 𝑗 : 𝑗 ∈ N} as follows: 𝑚𝑖 <W 𝑚 𝑗 if there exist
𝑡1, 𝑡2 ∈ T , such that 𝑡1 <T 𝑡2, 𝑤(𝑡1) = 𝑚𝑖 and 𝑤(𝑡2) = 𝑚 𝑗 .

As an immediate consequence of the fact that T is a countably branching well-founded tree, we have
that <W also defines a tree structure. Let us denote this tree by W and note that it is also countably
branching and well founded.
Remark 5.11. The above definition implies that if 𝑡1, 𝑡2 ∈ T are such that 𝑤(𝑡1) <W 𝑤(𝑡2), then there
exist 𝑡3, 𝑡4 ∈ T , such that 𝑡3 <T 𝑡4, 𝑤(𝑡3) = 𝑤(𝑡1) and 𝑤(𝑡4) = 𝑤(𝑡2). The tree structure of T implies
that 𝑡3 is uniquely defined, and we will say that 𝑡3 generates 𝑤(𝑡2). This is not the case, however, for 𝑡4,
and, moreover, it is not necessary that 𝑡3 <T 𝑡2.
Definition 5.12.

(i) A subset A of T \ {0̄} is called essentially incomparable if whenever 𝑡1, 𝑡2 ∈ 𝐴 are such that
𝑤(𝑡1) <W 𝑤(𝑡2), then for the unique 𝑡3 ∈ T with 𝑤(𝑡3) = 𝑤(𝑡1) that generates 𝑤(𝑡2), we have that
𝑓𝑡3 < 𝑓𝑡1 .

(ii) A subset A of T is called weight incomparable if for any 𝑡1 ≠ 𝑡2 in A, 𝑤(𝑡1) ≠ 𝑤(𝑡2) and the
weights 𝑤(𝑡1) and 𝑤(𝑡2) are incomparable in W .

(iii) A sequence (𝐴 𝑗 ) 𝑗 of subsets of T is called pairwise weight incomparable if for every 𝑗1 ≠ 𝑗2 in
N, 𝑡1 ∈ 𝐴 𝑗1 and 𝑡2 ∈ 𝐴 𝑗2 , 𝑤(𝑡1) ≠ 𝑤(𝑡2) and the weights 𝑤(𝑡1) and 𝑤(𝑡2) are incomparable in W .

Remark 5.13.
(i) If A is an essentially (respectively, weight) incomparable subset of T , then every 𝐵 ⊂ 𝐴 is also

essentially (respectively, weight) incomparable.
(ii) Any subsequence of a pairwise weight incomparable sequence in T is also pairwise weight incom-

parable.
(iii) Any weight incomparable subset of T is essentially incomparable.
(iv) Let 𝐴 = {( 𝑓 , 1) : 𝑓 ∈ {±𝑒∗𝑗 : 𝑗 ∈ N}}. Then A is essentialy incomparable, and, additionally, if

𝐵 ⊂ T is essentially incomparable, then the same holds for 𝐴 ∪ 𝐵.
We can finally describe the rule used to define the norming set 𝑊(1) of 𝔛 (1)awi, namely, asymptotically

weakly incomparable constraints.
Definition 5.14. Let J be an initial segment of N or 𝐽 = N. Then a sequence ( 𝑓 𝑗 ) 𝑗∈𝐽 of functionals with
successive supports in 𝑉(1) \ {0} is called asymptotically weakly incomparable (AWI) if each 𝑓 𝑗 admits
a tree analysis ( 𝑓 𝑗 ,𝛼)𝛼∈A 𝑗 , 𝑗 ∈ 𝐽, such that the following are satisfied.

(i) There is a partition { 𝑓 𝑗 : 𝑗 ∈ 𝐽} = 𝐶0
1 ∪ 𝐶0

2 , such that 𝐶0
1 is essentially incomparable and 𝐶0

2 is
weight incomparable.

(ii) For every 𝑘, 𝑗 ∈ 𝐽 with 𝑗 ≥ 𝑘 + 1, there exists a partition

{ 𝑓 𝑗 ,𝛼 : 𝛼 ∈ A 𝑗 and |𝛼 | = 𝑘} = 𝐶𝑘
1, 𝑗 ∪ 𝐶

𝑘
2, 𝑗 ,

such that ∪∞𝑗=𝑘+1𝐶
𝑘
1, 𝑗 is essentially incomparable and (𝐶𝑘

2, 𝑗 )
∞
𝑗=𝑘+1 is pairwise weight incomparable.
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Figure 1. The collection of nodes of a fixed level in rectangles across all tree analyses forms an
essentially incomparable subset, while circles across a fixed level form a family of pairwise weight
incomparable subsets.

Before defining the space 𝔛 (1)awi, we prove that AWI sequences are stable under taking subsequences
and under taking restrictions of functionals to subsets. This fact will imply the unconditionality of the
basis of 𝔛 (1)awi.
Remark 5.15. Let 𝑓 ∈ 𝑉(1) and ( 𝑓𝛼)𝛼∈A be a tree analysis of f. Let Δ be a nonempty subset of supp( 𝑓 ),
and set 𝑔 = 𝑓 |Δ . First, note that 𝑔 ∈ 𝑉(1) . Moreover, ( 𝑓𝛼)𝛼∈A naturally induces a tree analysis (𝑔𝛼)𝛼∈B
for g as follows: B = {𝛼 ∈ A : supp( 𝑓𝛼) ∩ Δ ≠ ∅} and 𝑔𝛼 = 𝑓𝛼 |Δ , 𝛼 ∈ B. Finally, it is easy to see that
𝑤(𝑔) = 𝑤( 𝑓 ).
Proposition 5.16. Let J be an initial segment of N or 𝐽 = N and ( 𝑓 𝑗 ) 𝑗∈𝐽 be an AWI sequence in 𝑉(1) .

(i) Every subsequence of ( 𝑓 𝑗 ) 𝑗∈𝐽 is also an AWI sequence in 𝑉(1) .
(ii) If Δ 𝑗 is a nonempty subset of supp( 𝑓 𝑗 ) and 𝑔 𝑗 = 𝑓 𝑗 |Δ 𝑗 , 𝑗 ∈ 𝐽, then (𝑔 𝑗 ) 𝑗∈𝐽 is an AWI sequence in

𝑉(1) .
(iii) If (𝑔 𝑗 ) 𝑗∈𝐽 is a sequence in 𝑉(1) , such that |𝑔 𝑗 | = | 𝑓 𝑗 | for all 𝑗 ∈ 𝐽, then (𝑔 𝑗 ) 𝑗∈𝐽 is also AWI.

Proof. Let for every 𝑗 ∈ 𝐽, ( 𝑓 𝑗 ,𝛼)𝛼∈A 𝑗 be a tree analysis of 𝑓 𝑗 with

{ 𝑓 𝑗 : 𝑗 ∈ 𝐽} = 𝐶0
1 ∪ 𝐶

0
2

and for every 𝑘, 𝑗 ∈ 𝐽 with 𝑗 > 𝑘

{ 𝑓 𝑗 ,𝛼 : 𝛼 ∈ A 𝑗 and |𝛼 | = 𝑘} = 𝐶𝑘
1, 𝑗 ∪ 𝐶

𝑘
2, 𝑗 ,

witnessing that ( 𝑓 𝑗 ) 𝑗∈𝐽 is AWI. We will define the desired partitions proving the cases (i)–(iii).
To prove (i), let N be a subset of J and define

𝐹0
𝑖 = { 𝑓 𝑗 : 𝑗 ∈ 𝑁} ∩ 𝐶0

𝑖 , 𝑖 = 1, 2.

Then { 𝑓 𝑗 : 𝑗 ∈ 𝑁} = 𝐹0
1 ∪ 𝐹0

2 , where 𝐹0
1 is essentially incomparable and 𝐹0

2 is weight incomparable.
For the remaining part, let 𝑘 ∈ 𝑁 , and note that for 𝑁𝑘 = { 𝑗 ∈ 𝑁 : 𝑗 ≥ 𝑘}, ∪ 𝑗∈𝑁𝑘𝐶

𝑘
1, 𝑗 is essentially

incomparable and (𝐶𝑘
2, 𝑗 ) 𝑗∈𝑁𝑘 is pairwise weight incomparable.

To prove (ii), Remark 5.15 implies that 𝑔 𝑗 ∈ 𝑉(1) , 𝑤(𝑔 𝑗 ) = 𝑤( 𝑓 𝑗 ), and we let (𝑔 𝑗 ,𝛼)𝛼∈B 𝑗 be the tree
analysis of g induced by ( 𝑓 𝑗 ,𝛼)𝛼∈A 𝑗 , 𝑗 ∈ 𝐽. Define

𝐹0
𝑖 = {𝑔̄ 𝑗 : 𝑗 ∈ 𝐽 and 𝑔 𝑗 = 𝑓 𝑗 |Δ 𝑗 with 𝑓 𝑗 ∈ 𝐶0

𝑖 }, 𝑖 = 1, 2,
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and observe that {𝑔̄ 𝑗 : 𝑗 ∈ 𝐽} = 𝐹0
1 ∪𝐹

0
2 . Moreover, for 𝑗 ∈ 𝐽, supp(𝑔 𝑗 ) ⊂ supp( 𝑓 𝑗 ) and 𝑤(𝑔 𝑗 ) = 𝑤( 𝑓 𝑗 ),

and, hence, whenever 𝑔𝑖 ≠ 𝑔 𝑗 are in 𝐹0
1 with 𝑤(𝑔𝑖) <W 𝑤(𝑔 𝑗 ), we have 𝑤( 𝑓𝑖) <W 𝑤( 𝑓 𝑗 ), implying

that the generator 𝑡3 ∈ T of 𝑤( 𝑓 𝑗 ) = 𝑤(𝑔 𝑗 ) with 𝑤(𝑡3) = 𝑤( 𝑓𝑖) = 𝑤(𝑔𝑖) is such that 𝑓𝑡3 < 𝑓𝑖 , and thus
𝑓𝑡3 < 𝑔𝑖 . This yields that 𝐹0

1 is essentially incomparable. Clearly, 𝐹0
2 is weight incomparable. Next, for

𝑘, 𝑗 ∈ 𝐽 with 𝑗 > 𝑘 , define

𝐹𝑘
𝑖, 𝑗 = {𝑔̄ 𝑗 ,𝛼 : 𝑔 𝑗 ,𝛼 = 𝑓 𝑗 ,𝛼 |Δ 𝑗 with 𝑓 𝑗 ,𝛼 ∈ 𝐶𝑘

𝑖, 𝑗 }, 𝑖 = 1, 2.

Note that for each 𝑘 ∈ 𝐽, (𝐹𝑘
2, 𝑗 )
∞
𝑗=𝑘+1 is pairwise weight incomparable, and the proof that ∪∞𝑗=𝑘+1𝐹

𝑘
1, 𝑗 is

essentially incomparable is identical to that for 𝐹1
0 . Finally, the proof of (iii) is similar that of (ii). �

Definition 5.17. Let 𝑊(1) be the smallest subset of 𝑉(1) that is symmetric, contains the singletons and
for every 𝑗 ∈ N and every S𝑛 𝑗 -admissible AWI sequence ( 𝑓𝑖)𝑛𝑖=1 in 𝑊(1) , we have that 𝑚−1

𝑗

∑𝑛
𝑖=1 𝑓𝑖 is in

𝑊(1) . Moreover, let 𝔛 (1)awi denote the completion of 𝑐00 (N) with respect to the norm induced by 𝑊(1) .

Remark 5.18.

(i) The norming set 𝑊(1) can be defined as the increasing union of a sequence (𝑊𝑛
(1) )
∞
𝑛=0, where

𝑊0
(1) = {±𝑒

∗
𝑘 : 𝑘 ∈ N} ∪ {0} and

𝑊𝑛+1
(1) = 𝑊𝑛

(1) ∪
{ 1
𝑚 𝑗

𝑑∑
𝑙=1

𝑓𝑙 : 𝑗 , 𝑑 ∈ N and ( 𝑓𝑙)𝑑𝑙=1 is an S𝑛 𝑗 -admissible AWI sequence in 𝑊𝑛
(1)

}
.

(ii) Note that Remark 5.13 (iv) implies that any sequence of singletons is AWI. Hence, we have that

𝑊1
(1) = 𝑊0

(1) ∪
{ 1
𝑚 𝑗

∑
𝑘∈𝐸

𝜖𝑘𝑒
∗
𝑘 : 𝑗 ∈ N, 𝐸 ∈ S𝑛 𝑗 and 𝜖𝑘 ∈ {−1, 1} for 𝑘 ∈ 𝐸

}
.

(iii) Proposition 5.16 yields that the standard unit vector basis of 𝑐00 (N) forms an 1-unconditional
Schauder basis for 𝔛 (1)awi.

6. Outline of proof

Although unconditionality of the basis of 𝔛 (1)awi is almost immediate, it is not, however, straightforward
to show that 𝔛 (1)awi admits ℓ1 as an asymptotic model. Indeed, this requires Lemma 7.2, which is based on
the combinatorial results concerning measures on well-founded trees of Section 4, which first appeared
in [8]. This lemma yields that for any choice of successive families (𝐹𝑗 ) 𝑗 of normalised blocks in 𝔛 (1)awi
and for any 𝜀 > 0, we may pass to a subsequence (𝐹𝑗 ) 𝑗∈𝑀 and find a family (𝐺 𝑗 ) 𝑗∈𝑀 of subsets of
𝑊(1) , such that for any choice of 𝑥 𝑗 ∈ 𝐹𝑗 , 𝑗 ∈ 𝑀 , there is a 𝑔 𝑗 ∈ 𝐺 𝑗 with 𝑔 𝑗 (𝑥 𝑗 ) > 1− 𝜀 so that (𝑔 𝑗 ) 𝑗∈𝑀
is AWI. Thus, we are able to prove, employing Lemma 3.4, the aforementioned result.

To prove the nonexistence of Asymptotic ℓ1 subspaces in 𝔛 (1)awi, we start with the notion of exact pairs.
This is a key ingredient in the study of Mixed Tsirelson spaces, used for the first time by Schlumprecht
[26].

Definition 6.1. We call a pair (𝑥, 𝑓 ), where 𝑥 ∈ 𝔛 (1)awi and 𝑓 ∈ 𝑊(1) , an 𝑚 𝑗 -exact pair if the following
hold.

(i) ‖𝑥‖ ≤ 3, 𝑓 (𝑥) = 1 and 𝑤( 𝑓 ) = 𝑚 𝑗 .
(ii) If 𝑔 ∈ 𝑊(1) with 𝑤(𝑔) < 𝑤( 𝑓 ), then |𝑔(𝑥) | ≤ 18𝑤(𝑔)−1.

(iii) If 𝑔 ∈ 𝑊(1) with 𝑤(𝑔) > 𝑤( 𝑓 ), then |𝑔(𝑥) | ≤ 6(𝑚−1
𝑗 + 𝑚 𝑗𝑤(𝑔)−1).

If, additionally, for every 𝑔 ∈ 𝑊(1) that has a tree analysis (𝑔𝛼)𝛼∈A, such that 𝑤(𝑔𝛼) ≠ 𝑚 𝑗 for all 𝛼 ∈ A,
we have |𝑔(𝑥) | ≤ 18𝑚−1

𝑗 , then we call (𝑥, 𝑓 ) a strong exact pair.
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Figure 2. The tree analysis of f and the induced tree analyses of g and h. The circled nodes 𝛼 are such
that 𝑤( 𝑓𝛼) = 𝑤( 𝑓𝑘 ) and supp(𝑥𝑘 ) ∩ supp( 𝑓𝛼) ≠ ∅ for some 𝑘 ∈ {1, . . . , 𝑛}.

That is, roughly speaking, for an exact pair (𝑥, 𝑓 ), the evaluation of a functional g in 𝑊(1) , on x,
admits an upper bound depending only on the weight of g. In the case of an 𝑚 𝑗 -strong exact pair (𝑥, 𝑓 ),
any g in 𝑊(1) with a tree analysis (𝑔𝛼)𝛼∈A, such that 𝑤(𝑔𝛼) ≠ 𝑚 𝑗 , has negligible evaluation on x. We
will consider certain exact pairs which we call standard exact pairs (SEP) (see Definition 8.7) and which
we prove to be strong exact pairs. It is the case that such pairs can be found in any block subspace of
𝔛 (1)awi, and this is used to prove the reflexivity of 𝔛 (1)awi as well as the following proposition which yields
the nonexistence of Asymptotic ℓ1 subspaces.

Proposition 6.2. Given 0 < 𝑐 < 1, there is 𝑛 ∈ N so that in any block subspace Y there is a
sequence (𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛) of SEPs, where 𝑥𝑖 ∈ 𝑌 , 𝑖 = 1, . . . , 𝑛, with 𝑓1 <T . . . <T 𝑓𝑛, such that
‖𝑥1 + · · · + 𝑥𝑛‖ < 𝑐 𝑛.

To this end, we first employ the following lemma that highlights the importance of the asymptotically
weakly incomparable constraints.

Lemma 6.3. Let (𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛) be SEPs with 𝑓1 <T . . . <T 𝑓𝑛. Then, for any 𝑓 ∈ 𝑊(1) with a
tree analysis ( 𝑓𝛼)𝛼∈A and 𝑘 ∈ N, the number of 𝑓𝑖’s, 𝑖 = 1, . . . , 𝑛, such that there exists 𝛼 ∈ A with
|𝛼 | = 𝑘 , 𝑤( 𝑓𝑖) = 𝑤( 𝑓𝛼) and supp(𝑥𝑖) ∩ supp( 𝑓𝛼) ≠ ∅, is at most 𝑒𝑘!, where e denotes Euler’s number.

Then, we consider a sequence of standard exact pairs (𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛) with 𝑓1 <T . . . <T 𝑓𝑛
and fix 0 < 𝑐 < 1. Pick an 𝑚 ∈ N, such that 3/2𝑚 < 𝑐. For 𝑓 ∈ 𝑊(1) , with a tree analysis ( 𝑓𝛼)𝛼∈A, we
consider partitions 𝑓 = 𝑔 + ℎ and 𝑔 = 𝑔1 + 𝑔2 as follows: First, set

𝐺 = ∪{range(𝑥𝑘 ) ∩ range( 𝑓𝛼) : 𝑘 ∈ {1, . . . , 𝑛} and 𝛼 ∈ A with 𝑤( 𝑓𝛼) = 𝑤( 𝑓𝑘 )},

and define 𝑔 = 𝑓 |𝐺 and ℎ = 𝑓 |N\𝐺 (see Figure 2).
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Figure 3. We consider the m-th level of the induced tree analysis of g. Nodes 𝛼 with 𝑤( 𝑓𝛼) = 𝑤( 𝑓𝑘 )
and |𝛼 | ≤ 𝑚 are used to define 𝑔1, while such nodes of height greater than m define 𝑔2, restricted on
each 𝑥𝑘 for 𝑘 = 1, . . . , 𝑛.

To define 𝑔1, consider the tree analysis (𝑔𝛼)𝛼∈A𝑔 of g that is induced by ( 𝑓𝛼)𝛼∈A, that is, 𝑔𝛼 = 𝑓𝛼 |𝐺
for 𝛼 ∈ A𝑔 and A𝑔 = {𝛼 ∈ A : supp( 𝑓𝛼) ∩ 𝐺 ≠ ∅}. Then, we define

B1
𝑘 = {𝛼 ∈ A𝑔 : |𝑎 | ≤ 𝑚, 𝑤( 𝑓𝛼) = 𝑤( 𝑓𝑘 ) and 𝑤( 𝑓𝛽) ≠ 𝑤( 𝑓𝑘 ) for all 𝛽 < 𝛼 in A𝑔}

for 𝑘 = 1, . . . , 𝑛,

𝐺1 = ∪𝑛𝑘=1 ∪
{
supp(𝑔𝛼) ∩ supp(𝑥𝑘 ) : 𝛼 ∈ B1

𝑘

}
,

and finally 𝑔1 = 𝑔 |𝐺1 (see Figure 3). Observe that Lemma 6.3 implies that

#{𝑘 ∈ {1, . . . , 𝑛} : 𝑔1(𝑥𝑘 ) ≠ 0} ≤ ℓ = 𝑒
𝑚∑
𝑘=1

𝑘!. (6.1)

Moreover, the induced tree analysis (ℎ𝛼)𝛼∈Aℎ of h is such that 𝑤(ℎ𝛼) ≠ 𝑤( 𝑓𝑘 ) for all 𝑘 = 1, . . . , 𝑛,
and, therefore, the fact that (𝑥𝑘 , 𝑓𝑘 ) are strong exact pairs yields

|ℎ(𝑥𝑘 ) | ≤
18

𝑤( 𝑓𝑘 )
, 𝑘 = 1, . . . , 𝑛. (6.2)

Considering a further partition of 𝑔2 |supp(𝑥𝑘 ) , we show that

|𝑔2 (𝑥𝑘 ) | ≤
18

𝑤( 𝑓𝑘 )
+ 3

2𝑚
, 𝑘 = 1, . . . , 𝑛. (6.3)
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Hence, (6.1), (6.2) and (6.3) imply 




 𝑓
(

1
𝑛

𝑛∑
𝑘=1

𝑥𝑘

)




 ≤ 36 + ℓ
𝑛
+ 3

2𝑚
.

Then, our choice of m yields Proposition 6.2 for sufficiently large n and 𝑤( 𝑓1), where 𝑤( 𝑓1) is chosen
appropriately to deal with the case where 𝑓 ∈ {±𝑒∗𝑗 : 𝑗 ∈ N}.

Assuming that Y is a C-asymptotic ℓ1 block subspace of 𝔛 (1)awi, we pick a sequence of standard
exact pairs (𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛) in 𝑌 ×𝑊(1) , satisfying the conclusion of Proposition 6.2 and derive a
contradiction.

The remainder of this part of the paper is organised as follows. In Section 7, we prove that𝔛 (1)awi admits
ℓ1 as a unique asymptotic model. Next, in Section 8, we prove existence and properties of standard exact
pairs. The final section of this part contains the results leading up to the proof that 𝔛 (1)awi does not contain
Asymptotic ℓ1 subspaces.

7. Asymptotic models generated by block sequences of 𝔛 (1)awi

We show that the space 𝔛 (1)awi admits a unique asymptotic model, or equivalently, a uniformly unique
joint spreading model with respect to ℱ𝑏 (𝔛 (1)awi) that is equivalent to the unit vector basis of ℓ1. The key
ingredient in the proof is the following lemma concerning bounded positive measures on the tree of
initial segments of T .

Remark 7.1. Let us first recall some notation from Section 4. We denote by T̃ the tree of initial
segments of T equipped with the partial order induced by inclusion and consider the isomorphism
𝑡 ↦→ 𝑡 = {𝑠 ∈ T : 𝑠 ≤T 𝑡}, between T and T̃ . Similarly, by W̃ , we denote the tree of initial segments of
W and consider the isomorphism 𝑤 ↦→ 𝑤̃ = {𝑣 ∈ W : 𝑣 ≤W 𝑤} between W and W̃ . Finally, for 𝑡 ∈ T ,
we set 𝑤̃(𝑡) = {𝑤̃ ∈ W̃ : 𝑤 ≤W 𝑤(𝑡)}.

Lemma 7.2. Let (𝜇𝑖)𝑖 be a bounded finitely and disjointly supported sequence in M+(T̃ ). Assume that
the sets ∪{supp( 𝑓𝑡 ) : 𝑡 ∈ supp(𝜇𝑖)}, 𝑖 ∈ N, are disjoint. Then, for every 𝜀 > 0, there exists an infinite
subset of the natural numbers L and for each 𝑖 ∈ 𝐿 subsets 𝐺1

𝑖 , 𝐺2
𝑖 of T̃ , such that

(i) 𝐺1
𝑖 , 𝐺2

𝑖 are disjoint subsets of supp(𝜇𝑖) for every 𝑖 ∈ 𝐿,
(ii) 𝜇𝑖 (T̃ \ 𝐺1

𝑖 ∪ 𝐺2
𝑖 ) < 𝜀 for every 𝑖 ∈ 𝐿,

(iii) {𝑡 ∈ T : 𝑡 ∈ ∪𝑖∈𝐿𝐺1
𝑖 } is essentially incomparable and

(iv) if 𝐹2
𝑖 = {𝑡 ∈ T : 𝑡 ∈ 𝐺2

𝑖 }, 𝑖 ∈ 𝐿, then the sequence (𝐹2
𝑖 )𝑖∈𝐿 is pairwise weight incomparable.

Proof. Passing to a subsequence if necessary, we may assume that the (unique) root of T̃ is not in the
support of any 𝜇𝑖 , 𝑖 ∈ N, succ-lim𝑖 𝜇𝑖 exists and that there exist partitions supp(𝜇𝑖) = 𝐴𝑖 ∪ 𝐵𝑖 , 𝑖 ∈ N,
satisfying the conclusion of Lemma 4.6. Define for each 𝑖 ∈ N, the measures 𝜇1

𝑖 , 𝜇2
𝑖 ∈M+(T̃ ) given

by 𝜇1
𝑖 (𝐶) = 𝜇𝑖 (𝐴𝑖 ∩ 𝐶) and 𝜇2

𝑖 (𝐶) = 𝜇𝑖 (𝐵𝑖 ∩ 𝐶), and let 𝜈 = 𝑤∗- lim𝑖 𝜇
1
𝑖 = succ-lim𝑖 𝜇

1
𝑖 . Pick a finite

subset F of T̃ , such that 𝜈(T̃ \ 𝐹) < 𝜀/2. Then, 𝜈 = 𝑤∗- lim𝑖 𝜇
1
𝑖 implies that lim𝑖 𝜇

1
𝑖 (T̃ ) = 𝜈(T̃ ), and,

thus, since 𝜈 = succ-lim𝑖 𝜇
1
𝑖 , we have

lim
𝑖




𝜇1
𝑖 (T̃ ) − 𝜇1

𝑖 (∪𝑡 ∈𝐹𝑆(𝑡))



 = 


𝜈(T̃ ) − lim

𝑖

∑̃
𝑡 ∈𝐹

𝜇1
𝑖 (𝑆(𝑡))




 = 𝜈(T̃ \ 𝐹) < 𝜀

2
.

Hence, we can find 𝑖0 ∈ N, such that for all 𝑖 ≥ 𝑖0, we have


𝜇𝑖 (𝐴𝑖) − 𝜇𝑖

(
𝐴𝑖 ∩

(
∪𝑡 ∈𝐹 𝑆(𝑡)

) )


 = 


𝜇1
𝑖 (T̃ ) − 𝜇1

𝑖 (∪𝑡 ∈𝐹𝑆(𝑡))



 < 𝜀

2
. (7.1)
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We set Σ = 𝜎({𝑡 ∈ T : 𝑡 ∈ 𝐹}) and

𝑅 = {𝑟 ∈ T : 𝑤(𝑟) ∈ Σ, and there is 𝑠 ∈ T with 𝑤(𝑠) ∈ Σ, such that 𝑟 <T 𝑠}.

Note that Σ and R are finite, since F is finite. Thus, using the fact that the sets∪{supp( 𝑓𝑡 ) : 𝑡 ∈ supp(𝜇𝑖)}
for 𝑖 ∈ N are disjoint, find 𝑖1 ∈ N with 𝑖1 ≥ 𝑖0 so that

∪𝑟 ∈𝑅supp( 𝑓𝑟 ) < supp( 𝑓𝑡 ), for all 𝑡 ∈ ∪𝑖≥𝑖1 supp(𝜇1
𝑖 ). (7.2)

For 𝐺1
𝑖 = 𝐴𝑖 ∩ (∪𝑡 ∈𝐹𝑆(𝑡)), (7.1) implies that |𝜇𝑖 (𝐴𝑖) − 𝜇𝑖 (𝐺1

𝑖 ) | < 𝜀/2, 𝑖 ≥ 𝑖1. We will show that
{𝑡 ∈ T : 𝑡 ∈ ∪𝑖≥𝑖1𝐺1

𝑖 } is essentially incomparable, that is, that (iii) is satisfied. To this end, first observe
that if 𝑡 ∈ ∪𝑖≥𝑖1𝐺1

𝑖 , then 𝑤(𝑡) ∈ Σ. Let 𝑡1, 𝑡2 ∈ ∪𝑖≥𝑖1𝐺1
𝑖 with 𝑤(𝑡1) <W 𝑤(𝑡2). It is immediate that if

𝑡3 ∈ T is the generator of 𝑤(𝑡2) with 𝑤(𝑡3) = 𝑤(𝑡1), then 𝑡3 ∈ 𝑅, and, hence, (7.2) implies that 𝑓𝑡3 < 𝑓𝑡1 ,
proving the desired result.

For the remaining part of the proof, recall the root of T̃ avoids the supports of all 𝜇2
𝑖 , 𝑖 ≥ 𝑖1. This

implies that every 𝑡 ∈ ∪𝑖≥𝑖1 supp(𝜇2
𝑖 ) is the successor of some node in T̃ . Then, since for all 𝑖 ≥ 𝑖1, the

set 𝐵𝑖 = supp(𝜇2
𝑖 ) is finite (as a subset of the finite support of 𝜇𝑖), and for each 𝑡 ∈ T̃ , the sequence

(𝜇2
𝑖 (𝑆(𝑡)))𝑖≥𝑖1 is eventually zero, we may pass to a subsequence so that for all 𝑖1 ≤ 𝑖 < 𝑗 , we have
{𝑤(𝑡) : 𝑡 ∈ supp(𝜇2

𝑖 )} ∩ {𝑤(𝑡) : 𝑡 ∈ supp(𝜇2
𝑗 )} = ∅. We can, therefore, define the bounded sequence

of disjointly supported measures (𝜈𝑖)𝑖≥𝑖1 on W̃ given by 𝜈𝑖 ({𝑤̃}) = 𝜇2
𝑖 ({𝑡 ∈ T̃ : 𝑤̃(𝑡) = 𝑤̃}). Hence,

applying Proposition 4.1 and passing to a subsequence, we obtain a subset 𝐸𝑖 of supp(𝜈𝑖), such that
𝜈𝑖 (W̃ \ 𝐸𝑖) < 𝜀/2 and the sets 𝐸𝑖 , 𝑖 ≥ 𝑖1, are pairwise incomparable. It is easy to verify that if
𝐺2

𝑖 = {𝑡 ∈ 𝐵𝑖 : 𝑤̃(𝑡) ∈ 𝐸𝑖} and 𝐹2
𝑖 = {𝑡 ∈ T : 𝑡 ∈ 𝐺2

𝑖 }, 𝑖 ≥ 𝑖1, then (𝐹2
𝑖 )𝑖≥𝑖1 is pairwise weight

incomparable and |𝜇𝑖 (𝐵𝑖) − 𝜇𝑖 (𝐺2
𝑖 ) | = 𝜇2

𝑖 (T̃ \ 𝐺2
𝑖 ) < 𝜀/2 for every 𝑖 ≥ 𝑖1. �

Lemma 7.3. Let 𝑥 ∈ 𝔛 (1)awi, 𝑓 ∈ 𝑊(1) and a tree analysis ( 𝑓𝛼)𝛼∈A of f, such that 𝑓𝛼 (𝑥) ≥ 0 for
every 𝛼 ∈ A. Let 𝜀1, . . . , 𝜀ℎ (A) be positive reals and 𝐺𝑖 be a subset of {𝛼 ∈ A : |𝛼 | = 𝑖}, such that∑

𝛼∈𝐺𝑖
𝑤 𝑓 ( 𝑓𝛼)−1 𝑓𝛼 (𝑥) > 𝑓 (𝑥) − 𝜀𝑖 for every 1 ≤ 𝑖 ≤ ℎ(A), and 𝑓 (𝑥) >

∑ℎ (A)
𝑖=1 𝜀𝑖 . Then, there exists

a 𝑔 ∈ 𝑊(1) satisfying the following conditions.

(i) supp(𝑔) ⊂ supp( 𝑓 ) and 𝑤(𝑔) = 𝑤( 𝑓 ).
(ii) 𝑔(𝑥) > 𝑓 (𝑥) −

∑ℎ (A)
𝑖=1 𝜀𝑖 .

(iii) g has a tree analysis (𝑔𝛼)𝛼∈A𝑔 , such that for every 𝛼 ∈ A𝑔, there is a unique 𝛽 ∈ 𝐺 |𝛼 | with
supp(𝑔𝛼) ⊂ supp( 𝑓𝛽) and 𝑤(𝑔𝛼) = 𝑤( 𝑓𝛽).

Proof. Let A𝑘 denote the set of all nodes in A, such that |𝛼 | = 𝑘 , 1 ≤ 𝑘 ≤ ℎ(A). We define g by
constructing the tree analysis (𝑔𝛼)𝛼∈A𝑔 . First, define by induction 𝐵1 = A1 \𝐺1 and for 2 ≤ 𝑘 ≤ ℎ(A):

𝐵𝑘 = {𝛼 ∈ A𝑘 : 𝛼 ∉ 𝐺𝑘 or there is a 𝛽 ∈ 𝐵𝑘−1, such that 𝛼 ∈ 𝑆(𝛽)}.

It follows easily that 𝛼 ∈ 𝐵𝑘 if and only if there exists 𝛽 ≤ 𝛼, such that 𝛽 ∉ 𝐺 |𝛽 | . Let C𝑔 = Aℎ (A) \𝐵ℎ (A) .
Note that 𝑓𝛼 ∈ {±𝑒∗𝑗 : 𝑗 ∈ N} for every 𝛼 ∈ C𝑔, and let Δ𝑔 = ∪{supp( 𝑓𝛼) : 𝛼 ∈ C𝑔}. Then 𝑔 = 𝑓 |Δ𝑔

and (𝑔𝛼)𝛼∈A𝑔 is the tree analysis induced by ( 𝑓𝛼)𝛼∈A.
Observe that, by construction, g satisfies (i) and (iii). To see that it also satisfies (ii), we show by

induction that for every 1 ≤ 𝑘 ≤ ℎ(A)∑
𝛼∈A𝑘\𝐵𝑘

𝑓𝛼 (𝑥)
𝑤 𝑓 ( 𝑓𝛼)

> 𝑓 (𝑥) −
𝑘∑
𝑖=1

𝜀𝑖 . (7.3)

This indeed proves (ii), since the left-hand side of (7.3) for 𝑘 = ℎ(A) is equal to 𝑔(𝑥). We now prove (7.3)
by induction. Assume that the inequality holds for some 1 ≤ 𝑘 < ℎ(A). Then, for every 𝛼 ∈ A𝑘 \ 𝐵𝑘 ,
we have
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𝑓𝛼 (𝑥) =
∑

𝛽∈𝑆 (𝛼)∩𝐺𝑘+1

𝑓𝛽 (𝑥)
𝑤( 𝑓𝛼)

+
∑

𝛽∈𝑆 (𝛼)\𝐺𝑘+1

𝑓𝛽 (𝑥)
𝑤( 𝑓𝛼)

and ∑
𝛼∈A𝑘\𝐵𝑘

∑
𝛽∈𝑆 (𝛼)\𝐺𝑘+1

𝑓𝛽 (𝑥)
𝑤 𝑓 ( 𝑓𝛼)𝑤( 𝑓𝛼)

=
∑

𝛼∈A𝑘\𝐵𝑘

∑
𝛽∈𝑆 (𝛼)\𝐺𝑘+1

𝑓𝛽 (𝑥)
𝑤 𝑓 ( 𝑓𝛽)

< 𝜀𝑘+1.

Hence ∑
𝛼∈A𝑘\𝐵𝑘

∑
𝛽∈𝑆 (𝛼)∩𝐺𝑘+1

𝑓𝛽 (𝑥)
𝑤 𝑓 ( 𝑓𝛼)𝑤( 𝑓𝛼)

=
∑

𝛼∈A𝑘\𝐵𝑘

𝑓𝛼 (𝑥)
𝑤 𝑓 ( 𝑓𝛼)

−
∑

𝛼∈A𝑘\𝐵𝑘

∑
𝛽∈𝑆 (𝛼)\𝐺𝑘+1

𝑓𝛽 (𝑥)
𝑤 𝑓 ( 𝑓𝛽)

> ( 𝑓 (𝑥) −
𝑘∑
𝑖=1

𝜀𝑖) − 𝜀𝑘+1

which, along with the previous inequality, proves the desired result since

{𝛽 ∈ A : 𝛽 ∈ 𝑆(𝑎) \ 𝐺𝑘+1 for some 𝛼 ∈ A𝑘 \ 𝐵𝑘 } = A𝑘+1 \ 𝐵𝑘+1.

�

Lemma 7.4. Let (𝑥1
𝑗 ) 𝑗 , . . . , (𝑥𝑙𝑗 ) 𝑗 be normalised block sequences in 𝔛 (1)awi. For every 𝜀 > 0, there exists

an 𝐿 ∈ [N]∞ and a 𝑔𝑖𝑗 ∈ 𝑊(1) with 𝑔𝑖𝑗 (𝑥𝑖𝑗 ) > 1 − 𝜀, 1 ≤ 𝑖 ≤ 𝑙 and 𝑗 ∈ 𝐿, such that for any choice of
1 ≤ 𝑖 𝑗 ≤ 𝑙, the sequence (𝑔𝑖 𝑗𝑗 ) 𝑗∈𝐿 is AWI.

Proof. Let (𝜀𝑘 )∞𝑘=0 be a sequence of positive reals, such that
∑∞

𝑘=0 𝜀𝑘 < 𝜀/2. For every 1 ≤ 𝑖 ≤ 𝑙
and 𝑗 ∈ N, pick an 𝑓 𝑖𝑗 ∈ 𝑊(1) and a tree analysis ( 𝑓 𝑖𝑗 ,𝛼)𝛼∈A𝑖

𝑗
of 𝑓 𝑖𝑗 , such that 𝑓 𝑖𝑗 (𝑥𝑖𝑗 ) > 1 − 𝜀/2 and

𝑓 𝑖𝑗 ,𝛼 (𝑥𝑖𝑗 ) > 0 for every 𝛼 ∈ A𝑖
𝑗 . For 1 ≤ 𝑖 ≤ 𝑙 and 𝑗 ∈ N, we set 𝑡𝑖𝑗 = 𝑓 𝑖𝑗 and 𝑡𝑖𝑗 ,𝛼 = 𝑓 𝑖𝑗 ,𝛼, 𝛼 ∈ A𝑖

𝑗 . We
will choose, by induction, an 𝐿 ∈ [N]∞ and, for every 1 ≤ 𝑖 ≤ 𝑙, 𝑗 ∈ 𝐿 and 𝑘 ∈ N, a subset 𝐺𝑘,𝑖

𝑗 of
{𝛼 ∈ A𝑖

𝑗 : |𝛼 | = 𝑘} satisfying the following conditions. For 𝑘 ∈ N, we set 𝐿>𝑘 = { 𝑗 ∈ 𝐿 : 𝑗 > 𝑘}.

(i) For every 𝑗 ∈ 𝐿, there is a partition {𝑡𝑖𝑗 : 𝑖 = 1, . . . , 𝑙} = 𝐶0
1, 𝑗 ∪ 𝐶0

2, 𝑗 , such that ∪ 𝑗∈𝐿𝐶
0
1, 𝑗 is

essentially incomparable and (𝐶0
2, 𝑗 ) 𝑗∈𝐿 is pairwise weight incomparable.

(ii) For every 1 ≤ 𝑖 ≤ 𝑙, 𝑘 ∈ N and 𝑗 ∈ 𝐿>𝑘 , there is a partition 𝐺𝑘,𝑖
𝑗 = 𝐺𝑘,𝑖

1, 𝑗 ∪ 𝐺𝑘,𝑖
2, 𝑗 , such

that for any choice of 1 ≤ 𝑖 𝑗 ≤ 𝑙, ∪ 𝑗∈𝐿>𝑘 {𝑡
𝑖 𝑗
𝑗 ,𝛼 : 𝛼 ∈ 𝐺

𝑘,𝑖 𝑗
1, 𝑗 } is essentially incomparable and

({𝑡𝑖 𝑗𝑗 ,𝛼 : 𝛼 ∈ 𝐺𝑘,𝑖 𝑗
2, 𝑗 }) 𝑗∈𝐿>𝑘 is pairwise weight incomparable.

(iii) For every 𝑖 = 1, . . . , 𝑙, 𝑗 ∈ 𝐿 and 𝑘 ∈ N with 𝑘 ≤ ℎ(A𝑖
𝑗 )∑

𝛼∈𝐺𝑘,𝑖
𝑗

𝑤 𝑓 𝑖
𝑗
( 𝑓 𝑖𝑗 ,𝛼)−1 𝑓 𝑖𝑗 ,𝛼 (𝑥𝑖𝑗 ) > 𝑓 𝑖𝑗 (𝑥𝑖𝑗 ) − 𝜀𝑘 .

Observe then that (iii) and an application of the previous lemma yield, for every 1 ≤ 𝑖 ≤ 𝑙 and 𝑗 ∈ 𝐿, a
functional 𝑔𝑖𝑗 ∈ 𝑊(1) , such that

𝑔𝑖𝑗 (𝑥𝑖𝑗 ) > 𝑓 𝑖𝑗 (𝑥𝑖𝑗 ) −
∞∑
𝑘=1

𝜀𝑘 > 1 − 𝜀.
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Fix a choice of 1 ≤ 𝑖 𝑗 ≤ 𝑙, 𝑗 ∈ 𝐿. Then, (i) implies that {𝑡𝑖 𝑗𝑗 : 𝑗 ∈ 𝐿} ∩ (∪ 𝑗∈𝐿𝐶
0
1, 𝑗 ) is essentially

incomparable, and that {𝑡𝑖 𝑗𝑗 : 𝑗 ∈ 𝐿} ∩ (∪ 𝑗∈𝐿𝐶
0
2, 𝑗 ) is weight incomparable. Finally, (ii) and Lemma 7.3

(iii) yield that, for every 1 ≤ 𝑖 ≤ 𝑙, 𝑘 ∈ N and 𝑗 ∈ 𝐿>𝑘 , there is a partition

{𝑔̄𝑖 𝑗𝑗 ,𝛼 : 𝑎 ∈ A𝑖 𝑗
𝑗 and |𝛼 | = 𝑘} = 𝐶

𝑘,𝑖 𝑗
1, 𝑗 ∪ 𝐶

𝑘,𝑖 𝑗
2, 𝑗 ,

such that ∪ 𝑗∈𝐿>𝑘𝐶
𝑘,𝑖 𝑗
1, 𝑗 is essentially incomparable and (𝐶𝑘,𝑖 𝑗

2, 𝑗 ) 𝑗∈𝐿>𝑘 is pairwise weight incomparable.
Hence, 𝑔𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑙 and 𝑗 ∈ 𝐿 satisfy the desired conditions.

To obtain L, let us first assume that sup𝑖, 𝑗 ℎ(A𝑖
𝑗 ) = +∞ (if sup𝑖, 𝑗 ℎ(A𝑖

𝑗 ) < +∞, then a finite version of
the same proof works). Moreover, passing to a subsequence, we may further assume that max𝑖 ℎ(A𝑖

𝑗 ) > 𝑘

whenever 𝑗 > 𝑘 , for 𝑗 , 𝑘 ∈ N. Define, for each 𝑗 ∈ N, the measure 𝜇0
𝑗 on T̃ given by

𝜇0
𝑗 =

𝑙∑
𝑖=1

𝑓 𝑖𝑗 (𝑥𝑖𝑗 )𝛿𝑡𝑖𝑗 .

Applying Lemma 7.2, we obtain an 𝐿0 ∈ [N]∞, such that, for every 𝑗 ∈ 𝐿0, there exist disjoint subsets
𝐺0

1, 𝑗 and 𝐺0
2, 𝑗 of supp(𝜇0

𝑗 ) so that the following hold.

(𝛼0) 𝜇0
𝑗 (T̃ \ 𝐺0

1, 𝑗 ∪ 𝐺
0
2, 𝑗 ) < 𝜀0 for every 𝑗 ∈ 𝐿0.

(𝛽0) Define 𝐶0
1, 𝑗 = {𝑡 ∈ T : 𝑡 ∈ 𝐺0

1, 𝑗 } for 𝑗 ∈ 𝐿0. Then ∪ 𝑗∈𝐿0𝐶
0
1, 𝑗 is essentially incomparable.

(𝛾0) Define 𝐶0
2, 𝑗 = {𝑡 ∈ T : 𝑡 ∈ 𝐺0

2, 𝑗 } for 𝑗 ∈ 𝐿0. Then the sequence (𝐶0
2, 𝑗 ) 𝑗∈𝐿0 is pairwise weight

incomparable.

Note that (𝛼0) implies that supp(𝜇0
𝑗 ) = 𝐺0

1, 𝑗 ∪ 𝐺0
2, 𝑗 since 𝑓 𝑖𝑗 (𝑥𝑖𝑗 ) > 1 − 𝜀/2, that is, {𝑡𝑖𝑗 : 𝑖 =

1, . . . , 𝑙} = 𝐶0
1, 𝑗 ∪ 𝐶0

2, 𝑗 . We proceed by induction on N. Suppose we have chosen 𝐿0, . . . , 𝐿𝑘−1 and
𝐺0

1, 𝑗0 , 𝐺
0
2, 𝑗0 , . . . , 𝐺

𝑘−1
1, 𝑗𝑘−1

, 𝐺𝑘−1
2, 𝑗𝑘−1

for some 𝑘 ∈ N and every 𝑗𝑖 ∈ 𝐿𝑖 , for 𝑖 = 0, . . . , 𝑘 − 1. Set 𝐿0
𝑘 = { 𝑗 ∈

𝐿𝑘−1 : ℎ(A𝑖
𝑗 ) < 𝑘 for all 1 ≤ 𝑖 ≤ 𝑙}. Then, for each 𝑗 ∈ 𝐿𝑘−1 \ 𝐿0

𝑘 , define the following measure on T̃

𝜇𝑘
𝑗 =

𝑙∑
𝑖=1

∑
𝛼∈A𝑖

𝑗

|𝛼 |=𝑘

𝑓 𝑖𝑗 ,𝛼 (𝑥𝑖𝑗 )
𝑤 𝑓 𝑖

𝑗
( 𝑓 𝑖𝑗 ,𝛼)

𝛿𝑡𝑖𝑗,𝛼
.

Again, applying Lemma 7.2 yields an 𝐿1
𝑘 ∈ [𝐿𝑘−1\𝐿0

𝑘 ]
∞ and disjoint subsets𝐺𝑘

1, 𝑗 and𝐺𝑘
2, 𝑗 of supp(𝜇𝑘

𝑗 ),
𝑗 ∈ 𝐿1

𝑘 , such that

(𝛼𝑘 ) 𝜇𝑘
𝑗 (T̃ \ 𝐺𝑘

1, 𝑗 ∪ 𝐺
𝑘
2, 𝑗 ) < 𝜀𝑘 for every 𝑗 ∈ 𝐿1

𝑘 ,
(𝛽𝑘 ) {𝑡 ∈ T : 𝑡 ∈ ∪ 𝑗∈𝐿1

𝑘
𝐺𝑘

1, 𝑗 } is essentially incomparable and
(𝛾𝑘 ) the sequence ({𝑡 : 𝑡 ∈ 𝐺𝑘

2, 𝑗 }) 𝑗∈𝐿1
𝑘

is pairwise weight incomparable.

Then, set 𝐿𝑘 = 𝐿0
𝑘 ∪ 𝐿1

𝑘 and 𝐺𝑘
𝑖, 𝑗 = {𝛼 ∈ A𝑖

𝑗 : |𝛼 | = 𝑘}, for 1 ≤ 𝑖 ≤ 𝑙 and 𝑗 ∈ 𝐿0
𝑘 . Finally, choose L

to be a diagonalisation of (𝐿𝑘 )𝑘 , that is, 𝐿(𝑘) ∈ 𝐿𝑘 for 𝑘 ∈ N. Observe that (𝛽𝑘 ) and (𝛾𝑘 ) imply (ii),
while (𝛼𝑘 ) implies (iii). �

Proposition 7.5. The space𝔛 (1)awi admits a unique asymptotic model, with respect toℱ𝑏 (𝔛 (1)awi), equivalent
to the unit vector basis of ℓ1.

Proof. Equivalently, we will show that 𝔛 (1)awi admits ℓ1 as a uniformly unique joint spreading model with
respect to ℱ𝑏 (𝔛 (1)awi). To this end, let (𝑥1

𝑗 ) 𝑗 , . . . , (𝑥𝑙𝑗 ) 𝑗 be normalised block sequences in 𝔛 (1)awi. Passing to
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a subsequence, we may assume that supp(𝑥𝑖1𝑗 ) < supp(𝑥𝑖2𝑗+1) for every 𝑖1, 𝑖2 = 1, . . . , 𝑙 and 𝑗 ∈ N. Fix
𝜀 > 0 and apply Lemma 7.4 to obtain an 𝐿 ∈ [N]∞ and a functional 𝑔𝑖𝑗 ∈ 𝑊(1) , for each 1 ≤ 𝑖 ≤ 𝑙 and
𝑗 ∈ 𝐿, such that

(i) supp(𝑔𝑖𝑗 ) ⊂ supp(𝑥𝑖𝑗 ) and 𝑔𝑖𝑗 (𝑥𝑖𝑗 ) > 1 − 𝜀, for all 1 ≤ 𝑖 ≤ 𝑙 and 𝑗 ∈ 𝐿 and
(ii) the sequence (𝑔𝑖 𝑗𝑗 ) 𝑗∈𝐿 is AWI for any choice of 1 ≤ 𝑖 𝑗 ≤ 𝑙, 𝑗 ∈ 𝐿.

Fix a choice of 1 ≤ 𝑖 𝑗 ≤ 𝑙, 𝑗 ∈ 𝐿, and let 𝑘 ∈ N and 𝐹 ⊂ 𝐿 with 𝐿(𝑘) ≤ 𝐹 and |𝐹 | ≤ 𝑘 . Note
that (𝑔𝑖 𝑗𝑗 ) 𝑗∈𝐹 is an S1-admissible sequence in 𝑊(1) and is in fact AWI, as implied by (ii). Hence,
𝑔 = 1/2

∑
𝑗∈𝐹 𝑔

𝑖 𝑗
𝑗 is in 𝑊(1) , and, thus, for any choice of scalars (𝑎 𝑗 ) 𝑗∈𝐹 , we calculate�����∑

𝑗∈𝐹
𝑎 𝑗𝑥

𝑖 𝑗
𝑗

����� ≥
�����∑
𝑗∈𝐹
|𝑎 𝑗 |𝑥

𝑖 𝑗
𝑗

����� ≥ 𝑔

(∑
𝑗∈𝐹
|𝑎 𝑗 |𝑥

𝑖 𝑗
𝑗

)
≥ 1 − 𝜀

2

∑
𝑗∈𝐹
|𝑎 𝑗 |.

Then, Lemma 3.4 yields the desired result. �

8. Standard exact pairs

We pass to the study of certain basic properties of Mixed Tsirelson spaces which have appeared in
several previous papers (see [5] and [9]). The goal of this section is to define the standard exact pairs
in 𝔛 (1)awi and present their basic properties. In the next section, we will use the existence of sequences of
such pairs in any block subspace of 𝔛 (1)awi to show that it is not Asymptotic ℓ1. The proof of the properties
of the standard exact pairs are based on the definition of an auxiliary space and the basic inequality
which are given in Appendix A.

8.1. Special convex combinations

We return our attention to special convex combinations, defined in Section 2.3. These types of vectors
are used to prove the presence of standard exact pairs in every block subspace of 𝔛 (1)awi.

Remark 8.1. Let (𝑥𝑘 )𝑘 be a block sequence in 𝔛 (1)awi. Then Proposition 2.4 implies that, for every 𝜀 > 0,
𝑛, 𝑚 ∈ N and 𝑀 ∈ [N]∞, there exist 𝐹 ⊂ 𝑀 with 𝑚 ≤ 𝐹 and scalars (𝑎𝑘 )𝑘∈𝐹 , such that

∑
𝑘∈𝐹 𝑎𝑘𝑥𝑘 is

a (𝑛, 𝜀)-s.c.c.

Lemma 8.2. Let (𝑥𝑘 )𝑘 be a normalised block sequence in𝔛 (1)awi. For every 𝜀 > 0, there exists 𝑀 ∈ [N]∞,
such that for every 𝑗 ∈ N, every S𝑛 𝑗 -admissible sequence (𝑥𝑘 )𝑘∈𝐹 with 𝐹 ⊂ 𝑀 and any choice of scalars
(𝑎𝑘 )𝑘∈𝐹 , we have ���∑

𝑘∈𝐹
𝑎𝑘𝑥𝑘

��� ≥ 1 − 𝜀
𝑚 𝑗

∑
𝑘∈𝐹
|𝑎𝑘 |.

Proof. Apply Lemma 7.4 to obtain 𝑀 ∈ [N]∞ and an 𝑓𝑘 ∈ 𝑊(1) with 𝑓𝑘 (𝑥𝑘 ) > 1 − 𝜀, for each 𝑘 ∈ 𝑀 ,
such that ( 𝑓𝑘 )𝑘∈𝑀 is AWI. We may also assume that supp( 𝑓𝑘 ) ⊂ supp(𝑥𝑘 ), 𝑘 ∈ 𝑀 . Pick an 𝐹 ⊂ 𝑀 , such
that (𝑥𝑘 )𝑘∈𝐹 is 𝑆𝑛 𝑗 -admissible. Then, ( 𝑓𝑘 )𝑘∈𝐹 is S𝑛 𝑗 -admissible and clearly ( 𝑓𝑘 )𝑘∈𝐹 is AWI. Hence,
𝑓 = 𝑚 𝑗

−1∑
𝑘∈𝐹 𝑓𝑘 is in 𝑊(1) , and we calculate

‖
∑
𝑘∈𝐹

𝑎𝑘𝑥𝑘 ‖ = ‖
∑
𝑘∈𝐹
|𝑎𝑘 |𝑥𝑘 ‖ ≥ 𝑓 (

∑
𝑘∈𝐹
|𝑎𝑘 |𝑥𝑘 ) ≥

1 − 𝜀
𝑚 𝑗

∑
𝑘∈𝐹
|𝑎𝑘 |.

�
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Proposition 8.3. Let Y be a block subspace of 𝔛 (1)awi. Then, for every 𝑛 ∈ N and 𝜀 > 0, there exists a
(𝑛, 𝜀)-s.c.c. 𝑥 =

∑𝑚
𝑘=1 𝑐𝑘𝑥𝑘 with ‖𝑥‖ > 1/2, where 𝑥1, . . . , 𝑥𝑚 are in the unit ball of Y.

Proof. Towards a contradiction, assume that the conclusion is false. That is, for any S𝑛-admissible
sequence (𝑥𝑘 )𝑚𝑘=1 in the unit ball of Y, such that the vector 𝑥 =

∑𝑚
𝑘=1 𝑐𝑘𝑥𝑘 is a (𝑛, 𝜀)-s.c.c., we have that

‖𝑥‖ ≤ 1/2.
Start with a normalised block sequence (𝑥0

𝑘 )𝑘 in Y and pass to a subsequence satisfying the conclusion
of Lemma 8.2 for 𝜀 = 1/2. Using the choice of the sequence (𝑚𝑘 )𝑘 , we may find 𝑗 ∈ N, such that

2𝑛 𝑗/𝑛 ≥ 4𝑚 𝑗 . (8.1)

Set 𝑑 = �𝑛 𝑗/𝑛� and, using Remark 8.1, define inductively block sequences (𝑥𝑖𝑘 )𝑘 , 𝑖 = 1, . . . , 𝑑, such
that for each 𝑖 = 1, . . . , 𝑑 and 𝑘 ∈ N, there is an S𝑛-admissible sequence (𝑥𝑖−1

𝑚 )𝑚∈𝐹 𝑖
𝑘

and coefficients
(𝑐𝑖𝑚)𝑚∈𝐹 𝑖

𝑘
, such that 𝑥𝑖𝑘 =

∑
𝑚∈𝐹 𝑖

𝑘
𝑐𝑖𝑚𝑥

𝑖−1
𝑚 is a (𝑛, 𝜀)-s.c.c. and 𝑥𝑖𝑘 = 2𝑥𝑖𝑘 .

Using the negation of the desired conclusion, it is straightforward to check by induction that ‖𝑥𝑖𝑘 ‖ ≤ 1
for every 𝑖 = 1, . . . , 𝑑 and 𝑘 ∈ N. Moreover, note that each vector 𝑥𝑖𝑘 can be written in the form

𝑥𝑖𝑘 = 2𝑖
∑

𝑚∈𝐺𝑖
𝑘

𝑑𝑖𝑚𝑥
0
𝑚

for some subset 𝐺𝑖
𝑘 of N, such that (𝑥0

𝑚)𝑚∈𝐺𝑖
𝑘

is S𝑛𝑖-admissible and
∑

𝑚∈𝐺𝑖
𝑘
𝑑𝑖𝑚 = 1. As the sequence

(𝑥0
𝑘 )𝑘 satisfies the conclusion of Lemma 8.2, we deduce that

1 ≥ ‖𝑥𝑑1 ‖ ≥
2𝑑

2𝑚 𝑗
>

2𝑛 𝑗/𝑛

4𝑚 𝑗
,

since 𝑛 𝑗 − 𝑛 < 𝑑𝑛, and this contradicts (8.1). �

Proposition 8.4. Let 𝑥 =
∑𝑚

𝑖=1 𝑐𝑖𝑥𝑖 be a (𝑛, 𝜀)-s.c.c. in 𝔛 (1)awi with ‖𝑥𝑖 ‖ ≤ 1, 𝑖 = 1, . . . , 𝑚, and 𝑓 ∈ W(1)
with 𝑤( 𝑓 ) = 𝑚 𝑗 , such that 𝑛 𝑗 < 𝑛. Then we have

| 𝑓 (𝑥) | ≤ 1 + 2𝜀𝑤( 𝑓 )
𝑤( 𝑓 ) .

Proof. Let 𝑓 = 𝑚−1
𝑗

∑𝑑
𝑙=1 𝑓𝑙 , where ( 𝑓𝑙)𝑑𝑙=1 is an S𝑛 𝑗 -admissible AWI sequence in 𝑊(1) , and define

𝐴 =
{
𝑖 ∈ {1, . . . , 𝑚} : there is at most one 1 ≤ 𝑙 ≤ 𝑑,

such that range(𝑥𝑖) ∩ range( 𝑓𝑙) ≠ ∅
}
.

Note that | 𝑓 (𝑥𝑖) | ≤ 1/𝑚 𝑗 , for each 𝑖 ∈ 𝐴, and, hence




 𝑓
(

𝑚∑
𝑖=1

𝑐𝑖𝑥𝑖

)




 ≤ 1
𝑚 𝑗

∑
𝑖∈𝐴

𝑐𝑖 +
∑
𝑖∉𝐴

𝑐𝑖 . (8.2)

Set 𝐵 = {1, . . . , 𝑚} \ 𝐴. The spreading property of the Schreier families implies that the vec-
tors (𝑥𝑖)𝑖∈𝐵\{min(𝐵) } are S𝑛 𝑗 -admissible. Moreover, the singleton {𝑥min 𝐵} is S0-admissible. Thus,∑

𝑖∈𝐵\min 𝐵 𝑐𝑖 < 𝜀 and 𝑐min 𝐵 < 𝜀. Applying this to (8.2) immediately yields the desired conclusion. �

8.2. Rapidly increasing sequences

These sequences are a standard tool in the study of HI and related constructions. They are the building
blocks of standard exact pairs.
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Definition 8.5. Let𝐶 ≥ 1, I be an interval ofN and ( 𝑗𝑘 )𝑘∈𝐼 be a strictly increasing sequence of naturals.
A block sequence (𝑥𝑘 )𝑘∈𝐼 in 𝔛 (1)awi is called a (𝐶, ( 𝑗𝑘 )𝑘∈𝐼 )-rapidly increasing sequence (RIS) if

(i) ‖𝑥𝑘 ‖ ≤ 𝐶 for every 𝑘 ∈ 𝐼,
(ii) max supp(𝑥𝑘−1) ≤

√
𝑚 𝑗𝑘 for every 𝑘 ∈ 𝐼 \ {min 𝐼} and

(iii) | 𝑓 (𝑥𝑘 ) | ≤ 𝐶/𝑤( 𝑓 ) for every 𝑘 ∈ 𝐼 and 𝑓 ∈ 𝑊(1) with 𝑤( 𝑓 ) < 𝑚 𝑗𝑘 .

Proposition 8.6. Let Y be a block subspace of 𝔛 (1)awi and 𝐶 > 2. Then there exists a strictly increasing
sequence ( 𝑗𝑘 )𝑘∈N of naturals and a (𝐶, ( 𝑗𝑘 )𝑘∈N)-RIS (𝑥𝑘 )𝑘∈N in Y, such that 1/2 < ‖𝑥𝑘 ‖ ≤ 1, for all
𝑘 ∈ N.

Proof. We define the sequences ( 𝑗𝑘 )𝑘 and (𝑥𝑘 )𝑘 inductively as follows. First, choose 𝑥1, using Propo-
sition 8.3, to be a (𝑛1, 𝑚

−2
1 )-s.c.c. 𝑥1 in Y with 1/2 < ‖𝑥1‖ ≤ 1, and set 𝑗1 = 1. Suppose that we

have chosen 𝑗1, . . . , 𝑗𝑘−1 and 𝑥1, . . . , 𝑥𝑘−1 for some 𝑘 ∈ N. Then, choose 𝑗𝑘 ∈ N with 𝑗𝑘 > 𝑗𝑘−1
and √𝑚 𝑗𝑘 > max supp(𝑥𝑘−1), and use Proposition 8.3 to find an (𝑛 𝑗𝑘 , 𝑚

−2
𝑗𝑘
)-s.c.c. 𝑥𝑘 in Y with

min supp(𝑥𝑘 ) > max supp(𝑥𝑘−1) and 1/2 < ‖𝑥𝑘 ‖ ≤ 1. Proposition 8.4 then yields that 𝑥𝑘 satisfies
(iii) of Definition 8.5, and, hence, we conclude that the sequences ( 𝑗𝑘 )𝑘∈N and (𝑥𝑘 )𝑘∈N satisfy the
desired conclusion. �

8.3. Standard exact pairs

We are ready to define standard exact pairs and prove their existence in every block subspace of 𝔛 (1)awi.

Definition 8.7. Let 𝐶 ≥ 1 and 𝑗0 ∈ N. We call a pair (𝑥, 𝑓 ), for 𝑥 ∈ 𝔛 (1)awi and 𝑓 ∈ 𝑊(1) , a (𝐶, 𝑚 𝑗0)-SEP
if there exists a (𝐶, ( 𝑗𝑘 )𝑛𝑘=1)-RIS (𝑥𝑘 )𝑛𝑘=1 with 𝑗0 < 𝑗1, such that

(i) 𝑥 = 𝑚 𝑗0

∑𝑛
𝑘=1 𝑎𝑘𝑥𝑘 and

∑𝑛
𝑘=1 𝑎𝑘𝑥𝑘 is a (𝑛 𝑗0 , 𝑚

−2
𝑗0
)-s.c.c.,

(ii) 𝑥𝑘 is a (𝑛 𝑗𝑘 , 𝑚
−2
𝑗𝑘
)-s.c.c. and 1/2 < ‖𝑥𝑘 ‖ ≤ 1 for every 𝑘 = 1, . . . , 𝑛 and

(iii) 𝑓 = 𝑚−1
𝑗0

∑𝑛
𝑘=1 𝑓𝑘 , where ( 𝑓𝑘 )𝑛𝑘=1 is an 𝑆𝑛 𝑗0

-admissible AWI sequence in 𝑊(1) with 𝑓𝑘 (𝑥𝑘 ) > 1/4,
for every 𝑘 = 1, . . . , 𝑛.

The following proposition is an immediate consequence of the definition of standard exact pairs, the
existence of seminormalised rapidly increasing sequences in every block subspace of 𝔛 (1)awi, as follows
from Proposition 8.6 and Lemma 7.4 applied to a sequence.

Proposition 8.8. Let Y be a block subspace of 𝔛 (1)awi. Then, for every 𝐶 > 2 and 𝑗0, 𝑚 ∈ N, there exists a
(𝐶, 𝑚 𝑗0 )-SEP (𝑥, 𝑓 ) with 𝑥 ∈ 𝑌 and 𝑚 ≤ min supp(𝑥).

Proof. Applying Proposition 8.6, we obtain a (𝐶, ( 𝑗𝑘 )𝑘∈N)-RIS (𝑥𝑘 )𝑘∈N in Y, such that 𝑚 ≤
minsupp(𝑥1) and 1/2 < ‖𝑥𝑘 ‖ ≤ 1, 𝑘 ∈ N, with 𝑗0 < 𝑗1. Then, applying Lemma 7.4 for 𝜀 = 1/2 and
passing to a subsequence, we obtain an AWI sequence ( 𝑓𝑘 )𝑘∈N in𝑊(1) so that 𝑓𝑘 (𝑥𝑘 ) > (1−𝜀)/2 = 1/4,
𝑘 ∈ N. We may assume that supp( 𝑓𝑘 ) ⊂ supp(𝑥𝑘 ), 𝑘 ∈ N. Remark 8.1 then yields the desired SEP. �

Definition 8.9. Let I be an interval of N and (𝑥𝑘 )𝑘∈𝐼 be a block sequence in 𝔛 (1)awi. For every 𝑓 ∈ 𝑊(1) ,
we define the sets 𝐼 𝑓 = {𝑘 ∈ 𝐼 : supp(𝑥𝑘 ) ⊂ range( 𝑓 )}, 𝐽 𝑓 = 𝐼 𝑓 ∩ {𝑘 ∈ 𝐼 : supp(𝑥𝑘 ) ∩ supp( 𝑓 ) ≠ ∅}
and 𝐼 ′𝑓 = {𝑘 ∈ 𝐼 : supp(𝑥𝑘 ) ∩ range( 𝑓 ) ≠ ∅}.

If (𝑥, 𝑓 ) is a (𝐶, 𝑚 𝑗0 )-SEP and 𝑔 ∈ 𝑊(1) , then when we write 𝐼 𝑥𝑔 or 𝐽𝑥𝑔 we mean 𝐼𝑔 or 𝐽𝑔, respectively,
with respect to the sequence (𝑥𝑘 )𝑛𝑘=1 as in Definition 8.7.

Remark 8.10. Let I be an interval of N and (𝑥𝑘 )𝑘∈𝐼 be a block sequence in 𝔛 (1)awi. Then, for every
𝑓 ∈ 𝑊(1) , the following hold.

(i) 𝐼 𝑓 is a finite subset of I and #{𝑘 ∈ 𝐼 : supp(𝑥𝑘 ) ∩ range( 𝑓 ) ≠ ∅} ≤ #𝐼 𝑓 + 2.
(ii) If 𝑓 = 𝑚−1

𝑗

∑𝑑
𝑙=1 𝑓𝑙 , then ∪𝑑𝑙=1𝐼 𝑓𝑙 ⊂ 𝐼 𝑓 .

(iii) If there exists 𝑘 ∈ 𝐼, such that range( 𝑓 ) � range(𝑥𝑘 ), then 𝐼 𝑓 = ∅.

https://doi.org/10.1017/fms.2022.101 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.101


Forum of Mathematics, Sigma 25

Proposition 8.11. For every (𝐶, 𝑚 𝑗0)-SEP (𝑥, 𝑓 ), the following hold.

(i) For every 𝑔 ∈ 𝑊(1)



𝑔(𝑥)

 ≤ ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2𝐶
𝑚 𝑗0

, 𝑔 = ±𝑒∗𝑖 for some 𝑖 ∈ N
2𝐶 [ 1

𝑚 𝑗0
+ 𝑚 𝑗0

𝑤 (𝑔) ], 𝑤(𝑔) ≥ 𝑚 𝑗0

6𝐶
𝑤 (𝑔) , 𝑤(𝑔) < 𝑚 𝑗0

(ii) If 𝑔 ∈ 𝑊(1) with a tree analysis (𝑔𝛼)𝛼∈A, such that 𝐼 𝑥𝑔𝛼
= ∅ for all 𝛼 ∈ A with 𝑤(𝑔𝛼) = 𝑚 𝑗0 , then

|𝑔(𝑥) | ≤ 6𝐶
𝑚 𝑗0

.

For the proof, we refer the reader to Appendix A.

Remark 8.12. Proposition 8.11 (ii) remains valid if we replace 𝐼 𝑥𝑔𝛼
with 𝐽𝑥𝑔𝛼

.

Corollary 8.13. The space 𝔛 (1)awi is reflexive.

Proof. The unit vector basis of 𝑐00 (N) forms an unconditional Schauder basis for 𝔛 (1)awi, and it is also
boundedly complete since the space admits a unique ℓ1 asymptotic model. Hence, it suffices to show
that 𝔛 (1)awi does not contain ℓ1. To this end, suppose that 𝔛 (1)awi contains ℓ1 and, in particular, from James’s
ℓ1 distortion theorem [22], there is a normalised block sequence (𝑥𝑘 )𝑘 in 𝔛 (1)awi, such that for 0 < 𝜀 < 1/2����� 𝑛∑

𝑘=1
𝑎𝑘𝑥𝑘

����� ≥ (1 − 𝜀) 𝑛∑
𝑘=1
|𝑎𝑘 |

for all 𝑛 ∈ N and any choice of scalars 𝑎1, . . . , 𝑎𝑛. Choose 𝑗0 ∈ N, such that 12/𝑚 𝑗0 < 1 − 𝜀. Let also
𝑦1 < . . . < 𝑦𝑛, where each 𝑦𝑖 is a special convex combination of (𝑥𝑘 )𝑘 for all 𝑖 = 1, . . . , 𝑛, such
that 𝑥 = 𝑚 𝑗0

∑𝑛
𝑖=1 𝑎𝑘 𝑦𝑘 is a (3, 𝑚 𝑗0)-SEP (note that ‖𝑦𝑖 ‖ ≥ 1 − 𝜀 > 1/2 for all 𝑖 = 1, . . . , 𝑛). Then,

Proposition 8.11 yields that ‖𝑥‖ ≤ 12 and, since ‖𝑥‖ = 𝑚 𝑗0 ‖
∑𝑛

𝑖=1 𝑎𝑘 𝑦𝑘 ‖ ≥ 𝑚 𝑗0 (1 − 𝜀), we derive a
contradiction. �

9. The space 𝔛 (1)awi does not contain asymptotic ℓ1 subspaces

In this last section of the first part of the paper, we show that 𝔛 (1)awi does not contain Asymptotic ℓ1
subspaces. It is worth pointing out that unlike the constructions in [8], we are not able to prove the
existence of a block tree which is either 𝑐0 or ℓ𝑝, for some 1 < 𝑝 < ∞, of height greater or equal to 𝜔,
in any subspace of 𝔛 (1)awi.

Definition 9.1. We say that a sequence (𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛), with 𝑥𝑖 ∈ 𝔛 (1)awi and 𝑓𝑖 ∈ 𝑊(1) for 𝑖 =
1, . . . , 𝑛, is a dependent sequence if each pair (𝑥𝑖 , 𝑓𝑖) is a (3, 𝑚 𝑗𝑖 )-SEP and 𝑓1 <T . . . <T 𝑓𝑛.

Definition 9.2. Given a dependent sequence (𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛), for 𝑓 ∈ 𝑊(1) with a tree analysis
( 𝑓𝛼)𝛼∈A and each 1 ≤ 𝑘 ≤ ℎ(A) define

𝐷𝑘
𝑓 =

{
𝛼 ∈ A : |𝛼 | = 𝑘 and there exists 1 ≤ 𝑖 ≤ 𝑛, such that

𝑤( 𝑓𝛼) = 𝑤( 𝑓𝑖) and supp( 𝑓𝛼) ∩ range( 𝑓𝑖) ≠ ∅
}

and

𝐸 𝑘
𝑓 =

{
𝑖 ∈ {1, . . . , 𝑛} : 𝑤( 𝑓𝛼) = 𝑤( 𝑓𝑖) for some 𝛼 ∈ 𝐷𝑘

𝑓

}
.
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Remark 9.3. Let 𝑓1, . . . , 𝑓𝑛, 𝑓 be as in the above definition and fix 𝑘 ∈ N. If 𝑓𝛼 and 𝑓𝛽 are such that
𝛼, 𝛽 ∈ 𝐷𝑘

𝑓 and 𝑤( 𝑓𝛼) < 𝑤( 𝑓𝛽), then 𝑤( 𝑓𝛼) <W 𝑤( 𝑓𝛽) since 𝑤( 𝑓𝛼) = 𝑤( 𝑓𝑖1) and 𝑤( 𝑓𝛽) = 𝑤( 𝑓𝑖2)
for some 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑛. This implies that { 𝑓𝛼, 𝑓𝛽} is not essentially incomparable. Indeed, if it were
essentially incomparable, then 𝑓𝑖1 < 𝑓𝛼, and this contradicts the fact that supp( 𝑓𝛼) ∩ range( 𝑓𝑖1) ≠ ∅ in
the definition of 𝐷𝑘

𝑓 .

Proposition 9.4. Let (𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛) be a dependent sequence and 𝑓 ∈ 𝑊(1) . Then #𝐸 𝑘
𝑓 ≤ 𝑒𝑘! for

every 𝑘 ∈ N (where e denotes Euler’s number).

Proof. Denote by (𝑎𝑘 )𝑘 the sequence satisfying the recurrence relation 𝑎1 = 2 and 𝑎𝑘 = 𝑘𝑎𝑘−1 + 1,
𝑘 ≥ 2. We will show that #𝐸 𝑘

𝑓 ≤ 𝑎𝑘 for every 𝑘 ∈ N. Note that this yields the desired result since
𝑎𝑘 =

∑𝑘
𝑗=0 𝑘!/ 𝑗! ≤ 𝑒𝑘!.

Let ( 𝑓𝛼)𝛼∈A be a tree analysis of f. We proceed by induction. For 𝑘 = 1, the definition of 𝑊(1) , and
in particular, that of AWI sequences, yields a partition

{ 𝑓𝛼 : 𝛼 ∈ A and |𝛼 | = 1} = 𝐶0
1 ∪ 𝐶

0
2 ,

such that 𝐶0
1 is essentially incomparable and 𝐶0

2 is weight incomparable. Then, note that Remark 9.3
implies that

#{𝑤( 𝑓𝛼) : 𝛼 ∈ 𝐷1
𝑓 and 𝑓𝛼 ∈ 𝐶0

1 } ≤ 1. (9.1)

Moreover, since 𝐶0
2 is weight incomparable, we have that

#{𝑤( 𝑓𝛼) : 𝛼 ∈ 𝐷1
𝑓 and 𝑓𝛼 ∈ 𝐶0

2 } ≤ 1, (9.2)

and, hence, (9.1) and (9.2) imply that #𝐸1
𝑓 ≤ 2.

Assume that for some 𝑘 ∈ N, we have #𝐸 𝑘
𝑔 ≤ 𝑎𝑘 for all functionals g in 𝑊(1) , with respect

to the dependent sequence (𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛). We will show that #𝐸 𝑘+1
𝑓 ≤ 𝑎𝑘+1. Let {𝛼 ∈ A :

|𝛼 | = 1} = {𝛼1, . . . , 𝛼𝑑}, where 𝑓𝛼1 < . . . < 𝑓𝛼𝑑 and consider the tree analyses ( 𝑓𝛼)𝛼∈A𝑖 , where
A𝑖 = {𝛼 ∈ A : 𝛼𝑖 ≤ 𝛼} for 1 ≤ 𝑖 ≤ 𝑑. The fact that f is in 𝑊(1) , that is, ( 𝑓𝛼𝑖 )𝑑𝑖=1 is AWI, implies that
there exist partitions

{ 𝑓𝛼 : 𝛼 ∈ A𝑖 with |𝛼 | = 𝑘} = 𝐶𝑘
1,𝑖 ∪ 𝐶

𝑘
2,𝑖 , 𝑖 ≥ 𝑘 + 1,

such that ∪𝑑𝑖=𝑘+1𝐶
𝑘
1,𝑖 is essentially incomparable and (𝐶𝑘

2,𝑖)
𝑑
𝑖=𝑘+1 is pairwise weight incomparable. Here,

|𝛼 | is the height of 𝛼 in the tree A𝑖 . Then, using Remark 9.3 and arguing as in the previous paragraph,
we have

#{𝑤( 𝑓𝛼) : 𝛼 ∈ 𝐷𝑘+1
𝑓 and 𝛼 ∈ ∪𝑑𝑖=𝑘+1𝐶

𝑘
1,𝑖} ≤ 1. (9.3)

Moreover, it follows easily that 𝐷𝑘+1
𝑓 ∩ 𝐶𝑘

2,𝑖0 ≠ ∅ for at most one 𝑘 < 𝑖0 ≤ 𝑑, and, thus, if such an 𝑖0
exists, we have

# ∪𝑑𝑖=𝑘+1,𝑖≠𝑖0 𝐸
𝑘
𝑓𝛼𝑖
≤ 1.

If no such 𝑖0 exists, we have

# ∪𝑑𝑖=𝑘+1 𝐸
𝑘
𝑓𝛼𝑖
≤ 1.
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In any case, since the inductive hypothesis yields that #𝐸 𝑘
𝑓𝛼𝑖0
≤ 𝑎𝑘 , we have

# ∪𝑑𝑖=𝑘+1 𝐸
𝑘
𝑓𝛼𝑖
≤ 𝑎𝑘 + 1.

Note that the inductive hypothesis also implies that

#𝐸 𝑘
𝑓𝛼𝑖
≤ 𝑎𝑘 , 1 ≤ 𝑖 ≤ 𝑘,

and, hence, since 𝐸 𝑘+1
𝑓 = ∪𝑑𝑖=1𝐸

𝑘
𝑓𝛼𝑖

, we conclude that

#𝐸 𝑘+1
𝑓 ≤

𝑘∑
𝑖=1

#𝐸 𝑘
𝑓𝛼𝑖
+ # ∪𝑑𝑖=𝑘+1 𝐸

𝑘
𝑓𝛼𝑖
≤ 𝑘𝑎𝑘 + 𝑎𝑘 + 1.

This completes the inductive step and the proof. �

Lemma 9.5. Let (𝑥, 𝑓0) be a (3, 𝑚 𝑗0)-SEP. If f is a functional in 𝑊(1) with a tree analysis ( 𝑓𝛼)𝛼∈A and

B = {𝛼 ∈ A : 𝑤( 𝑓𝛼) = 𝑚 𝑗0 and 𝑤( 𝑓𝛽) ≠ 𝑚 𝑗0 for every 𝛽 < 𝛼},

then there exists a partition range( 𝑓 ) = 𝐺 ∪ 𝐷, such that

(i) | 𝑓 |𝐷 (𝑥) | ≤ 18/𝑚 𝑗0 and
(ii) |

∑
𝛼∈B 𝑓𝛼 |𝐺 (𝑥) | ≤ 3.

Proof. Let 𝑥 = 𝑚 𝑗0

∑𝑛
𝑘=1 𝑎𝑘𝑥𝑘 for some (3, ( 𝑗𝑘 )𝑛𝑘=1)-RIS (𝑥𝑘 )𝑛𝑘=1, and set

𝐼 𝑥𝑓𝛼 = {𝑘 ∈ {1, . . . , 𝑛} : supp(𝑥𝑘 ) ⊂ range( 𝑓𝛼)}, 𝛼 ∈ A.

For every 𝛼 ∈ B and every 𝑘 ∈ 𝐼 𝑥𝑓𝛼 , Definition 8.5 (iii) implies that

| 𝑓𝛼 (𝑎𝑘𝑥𝑘 ) | ≤
3𝑎𝑘
𝑚 𝑗0

(9.4)

since 𝑗0 < 𝑗𝑘 . Set 𝐺 = ∪{range(𝑥𝑘 ) : 𝑘 ∈ ∪𝛼∈B 𝐼 𝑥𝑓𝛼 } and 𝐷 = range( 𝑓 ) \ 𝐺. Then, (9.4) immediately
yields that G satisfies (ii). To see that D satisfies (i), note that if 𝛼 ∈ A with 𝑤( 𝑓𝛼) = 𝑚 𝑗0 and
supp( 𝑓𝛼) ∩ 𝐷 = ∅, there exists 𝛽 ∈ B, such that 𝛽 ≤ 𝛼 and 𝐽𝑥

𝑓𝛼 |𝐷 ⊂ 𝐽𝑥
𝑓𝛽 |𝐷 . However, it is easy to see

that 𝐽𝑥
𝑓𝛽 |𝐷 = ∅, and thus 𝐽𝑥

𝑓𝛼 |𝐷 = ∅. Hence, (i) follows from Proposition 8.11 (ii) and Remark 8.12. �

Proposition 9.6. For every 0 < 𝑐 < 1, there exists 𝑑 ∈ N, such that for any dependent sequence
(𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛) where 𝑑 ≤ 𝑛, and any 𝑓 ∈ 𝑊(1) , we have




 𝑓 ( 1𝑛 𝑛∑

𝑖=1
𝑥𝑖)






 < 𝑐.

Proof. First, pick an 𝑚 ∈ N, such that 3/2𝑚 < 𝑐, and fix a dependent sequence (𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛).
Let 𝑓 ∈ 𝑊(1) with ( 𝑓𝛼)𝛼∈A be a tree analysis of f, and set

𝐺 = ∪{range(𝑥𝑘 ) ∩ range( 𝑓𝛼) : 𝑘 ∈ {1, . . . , 𝑛} and 𝛼 ∈ A with 𝑤( 𝑓𝛼) = 𝑤( 𝑓𝑘 )}

and 𝐻 = N \𝐺. Let 𝑔 = 𝑓 |𝐺 and ℎ = 𝑓 |𝐻 . Then, consider the tree analysis (𝑔𝛼)𝛼∈A𝑔 for g, induced by
( 𝑓𝛼)𝛼∈A, and define

B1
𝑘 = {𝛼 ∈ A𝑔 : |𝑎 | ≤ 𝑚, 𝑤( 𝑓𝛼) = 𝑤( 𝑓𝑘 ) and 𝑤( 𝑓𝛽) ≠ 𝑤( 𝑓𝑘 ) for all 𝛽 < 𝛼 in A𝑔}
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for 𝑘 = 1, . . . , 𝑛 and

𝐺1 = ∪𝑛𝑘=1 ∪ {supp(𝑔𝛼) ∩ supp(𝑥𝑘 ) : 𝛼 ∈ B1
𝑘 }.

Let 𝑔1 = 𝑔 |𝐺1 and 𝑔2 = 𝑔 |N\𝐺1 . Recall Remark 5.8 (ii), and observe that for 𝑘 = 1, . . . , 𝑛,

𝑔1(𝑥𝑘 ) =
∑
𝛼∈B1

𝑘

1
𝑤𝑔 (𝑔𝛼)

𝑔𝛼 (𝑥𝑘 ) and 𝑔2 (𝑥𝑘 ) =
∑
𝛼∈B2

𝑘

1
𝑤𝑔 (𝑔𝛼)

𝑔𝛼 (𝑥𝑘 ),

where

B2
𝑘 = {𝛼 ∈ A𝑔 : |𝑎 | > 𝑚, 𝑤( 𝑓𝛼) = 𝑤( 𝑓𝑘 ) and 𝑤( 𝑓𝛽) ≠ 𝑤( 𝑓𝑘 ) for all 𝛽 < 𝛼 in A𝑔}. (9.5)

Consider the tree analysis (ℎ𝛼)𝛼∈Aℎ of h, induced by ( 𝑓𝛼)𝛼∈A. Note that, for every 𝛼 in Aℎ and
𝑘 = 1, . . . , 𝑛, such that 𝑤(ℎ𝛼) = 𝑤( 𝑓𝑘 ), we have range(ℎ𝛼) ∩ range(𝑥𝑘 ) = ∅, and, hence, 𝑘 ∉ 𝐼ℎ𝛼 .
Proposition 8.11 (ii) then implies that for every 𝑘 = 1, . . . , 𝑛

|ℎ(𝑥𝑘 ) | ≤
18

𝑤( 𝑓𝑘 )
.

Thus, we obtain

|ℎ( 1
𝑛

𝑛∑
𝑘=1

𝑥𝑘 ) | ≤
18
𝑛
. (9.6)

Next, we apply Lemma 9.5 for 𝑔2 and each (𝑥𝑘 , 𝑓𝑘 ), 𝑘 = 1, . . . , 𝑛, to obtain partitions supp(𝑔2) ∩
supp(𝑥𝑘 ) = 𝐺2

𝑘 ∪ 𝐷2
𝑘 , such that

(a) |𝑔 |𝐷2
𝑘
(𝑥𝑘 ) | ≤ 18/𝑤( 𝑓𝑘 ) and

(b) |
∑

𝛽∈B2
𝑘
𝑔𝛽 |𝐺2

𝑘
(𝑥𝑘 ) | ≤ 3.

Then, (b) and Remark 5.8 (iii) yield that

|𝑔2 |𝐺2
𝑘
(𝑥𝑘 ) | = |

∑
𝛽∈B2

𝑘

𝑤𝑔 (𝑔𝛽)−1𝑔𝛽 |𝐺2
𝑘
(𝑥𝑘 ) | ≤

∑
𝛽∈B2

𝑘

2−𝑚 |𝑔𝛽 |𝐺2
𝑘
(𝑥𝑘 ) | ≤

3
2𝑚

,

and, hence, using (a) we obtain

|𝑔2 (
1
𝑛

𝑛∑
𝑘=1

𝑥𝑘 ) | ≤
1
𝑛

𝑛∑
𝑘=1

18
𝑤( 𝑓𝑘 )

+ 3
2𝑚
≤ 18

𝑛
+ 3

2𝑚
. (9.7)

Finally, observe that it follows immediately from Proposition 9.4 that

{𝑘 ∈ {1, . . . , 𝑛} : 𝑔1 (𝑥𝑘 ) ≠ 0} ≤ ℓ = 𝑒
𝑚∑
𝑘=1

𝑘!,

and, thus, by Proposition 8.11 (i),

|𝑔1 (
1
𝑛

𝑛∑
𝑘=1

𝑥𝑘 ) | ≤
ℓ

𝑛
6. (9.8)
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Then for d, such that

36 + 6ℓ
𝑑

+ 3
2𝑚

< 𝑐,

(9.6), (9.7) and (9.8) yield the desired result. �

Proposition 9.7. The space 𝔛 (1)awi does not contain Asymptotic ℓ1 subspaces.

Proof. Suppose that 𝔛 (1)awi contains a 𝐶 ′-Asymptotic ℓ1 subspace Y. By standard arguments, for every
𝜀 > 0, there exists a block subspace of Y which is 𝐶 ′ + 𝜀 Asymptotic ℓ1. Passing to a further block
subspace, we may assume that Y is block and C-asymptotic ℓ1 in the sense of [25], that is, Y admits
a Schauder basis (𝑦𝑖)𝑖 , which is a block subsequence of (𝑒𝑖)𝑖 , such that for every 𝑛 ∈ N, there exists
𝑁 (𝑛) ∈ N with the property that whenever 𝑁 (𝑛) ≤ 𝑥1 ≤ . . . ≤ 𝑥𝑛 are blocks of (𝑦𝑖)𝑖 then

1
𝐶

𝑛∑
𝑘=1
‖𝑥𝑘 ‖ ≤

����� 𝑛∑
𝑘=1

𝑥𝑘

�����. (9.9)

Applying Proposition 9.6 for 𝑐 = 1/2𝐶, we obtain 𝑛 ∈ N, such that for any dependent sequence
(𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛), we have ���𝑥1 + · · · + 𝑥𝑛

𝑛

��� < 1
2𝐶

.

We apply Proposition 8.8 iteratively to construct a dependent sequence in Y as follows: We find 𝑥1 ∈ 𝑌
with 𝑁 (𝑛) ≤ supp(𝑥1) ∪ supp( 𝑓1), 𝑤( 𝑓1) = 𝜎(0̄), and set 𝑓1 = ( 𝑓1, 𝜎(0̄)), and for 1 < 𝑘 ≤ 𝑛, we
find 𝑥𝑘 ∈ 𝑌 with 𝑤( 𝑓𝑘 ) = 𝜎( 𝑓𝑘−1), and set 𝑓𝑘 = ( 𝑓𝑘 , 𝜎( 𝑓𝑘−1)). Note that the sequence ( 𝑓𝑘 )𝑛𝑘=1 is
S1-admissible since 𝑛 ≤ 𝑁 (𝑛). Then, (9.9) implies that���𝑥1 + · · · + 𝑥𝑛

𝑛

��� ≥ 1
2𝐶

,

since ‖𝑥𝑘 ‖ > 1/2 for each 𝑘 = 1, . . . , 𝑛 as follows from Definition 8.7, which is a contradiction. �

Question 9.8. Let 𝜉 < 𝜔1 and 1 < 𝑝 ≤ ∞. Does there exist a Banach space X with a Schauder basis
admitting a unique ℓ1 asymptotic model, such that any block subspace of X contains an ℓ𝑝 (or 𝑐0 if
𝑝 = ∞) block tree of height greater or equal to 𝜔𝜉 ?

PART II. The case of ℓ𝒑for1 < 𝒑 < ∞
10. Introduction

In this second part, we treat the case of 1 < 𝑝 < ∞ and, in particular, that of 𝑝 = 2. The cases where
𝑝 ≠ 2 follow as an easy modification. The definition of 𝔛 (2)awi and the the proofs of its properties are
for the most part almost identical to those of 𝔛 (1)awi. We start with the 2-convexification of a Mixed
Tsirelson space and define a countably branching well-founded tree on its norming set. Then, employing
the notion of asymptotically weakly incomparable constraints, we define the norming set 𝑊(2) of 𝔛 (2)awi.
To prove that the space admits ℓ2 as a unique asymptotic model, we use Lemma 3.4 by first applying
the combinatorial results of Section 4, in a manner similar to that of Section 7, and prove lower ℓ2
estimates for arrays of block sequences of 𝔛 (2)awi by passing to a subsequence. Then, a result similar to
[16, Proposition 2.9] shows that any block sequence of 𝔛 (2)awi also has an upper ℓ2 estimate. Finally, to
prove that 𝔛 (2)awi does not contain Asymptotic ℓ2 subspaces, just like in Part I, we show that any block
subspace contains a vector, that is an ℓ2-average of standard exact pairs, with arbitrarily small norm.
The existence of standard exact pairs follows again from similar arguments, while the proof that these
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are strong exact pairs requires a variant of the basic inequality, which we include in Appendix B. In
particular, for a block subspace Y and 0 < 𝑐 < 1, we show that there is a sequence of standard exact
pairs (𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛) in Y, such that 𝑓1 ≤T . . . ≤T 𝑓𝑛 and ‖𝑥1 + · · · + 𝑥𝑛‖ < 𝑐

√
𝑛. To prove this,

we consider the evaluation of an f in 𝑊(2) on such a sequence and partition f into 𝑔 + ℎ and then g into
𝑔1 + 𝑔2 as in the proof of Proposition 9.6. An upper bound for h follows from the fact that standard
exact pairs are strong exact pairs, while that of 𝑔1 is, again, an immediate consequence of Lemma 9.4.
Finally, for 𝑔2, unlike the case of Part I, we cannot estimate its action on each 𝑥𝑘 , 𝑘 = 1, . . . , 𝑛 using
similar arguments. Instead, we need to carefully apply the Cauchy-Schwarz inequality to provide an
upper estimate for its action on 𝑥1 + · · · + 𝑥𝑘 . We demonstrate this in Lemma 14.2.

11. The space 𝔛 (2)awi

Define a pair of strictly increasing sequences of natural numbers (𝑚 𝑗 ) 𝑗 , (𝑛 𝑗 ) 𝑗 as follows:

𝑚1 = 4 𝑛1 = 1
𝑚 𝑗+1 = 𝑚

𝑚 𝑗

𝑗 𝑛 𝑗+1 = 22𝑚 𝑗+1𝑛 𝑗 .

Definition 11.1. Let 𝑉(2) denote the minimal subset of 𝑐00 (N) that

(i) contains 0 and all ±𝑒∗𝑗 , 𝑗 ∈ N and
(ii) whenever 𝑓1 < . . . < 𝑓𝑛 is anS𝑛 𝑗 -admissible sequence in𝑉(2) \{0} for some 𝑗 ∈ N and 𝜆1, . . . , 𝜆𝑛 ∈
Q with

∑𝑛
𝑖=1 𝜆

2
𝑖 ≤ 1, then 𝑚−1

𝑗

∑𝑛
𝑖=1 𝜆𝑖 𝑓𝑖 is in 𝑉(2) .

The notion of the weight 𝑤( 𝑓 ) of a functional f in 𝑉(2) is identical to that in Section 5. We also
define, in a similar manner, the notion of tree analysis of a functional in 𝑉(2) , taking into account the
ℓ2 version of the (𝑚 𝑗 ,S𝑛 𝑗 )-operations, in the definition of 𝑉(2) . Again, it follows from minimality that
every f in 𝑉(2) \ {0} admits a tree analysis and finally, for a functional f in 𝑉(2) \ {0} admitting a tree
analysis ( 𝑓𝛼)𝛼∈A, we define 𝑤 𝑓 ( 𝑓𝛼) as in Definition 5.5.

Definition 11.2. Let 𝑓 ∈ 𝑉(2) with a tree analysis ( 𝑓𝛼)𝛼∈A.

(i) Let 𝛽 ∈ A with 𝛽 ≠ ∅. Then, if 𝛼 ∈ A is the immediate predecessor of 𝛽, we will denote by 𝜆𝛽 the
coefficient of 𝑓𝛽 in the normal form of 𝑓𝛼, that is,

𝑓𝛼 = 𝑚−1
𝑗

∑
𝛽∈𝑆 (𝛼)

𝜆𝛽 𝑓𝛽 ,

where 𝑆(𝛼) denotes the set of immediate successors of 𝛼 and 𝑤( 𝑓𝛼) = 𝑚 𝑗 .
(ii) For each 𝛽 ∈ A, we define

𝜆 𝑓 ,𝛽 =

{∏
𝛼<𝛽 𝜆𝛼, 𝛽 ≠ ∅

1.

Remark 11.3. Let 𝑓 ∈ 𝑉(2) with a tree analysis ( 𝑓𝛼)𝛼∈A.

(i) For every 𝑘 = 1, . . . , ℎ(A)

𝑓 =
∑
|𝑎 |=𝑘

𝜆 𝑓 ,𝛼

𝑤 𝑓 ( 𝑓𝛼)
𝑓𝛼 .

(ii) If B is a maximal pairwise incomparable subset of A, then

𝑓 =
∑
𝛼∈B

𝜆 𝑓 ,𝛼

𝑤 𝑓 ( 𝑓𝛼)
𝑓𝛼 .
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(iii) For every 𝛼 ∈ A, whose immediate predecessor 𝛽 in A (if one exists) satisfies 𝑓𝛽 ∉ {±𝑒∗𝑗 : 𝑗 ∈ N},
we have 𝑤 𝑓 ( 𝑓𝛼) ≥ 4 |𝛼 | .

(iv) If B is a pairwise incomparable subset of A, then∑
𝛼∈B

𝜆2
𝑓 ,𝛼 ≤ 1.

Next, as in Section 5, we define a tree T on the set of all pairs ( 𝑓 , 𝑤( 𝑓 )), for 𝑓 ∈ 𝑉(2) and 𝑤( 𝑓 )
a weight of f and consider the trees T̃ , W and W̃ , which are induced by T and defined identically
to those in Section 5. These are countably branching well-founded trees. Finally, let us recall all three
incomparability notions of Definition 5.12, as well as the notion of asymptotically weakly incomparable
sequences in Definition 5.14.

Definition 11.4. Let 𝑊(2) be the smallest subset of 𝑉(2) that is symmetric, contains the singletons and
whenever 𝑗 ∈ N, 𝑓1 < . . . < 𝑓𝑛 is an S𝑛 𝑗 -admissible AWI sequence in 𝑉(2) and 𝜆1, . . . , 𝜆𝑛 ∈ Q with∑𝑛

𝑖=1 𝜆
2
𝑖 ≤ 1, then 𝑚−1

𝑗

∑𝑛
𝑖=1 𝜆𝑖 𝑓𝑖 ∈ 𝑊(2) . Denote by 𝔛 (2)awi completion of 𝑐00 (N) with respect to the norm

induced by 𝑊(2) .

Remark 11.5.

(i) The norming set 𝑊(2) can be defined as an increasing union of a sequence (𝑊𝑛
(2) )
∞
𝑛=0, where

𝑊0
(2) = {±𝑒

∗
𝑖 : 𝑖 ∈ N} and

𝑊𝑛+1
(2) = 𝑊𝑛

(2) ∪
{ 1
𝑚 𝑗

𝑚∑
𝑖=1

𝜆𝑖 𝑓𝑖 : 𝑗 , 𝑚 ∈ N, (𝜆𝑖)𝑚𝑖=1 ⊂ Q with
𝑚∑
𝑖=1

𝜆2
𝑖 ≤ 1 and

( 𝑓𝑖)𝑚𝑖=1 is an S𝑛 𝑗 -admissible AWI sequence in 𝑊𝑛
(2)

}
.

(ii) Proposition 5.16 yields that the standard unit vector basis of 𝑐00 (N) forms an 1-unconditional
Schauder basis for 𝔛 (2)awi.

The following lemma is a result similar to [16, Proposition 2.9], in which we prove upper ℓ2 estimates
for block sequences of 𝔛 (2)awi.

Proposition 11.6. For any block sequence (𝑥𝑘 )𝑘 in𝔛 (2)awi, any finite subset F of the naturals and 𝑓 ∈ 𝑊(2) ,
we have

| 𝑓 (
∑
𝑘∈𝐹

𝑥𝑘 ) | ≤ 2
√

2(
∑
𝑘∈𝐹
‖𝑥𝑘 ‖2)

1
2 .

Proof. Recall from Remark 11.5 that𝑊(2) = ∪∞𝑛=0𝑊
𝑛
(2) . We will show by induction that for every 𝑛 ∈ N,

every 𝑓 ∈ 𝑊𝑛
(2) and any finite subset F of N, we have

| 𝑓 (
∑
𝑘∈𝐹

𝑥𝑘 ) | ≤ 2
√

2(
∑
𝑘∈𝐹
‖𝑥𝑘 ‖2)

1
2 .

Clearly, this holds for all 𝑓 ∈ 𝑊0
(2) . Hence, let us assume that it also holds for all functionals in 𝑊𝑛

(2)
for some 𝑛 ≥ 0 and fix 𝑓 ∈ 𝑊𝑛+1

(2) . Then 𝑓 = 𝑚−1
𝑗

∑𝑚
=1 𝜆𝑖 𝑓𝑖 , where ( 𝑓𝑖)𝑚𝑖=1 is an 𝑆𝑛 𝑗 -admissible AWI

sequence in 𝑊𝑛
(2) and 𝜆1, . . . , 𝜆𝑚 ∈ Q with

∑𝑚
𝑖=1 𝜆

2
𝑖 ≤ 1. Define

𝐼𝑘 = {𝑖 ∈ {1, . . . , 𝑚} : supp(𝑥𝑘 ) ∩ range( 𝑓𝑖) ≠ ∅}, 𝑘 ∈ 𝐹,
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𝐹1 = {𝑘 ∈ 𝐹 : #𝐼𝑘 ≤ 1} and 𝐹2 = 𝐹 \ 𝐹1. We also define

𝐾𝑖 = {𝑘 ∈ 𝐹1 : supp(𝑥𝑘 ) ∩ range( 𝑓𝑖) ≠ ∅}, 𝑖 = 1, . . . , 𝑚.

Note that if 𝑘 ∈ 𝐹1, then 𝑘 ∈ 𝐾𝑖 for at most one 𝑖 ∈ {1, . . . , 𝑚}. Thus, using the inductive hypothesis
and the Cauchy-Schwarz inequality, we have

| 𝑓 (
∑
𝑘∈𝐹1

𝑥𝑘 ) | = 𝑚−1
𝑗 |

𝑚∑
𝑖=1

𝜆𝑖 𝑓𝑖 (
∑
𝑘∈𝐾𝑖

𝑥𝑘 ) |

≤ 2
√

2
𝑚 𝑗

𝑚∑
𝑖=1
|𝜆𝑖 | (

∑
𝑘∈𝐾𝑖

‖𝑥𝑘 ‖2)
1
2

≤
√

2(
𝑚∑
𝑖=1

𝜆2
𝑖 )

1
2 (

𝑚∑
𝑖=1

∑
𝑘∈𝐾𝑖

‖𝑥𝑘 ‖2)
1
2

≤
√

2(
∑
𝑘∈𝐹1

‖𝑥𝑘 ‖2)
1
2 . (11.1)

Moreover, for each 𝑘 ∈ 𝐹2, it is easy to see that

|𝑚−1
𝑗

∑
𝑖∈𝐼𝑘

𝜆𝑖 𝑓𝑖 (𝑥𝑘 ) | ≤ (
∑
𝑖∈𝐼𝑘

𝜆2
𝑖 )

1
2 ‖𝑥𝑘 ‖. (11.2)

Observe that for each 𝑖 ∈ {1, . . . , 𝑚} there are at most two k’s in 𝐹2, such that supp(𝑥𝑘 ) ∩ range( 𝑓𝑖) ≠ ∅
and, thus, applying the Cauchy-Schwarz inequality and (11.2), we have

| 𝑓 (
∑
𝑘∈𝐹2

𝑥𝑘 ) | = 𝑚−1
𝑗 |

𝑚∑
𝑖=1

𝜆𝑖 𝑓𝑖 (
∑
𝑘∈𝐹2

𝑥𝑘 ) | = 𝑚−1
𝑗 |
∑
𝑘∈𝐹2

∑
𝑖∈𝐼𝑘

𝜆𝑖 𝑓𝑖 (𝑥𝑘 ) |

≤
∑
𝑘∈𝐹2

(
∑
𝑖∈𝐼𝑘

𝜆2
𝑖 )

1
2 ‖𝑥𝑘 ‖

≤ (
∑
𝑘∈𝐹2

∑
𝑖∈𝐼𝑘

𝜆2
𝑖 )

1
2 (
∑
𝑘∈𝐹2

‖𝑥𝑘 ‖2)
1
2

≤
√

2(
∑
𝑘∈𝐹2

‖𝑥𝑘 ‖2)
1
2 . (11.3)

Finally, (11.1) and (11.3) yield the desired result. �

12. Asymptotic models generated by block sequences of 𝔛 (2)awi

In this section, we prove that 𝔛 (2)awi admits ℓ2 as a unique asymptotic model. This follows as an easy
modification of the results of Section 7, which yield lower ℓ2 estimates, combined with the upper ℓ2
estimates of Proposition 11.6. Let us first recall Proposition 7.2, and note that this in fact holds for the
trees defined in the previous section. Applying this, we obtain the following variant of Lemma 7.3, using
similar arguments.

Lemma 12.1. Let 𝑥 ∈ 𝔛 (2)awi, 𝑓 ∈ 𝑊(2) and a tree analysis ( 𝑓𝛼)𝛼∈A of f, such that 𝑓𝛼 (𝑥) > 0 for every
𝛼 ∈ A. Let 𝜀1, . . . , 𝜀ℎ (A) be positive reals and 𝐺𝑖 be a subset of {𝛼 ∈ A : |𝛼 | = 𝑖}, such that∑

𝛼∈𝐺𝑖

𝜆 𝑓 ,𝛼

𝑤 𝑓 ( 𝑓𝛼)
𝑓𝛼 (𝑥) > 𝑓 (𝑥) − 𝜀𝑖
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for 𝑖 = 1, . . . , ℎ(A), and 𝑓 (𝑥) >
∑ℎ (A)

𝑖=1 𝜀𝑖 . Then, there exists a 𝑔 ∈ 𝑊(2) , such that

(i) supp(𝑔) ⊂ supp( 𝑓 ) and 𝑤(𝑔) = 𝑤( 𝑓 ).
(ii) 𝑔(𝑥) > 𝑓 (𝑥) −

∑ℎ (A)
𝑖=1 𝜀𝑖 .

(iii) g has a tree analysis (𝑔𝛼)𝛼∈A𝑔 , such that, for every 𝛼 ∈ A𝑔 with |𝛼 | = 𝑖, there is a unique 𝛽 ∈ 𝐺𝑖 ,
such that supp(𝑔𝛼) ⊂ supp( 𝑓𝛽) and 𝑤(𝑔𝛼) = 𝑤( 𝑓𝛽).

Lemma 12.2. Let (𝑥1
𝑗 ) 𝑗 , . . . , (𝑥𝑙𝑗 ) 𝑗 be normalised block sequences in 𝔛 (2)awi. For every 𝜀 > 0, there exists

an 𝐿 ∈ [N]∞ and a 𝑔𝑖𝑗 ∈ 𝑊(2) with 𝑔𝑖𝑗 (𝑥𝑖𝑗 ) > 1 − 𝜀 for 𝑖 = 1, . . . , 𝑙 and 𝑗 ∈ 𝐿, such that for any choice
of 𝑖 𝑗 ∈ {1, . . . , 𝑙}, the sequence (𝑔𝑖 𝑗𝑗 ) 𝑗∈𝐿 is AWI.

Proof. The proof is similar to that of Proposition 7.4 with 𝜇𝑘
𝑗 defined as

𝜇𝑘
𝑗 =

𝑙∑
𝑖=1

∑
𝛼∈A𝑖

𝑗

|𝛼 |=𝑘

𝜆 𝑓 𝑖
𝑗 ,𝛼

𝑓 𝑖𝑗 ,𝛼 (𝑥𝑖𝑗 )

𝑤 𝑓 𝑖
𝑗
( 𝑓 𝑖𝑗 ,𝛼)

𝛿 𝑓 𝑖
𝑗,𝛼

and applying Lemma 12.1 instead of 7.3. �

Proposition 12.3. The space 𝔛 (2)awi admits a unique asymptotic model, with respect to ℱ𝑏 (𝔛 (2)awi), equiv-
alent to the unit vector basis of ℓ2.

Proof. Let (𝑥1
𝑗 ) 𝑗 , . . . , (𝑥𝑙𝑗 ) 𝑗 be normalised block sequences in 𝔛 (2)awi. Working as in the proof of Propo-

sition 7.5 applying Lemma 12.2, we have that, passing to a subsequence, for any choice of 1 ≤ 𝑖 𝑗 ≤ 𝑙
for 𝑗 ∈ N, any 𝐹 ∈ S1 and any choice of scalars (𝑎 𝑗 ) 𝑗∈𝐹 , there is a functional 𝑔 ∈ 𝑊(2) with

𝑔 =
1
4

∑
𝑗∈𝐹

𝑎 𝑗

(
∑

𝑗∈𝐹 𝑎2
𝑗 )

1
2
𝑔
𝑖 𝑗
𝑗 ,

such that 𝑔𝑖 𝑗𝑗 (𝑥
𝑖 𝑗
𝑗 ) ≥ 1 − 𝜀 and supp(𝑔𝑖 𝑗𝑗 ) ⊂ supp(𝑥𝑖 𝑗𝑗 ) for 𝑗 ∈ 𝐹. Hence, we calculate�����∑

𝑗∈𝐹
𝑎 𝑗𝑥

𝑖 𝑗
𝑚 𝑗

����� ≥ 𝑔

(∑
𝑗∈𝐹

𝑎 𝑗𝑥
𝑖 𝑗
𝑚 𝑗

)
≥ 1 − 𝜀

4
(
∑
𝑗∈𝐹

𝑎2
𝑗 )

1
2 . (12.1)

Moreover, Lemma 11.6 implies that �����∑
𝑗∈𝐹

𝑎 𝑗𝑥
𝑖 𝑗
𝑗

����� ≤ 2
√

2(
∑
𝑗∈𝐹

𝑎2
𝑗 )

1
2 . (12.2)

Thus, (12.1), (12.2) and Lemma 3.4 yield the desired result. �

By the above proposition, 𝔛 (2)awi cannot contain an isomorphic copy of 𝑐0 or ℓ1. Therefore, by James’s
theorem [21] for spaces with an unconditional basis, we obtain the following.

Proposition 12.4. The space 𝔛 (2)awi is reflexive.

13. Standard exact pairs

The definitions of rapidly increasing sequences and standard exact pairs in 𝔛 (2)awi are almost identical to
these in Part I. We show that standard exact pairs are in fact strong exact pairs. This requires a variant
of the basic inequality that we prove in Appendix B.
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Definition 13.1. Let 𝐶 ≥ 1, 𝐼 ⊂ N be an interval and ( 𝑗𝑘 )𝑘∈𝐼 be a strictly increasing sequence of
naturals. A block sequence (𝑥𝑘 )𝑘∈𝐼 in 𝔛 (2)awi is called a (𝐶, ( 𝑗𝑘 )𝑘∈𝐼 )-rapidly increasing sequence (RIS) if

(i) ‖𝑥𝑘 ‖ ≤ 𝐶 for every 𝑘 ∈ 𝐼,
(ii) max supp(𝑥𝑘−1) ≤

√
𝑚 𝑗𝑘 for every 𝑘 ∈ 𝐼 \ {min 𝐼} and

(iii) | 𝑓 (𝑥𝑘 ) | ≤ 𝐶/𝑤( 𝑓 ) for every 𝑘 ∈ 𝐼 and 𝑓 ∈ 𝑊(2) with 𝑤( 𝑓 ) < 𝑚 𝑗𝑘 .

Definition 13.2. Let𝐶 ≥ 1 and 𝑗0 ∈ N. We call a pair (𝑥, 𝑓 ) where 𝑥 ∈ 𝔛 (2)awi and 𝑓 ∈ 𝑊(2) , a (2, 𝐶, 𝑚 𝑗0)-
standard exact pair if there exists a (𝐶, ( 𝑗𝑘 )𝑛𝑘=1)-RIS (𝑥𝑘 )𝑛𝑘=1 with 𝑗0 < 𝑗1, such that

(i) 𝑥 = 𝑚 𝑗0

∑𝑛
𝑘=1 𝑎𝑘𝑥𝑘 and

∑𝑛
𝑘=1 𝑎𝑘𝑥𝑘 is a (2, 𝑛 𝑗0 , 𝑚

−4
𝑗0
)-s.c.c.,

(ii) 𝑥𝑘 is a (2, 𝑛 𝑗𝑘 , 𝑚
−4
𝑗𝑘
)-s.c.c. and 1/2 < ‖𝑥𝑘 ‖ ≤ 1 for every 𝑘 = 1, . . . , 𝑛,

(iii) 𝑓 = 𝑚−1
𝑗0

∑𝑛
𝑘=1 𝑓𝑘 , where 𝑓𝑘 ∈ 𝑊(2) with 𝑓𝑘 (𝑥𝑘 ) > 1/4 for every 𝑘 = 1, . . . , 𝑛

(iv) and 48𝑚2
𝑗0
≤ min supp(𝑥).

The proof of the following proposition, which demonstrates the existence of SEPs in any subspace
of 𝔛 (2)awi, is similar to that of Proposition 8.8 and is omitted.

Proposition 13.3. Let Y be a block subspace of 𝔛 (2)awi. Then, for every 𝐶 > 2 and 𝑗0, 𝑚 ∈ N, there exists
a (2, 𝐶, 𝑚 𝑗0 )-SEP (𝑥, 𝑓 ) with 𝑥 ∈ 𝑌 and 𝑚 ≤ min supp(𝑥).
Proposition 13.4. For every (2, 𝐶, 𝑚 𝑗0 )-SEP (𝑥, 𝑓 ), the following hold.

(i) For every 𝑔 ∈ 𝑊(2) 

𝑔(𝑥)

 ≤ {4𝐶 [ 1
𝑚 𝑗0
+ 𝑚 𝑗0

𝑤 (𝑔) ], 𝑤(𝑔) ≥ 𝑚 𝑗0

12𝐶
𝑤 (𝑔) , 𝑤(𝑔) < 𝑚 𝑗0 .

(ii) If 𝑔 ∈ 𝑊(2) with a tree analysis (𝑔𝛼)𝛼∈A, such that 𝐼 𝑥𝑔𝛼
= ∅ for all 𝛼 ∈ A with 𝑤(𝑔𝛼) = 𝑚 𝑗0 , then

|𝑔(𝑥) | ≤ 6𝐶
𝑚 𝑗0

.

Proof. We refer the reader to Appendix B. �

14. The space 𝔛 (2)awi does not contain asymptotic ℓ2 subspaces

To prove that 𝔛 (2)awi contains no asymptotic ℓ2 subspaces, we use almost identical arguments as in the case
of𝔛 (1)awi. In particular, we show that any block subspace contains a vector, that is an ℓ2-average of standard
exacts pairs, with arbitrarily small norm. Again, this requires Lemma 9.4. However, in this case, we
employ Lemma 14.2 to carefully calculate certain upper bounds, using the Cauchy-Schwarz inequality.

Definition 14.1. We say that a sequence (𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛), where 𝑥𝑖 ∈ 𝔛 (2)awi and 𝑓𝑖 ∈ 𝑊(2) for
𝑖 = 1, . . . , 𝑛, is a dependent sequence if each (𝑥𝑖 , 𝑓𝑖) is a (2, 3, 𝑚 𝑗𝑖 )-SEP and 𝑓1 <T . . . <T 𝑓𝑛.
Lemma 14.2. Let (𝑥, 𝑓 ) be a (2, 3, 𝑚 𝑗 )-SEP, where 𝑥 = 𝑚 𝑗

∑𝑛
𝑘=1 𝑎𝑘𝑥𝑘 , and let 𝑔1 < · · · < 𝑔𝑚 ∈ 𝑊(2)

with 𝑤(𝑔𝑖) = 𝑚 𝑗 and 𝐼 𝑥𝑔𝑖 ≠ ∅ for all 𝑖 = 1, . . . , 𝑚. Then, for any choice of scalars 𝜆1, . . . , 𝜆𝑚, we have

|
𝑚∑
𝑖=1

𝜆𝑖𝑔𝑖 (𝑥) | ≤ (4
√

2 + 1) (
𝑚∑
𝑖=1

𝜆2
𝑖 )

1
2 .

Proof. For each 𝑖 = 1, . . . , 𝑚, let

𝑔𝑖 =
1
𝑚 𝑗

∑
ℓ∈𝐿𝑖

𝜆𝑖ℓ𝑔
𝑖
ℓ ,

∑
ℓ∈𝐿𝑖

𝜆2
𝑖ℓ ≤ 1
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and define

𝐾1 = {𝑘 ∈ {1, . . . , 𝑛} : 𝑘 ∈ ∪𝑚𝑖=1 ∪ℓ∈𝐿𝑖 𝐼
𝑥
𝑔𝑖
ℓ

}, 𝐾2 = {1, . . . , 𝑛} \ 𝐾1.

Then, Lemma 11.6 and the Cauchy-Schwarz inequality imply that

|
𝑚∑
𝑖=1

𝜆𝑖𝑔𝑖 (𝑚 𝑗

∑
𝑘∈𝐹1

𝑎𝑘𝑥𝑘 ) | = |
𝑚∑
𝑖=1

𝜆𝑖𝑚
−1
𝑗

∑
ℓ∈𝐿𝑖

𝜆𝑖ℓ𝑔
𝑖
ℓ (𝑚 𝑗

∑
𝑘∈𝐼 𝑥

𝑔𝑖
ℓ

𝑎𝑘𝑥𝑘 ) |

≤ 2
√

2|
𝑚∑
𝑖=1

𝜆𝑖
∑
ℓ∈𝐿𝑖

𝜆𝑖ℓ (
∑
𝑘∈𝐼 𝑥

𝑔𝑖
ℓ

𝑎2
𝑘 )

1
2 |

≤ 2
√

2|
𝑚∑
𝑖=1

𝜆𝑖 (
∑
ℓ∈𝐿𝑖

𝜆2
𝑖ℓ)

1
2 (

∑
𝑘∈∪ℓ∈𝐿𝑖 𝐼

𝑥

𝑔𝑖
ℓ

𝑎2
𝑘 )

1
2 |

≤ 2
√

2(
𝑚∑
𝑖=1

𝜆2
𝑖 )

1
2 (
∑
𝑘∈𝐾1

𝑎2
𝑘 )

1
2 . (14.1)

For each 𝑘 = 1, . . . , 𝑛, let

𝑥𝑘 =
∑
𝑞∈𝑄𝑘

𝑏𝑘𝑞𝑦
𝑘
𝑞 ,

∑
𝑞∈𝑄𝑘

𝑏2
𝑘𝑞 ≤ 1.

Define for each 𝑖 = 1, . . . , 𝑚 and ℓ ∈ 𝐿𝑖

𝑀ℓ
𝑖 = {𝑘 ∈ 𝐾2 : there is 𝑞 ∈ 𝑄𝑘 with supp(𝑦𝑘𝑞) ⊂ range(𝑔𝑖ℓ)} and for 𝑘 ∈ 𝑀𝑖

𝑁 𝑘
𝑖ℓ = {𝑞 ∈ 𝑄𝑘 : supp(𝑦𝑘𝑞) ⊂ range(𝑔𝑖ℓ)}.

Also, for 𝑘 ∈ 𝐾2, define

𝑂𝑘 = {𝑞 ∈ 𝑄𝑘 : there are 𝑖 ∈ {1, . . . , 𝑚} and ℓ ∈ 𝐿𝑖 with 𝑞 ∈ 𝑁 𝑘
𝑖ℓ }.

Finally, also define

𝐹1 = ∪𝑚𝑖=1 ∪ℓ∈𝐿𝑖 ∪𝑘∈𝑀 ℓ
𝑖
∪𝑞∈𝑁 𝑘

𝑖ℓ
supp(𝑦𝑘𝑞), 𝐹2 = N \ 𝐹1.

Note that the sets 𝑁 𝑘
𝑖ℓ , 𝑖 ∈ {1, . . . , 𝑚}, ℓ ∈ 𝐿𝑖 , 𝑘 ∈ 𝑀ℓ

𝑖 , are pairwise disjoint with union ∪𝑘∈𝐾2𝑂𝑘 .
Applying Lemma 11.6 and the Cauchy-Schwarz inequality once again, we have

|
𝑚∑
𝑖=1

𝜆𝑖𝑔𝑖 |𝐹1 (𝑚 𝑗

∑
𝑘∈𝐾2

𝑎𝑘𝑥𝑘 ) | = |
𝑚∑
𝑖=1

𝜆𝑖
∑
ℓ∈𝐿𝑖

𝜆𝑖ℓ𝑔
𝑖
ℓ (
∑
𝑘∈𝑀 ℓ

𝑖

∑
𝑞∈𝑁 𝑘

𝑖ℓ

𝑎𝑘𝑏𝑘𝑞𝑦
𝑘
𝑞) |

≤ 2
√

2
𝑚∑
𝑖=1

𝜆𝑖
∑
ℓ∈𝐿𝑖

𝜆𝑖ℓ (
∑
𝑘∈𝑀 ℓ

𝑖

∑
𝑞∈𝑁 𝑘

𝑖ℓ

𝑎2
𝑘𝑏

2
𝑘𝑞)

1/2

≤ 2
√

2
𝑚∑
𝑖=1

𝜆𝑖 (
∑
ℓ∈𝐿𝑖

𝜆2
𝑖ℓ)

1/2(
∑
ℓ∈𝐿𝑖

∑
𝑘∈𝑀 ℓ

𝑖

∑
𝑞∈𝑁 𝑘

𝑖ℓ

𝑎2
𝑘𝑏

2
𝑘𝑞)

1/2

https://doi.org/10.1017/fms.2022.101 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.101


36 S. A. Argyros et al.

≤ 2
√

2
𝑚∑
𝑖=1

𝜆𝑖 (
∑
ℓ∈𝐿𝑖

∑
𝑘∈𝑀 ℓ

𝑖

∑
𝑞∈𝑁 𝑘

𝑖ℓ

𝑎2
𝑘𝑏

2
𝑘𝑞)

1/2

≤ 2
√

2(
𝑚∑
𝑖=1

𝜆2
𝑖 )1/2(

𝑚∑
𝑖=1

∑
ℓ∈𝐿𝑖

∑
𝑘∈𝑀 ℓ

𝑖

∑
𝑞∈𝑁 𝑘

𝑖ℓ

𝑎2
𝑘𝑏

2
𝑘𝑞)

1/2

= 2
√

2(
𝑚∑
𝑖=1

𝜆2
𝑖 )1/2(

∑
𝑘∈𝐾2

𝑎2
𝑘

∑
𝑞∈𝑂𝑘

𝑏2
𝑘𝑞)

1/2

≤ 2
√

2(
𝑚∑
𝑖=1

𝜆2
𝑖 )1/2(

∑
𝑘∈𝐾2

𝑎2
𝑘 )

1/2. (14.2)

For each 𝑖 = 1, . . . , 𝑚 and 𝑘 ∈ 𝐾2, define

𝑄𝑖
𝑘 = {𝑞 ∈ 𝑄𝑘 : there is an ℓ ∈ 𝐿𝑖 , such that supp(𝑦𝑘𝑞) ∩ supp(𝑔𝑖ℓ) ≠ ∅ and supp(𝑦𝑘𝑞) ⊄ supp(𝑔𝑖ℓ)}.

Observe that, since (𝑔𝑖ℓ)ℓ∈𝐿𝑖 is S𝑛 𝑗 -admissible, (𝑦𝑘𝑞)𝑄𝑖
𝑘

is S𝑛 𝑗+1-admissible for all 𝑖 = 1, . . . , 𝑚, and
Proposition 2.4 thus implies that ∑

𝑞∈𝑄𝑖
𝑘

𝑏2
𝑘𝑞 <

3
min supp(𝑥𝑘 )

.

For 𝑖 ∈ {1, . . . , 𝑚}, put 𝐾 𝑖
2 = {𝑘 ∈ 𝐾2 : range(𝑔𝑖) ∩ range 𝑥𝑘 ≠ ∅}. The condition 𝑖 ∈ {1, . . . , 𝑚},

𝐼 𝑥𝑔𝑖 ≠ ∅, for 𝑖 ∈ {1, . . . , 𝑚} implies that each 𝑘 ∈ 𝐾2 is in at most two sets 𝐾 𝑖
2. We then calculate

|
𝑚∑
𝑖=1

𝜆𝑖𝑔𝑖 |𝐹2 (𝑚 𝑗

∑
𝑘∈𝐾2

𝑎𝑘𝑥𝑘 ) | = |
𝑚∑
𝑖=1

𝜆𝑖𝑔𝑖 (𝑚 𝑗

∑
𝑘∈𝐾2∩𝐼𝑔𝑖

𝑎𝑘
∑
𝑞∈𝑄𝑖

𝑘

𝑏𝑘𝑞𝑦
𝑘
𝑞) |

≤ 2
√

2𝑚 𝑗

𝑚∑
𝑖=1

𝜆𝑖 (
∑

𝑘∈𝐾2∩𝐼𝑔𝑖

𝑎2
𝑘

∑
𝑞∈𝑄𝑖

𝑘

𝑏2
𝑘𝑞)

1/2

≤ 2
√

2𝑚 𝑗 (
𝑚∑
𝑖=1

𝜆2
𝑖 )1/2(

𝑚∑
𝑖=1

∑
𝑘∈𝐾2∩𝐼𝑔𝑖

𝑎2
𝑘

3
min supp(𝑥𝑘 )

)1/2

≤ 4
√

3𝑚 𝑗 (
𝑚∑
𝑖=1

𝜆2
𝑖 )1/2(

∑
𝑘∈𝐾2

𝑎2
𝑘

1
min supp(𝑥𝑘 )

)1/2

≤ (
𝑚∑
𝑖=1

𝜆2
𝑖 )1/2

4
√

3𝑚 𝑗

min supp(𝑥)1/2

≤ (
𝑚∑
𝑖=1

𝜆2
𝑖 )1/2 (by Definition 13.2 (iv)). (14.3)

Hence, (14.1), (14.2) and (14.3) yield the desired result. �

Proposition 14.3. For every 0 < 𝑐 < 1, there exists 𝑑 ∈ N, such that whenever 𝑑 ≤ 𝑛 and
(𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛) is a dependent sequence, then

‖ 1
√
𝑛

𝑛∑
𝑖=1

𝑥𝑖 ‖ < 𝑐.
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Proof. Pick an 𝑚 ∈ N, such that

2−𝑚+3 < 𝑐 (14.4)

and fix a dependent sequence (𝑥1, 𝑓1), . . . , (𝑥𝑛, 𝑓𝑛). Let 𝑓 ∈ 𝑊 \𝑊0 and consider the partitions 𝑓 = ℎ+𝑔
and 𝑔 = 𝑔1 + 𝑔2 as in the proof of Proposition 9.6. Then, the same arguments and Proposition 13.4 yield
that

|ℎ( 1
√
𝑛

𝑛∑
𝑘=1

𝑥𝑘 ) | ≤
18
√
𝑛
. (14.5)

Moreover, Proposition 9.4, again, implies that

#{𝑘 ∈ {1, . . . , 𝑛} : 𝑔1 (𝑥𝑘 ) ≠ 0} ≤ ℓ = 𝑒
𝑚∑
𝑘=1

𝑘!

and, thus, by Propositions 11.6 and 13.4 (i),




𝑔1

(
1
√
𝑛

𝑛∑
𝑘=1

𝑥𝑘

)




 ≤ 2
√

2
√
ℓ
√
𝑛

24 = 48
√

2ℓ
𝑛
. (14.6)

Finally, we treat 𝑔2 differently from Proposition 9.6. Recall that for 𝑘 = 1, . . . , 𝑛,

B2
𝑘 = {𝛼 ∈ A 𝑓 : |𝛼 | > 𝑚, 𝑤( 𝑓𝛼) = 𝑤( 𝑓𝑘 ), and 𝑤( 𝑓𝛽) ≠ 𝑤( 𝑓𝑘 ) for 𝛽 < 𝛼 in A 𝑓 }.

Define

𝐺2 = ∪𝑛𝑘=1 ∪ {range(𝑥𝑘 ) ∩ range( 𝑓𝛼) : 𝛼 ∈ B2
𝑘 },

so that 𝑔2 = 𝑔 |𝐺2 . We further split 𝐺2 as follows

𝐺1
2 = ∪𝑛𝑘=1 ∪ {supp(𝑥𝑘 ) ∩ supp( 𝑓𝛼) : 𝛼 ∈ B2

𝑘 and 𝐼 𝑥𝑘𝑓𝛼 = ∅} and 𝐺2
2 = 𝐺2 \ 𝐺1

2.

Proposition 13.4 (ii) implies that for 𝑘 ∈ {1, . . . , 𝑛},

|𝑔2 |𝐺1
2
(𝑥𝑘 ) | ≤

18
𝑤( 𝑓𝑘 )

,

and, thus,

|𝑔2 |𝐺1
2
( 1
√
𝑛

∑
𝑘∈𝐾1

𝑥𝑘 ) | ≤
18
√
𝑛
. (14.7)

To complete the computation, we need to evaluate the action of 𝑔2 |𝐺2
2
. To that end, for 𝑠 = 𝑚+1, 𝑚+2, . . .

and 𝑘 ∈ {1, . . . , 𝑛}, put

B2
𝑘,𝑠 = {𝛼 ∈ B2

𝑘 : |𝛼 | = 𝑠},
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so that for each 𝑠 > 𝑚, the sets B2
𝑘,𝑠 , 𝑘 ∈ {1, . . . , 𝑛} are pairwise disjoint and the set ∪𝑛𝑘=1B2

𝑘,𝑠 is
pairwise incomparable. We use Lemma 14.2 and the definition of 𝐺2

2 to calculate

|𝑔2 |𝐺2
2
( 1
√
𝑛

𝑛∑
𝑘=1

𝑥𝑘 ) | = |
1
√
𝑛

𝑛∑
𝑘=1

∑
𝛼∈B2

𝑘

𝜆 𝑓𝛼

𝑤 𝑓 ( 𝑓𝛼)
𝑓𝛼 |𝐺2

2
(𝑥𝑘 ) |

≤ 4
√

2 + 1
√
𝑛

𝑛∑
𝑘=1
(
∑
𝛼∈B2

𝑘

𝜆2
𝑓𝛼

𝑤 𝑓 ( 𝑓𝛼)2
)1/2

≤ (4
√

2 + 1) (
𝑛∑

𝑘=1

∑
𝛼∈B2

𝑘

𝜆2
𝑓𝛼

𝑤 𝑓 ( 𝑓𝛼)2
)1/2

≤ (4
√

2 + 1) (
∞∑

𝑠=𝑚+1

1
4𝑠

∑
𝛼∈∪𝑛

𝑘=1B
2
𝑘,𝑠

𝜆2
𝑓𝛼
)1/2

≤ (4
√

2 + 1) (
∞∑

𝑠=𝑚+1

1
4𝑠
)1/2 =

4
√

2 + 1
2𝑚
√

3
≤ 4

2𝑚
. (14.8)

Then, (14.5), (14.6), (14.7) and (14.8) yield that

| 𝑓 (𝑥) | ≤ 36 + 48
√

2ℓ
√
𝑛

+ 4
2𝑚
≤ 36 + 48

√
2ℓ

√
𝑛

+ 𝑐

2
,

and, thus, for d, such that

36 + 48
√

2ℓ
√
𝑑

<
𝑐

2
,

we have the desired result. �

Proposition 14.4. The space 𝔛 (2)awi does not contain Asymptotic ℓ2 subspaces.

Proof. It is an immediate consequence of Proposition 14.3, using similar arguments as
in Proposition 9.7. �

Remark 14.5. Unlike the case of ℓ1, for every 1 < 𝑝 < ∞, it is in fact possible to define a reflexive
Banach space with a Schauder basis, admitting a unique ℓ𝑝 asymptotic model with respect to the family
of normalised block sequences, whose any block subspace contains an ℓ1 block tree of height 𝜔𝜉 . Such a
space can be defined using the attractors method, which was first introduced in [3] and later used in [10].

15. Appendix A

In this section, we prove the properties of standard exact pairs in 𝔛 (1)awi, given in Proposition 8.11. This
requires three steps. First, we need to define an auxiliary space which is also a Mixed Tsirelson space.
Then, on the special convex combinations of its basis, we give upper bounds on the evaluations of the
functionals in its norming set 𝑊 (1)aux. Finally, for a standard exact pair (𝑥, 𝑓 ), via the basic inequality, we
reduce the upper bounds of the evaluations of functionals in 𝑊(1) acting on x, to the corresponding one
of a functional g in𝑊 (1)aux on a normalised special convex combination of the basis of the auxiliary space.
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15.1. The auxiliary space

Definition 15.1. Let 𝑊 (1)aux be the minimal subset of 𝑐00 (N), such that

(i) ±𝑒𝑖 is in 𝑊 (1)aux for all 𝑖 ∈ N and
(ii) for every 𝑗 ∈ N and every S𝑛 𝑗+1-admissible sequence of functionals ( 𝑓𝑖)𝑑𝑖=1 in 𝑊 (1)aux, we have that

𝑓 = 𝑚−1
𝑗

∑𝑑
𝑖=1 𝑓𝑖 is in 𝑊 (1)aux.

The purpose of the following two lemmas is to provide upper bounds for the norms of linear
combinations of certain vectors in the auxiliary space.

Lemma 15.2. Let 𝑗 ∈ N and 𝜀 > 0 with 𝜀 ≤ 𝑚−1
𝑗 . For every (𝑛 𝑗 , 𝜀)-basic s.c.c. 𝑥 =

∑
𝑘∈𝐹 𝑐𝑘𝑒𝑘 , the

following hold.

(i) For every 𝑓 ∈ 𝑊 (1)aux



 𝑓 (𝑥)

 ≤ ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜀, 𝑓 = ±𝑒∗𝑖 for some 𝑖 ∈ N

1
𝑤 ( 𝑓 ) , 𝑤( 𝑓 ) ≥ 𝑚 𝑗

2
𝑤 ( 𝑓 )𝑚 𝑗

, 𝑤( 𝑓 ) < 𝑚 𝑗 .

(ii) If 𝑓 ∈ 𝑊 (1)aux with a tree analysis ( 𝑓𝛼)𝛼∈A, such that 𝑤( 𝑓𝛼) ≠ 𝑚 𝑗 for all 𝛼 ∈ A and 𝜀 < 𝑚−2
𝑗 , then

| 𝑓 (𝑥) | < 2𝑚−2
𝑗 .

Proof. We may assume that supp( 𝑓 ) ⊂ 𝐹 and 𝑓 (𝑒𝑖) ≥ 0 for every 𝑖 ∈ N. If 𝑓 = ±𝑒∗𝑖 for some 𝑖 ∈ 𝐹,
then | 𝑓 (𝑥) | = 𝑐𝑖 < 𝜀, since x is an (𝑛 𝑗 , 𝜀)-basic s.c.c. and {𝑖} ∈ S0.

Suppose that 𝑚 𝑗 ≤ 𝑤( 𝑓 ). Then ‖ 𝑓 ‖∞ ≤ 1/𝑤( 𝑓 ), and, hence

 𝑓 (𝑥)

 ≤ ‖ 𝑓 ‖∞‖𝑥‖1 ≤ 1
𝑤( 𝑓 ) .

In the case where 𝑤( 𝑓 ) = 𝑚𝑖 < 𝑚 𝑗 , let 𝑓 = 𝑚−1
𝑖

∑𝑑
𝑙=1 𝑓𝑙 with ( 𝑓𝑙)𝑑𝑙=1 an S𝑛𝑖+1-admissible sequence in

𝑊 (1)aux. For 𝑙 = 1, . . . , 𝑑, define 𝐷𝑙 = {𝑘 ∈ 𝐹 : 𝑓𝑙 (𝑒𝑘 ) > 𝑚−1
𝑗 } and 𝐷 = ∪𝑑𝑙=1𝐷𝑙 . Then, [13, Lemma

3.16] implies that 𝐷𝑙 ∈ S(log2 (𝑚 𝑗 )−1) (𝑛 𝑗−1+1) for each 𝑙 = 1, . . . , 𝑑 and, hence, since ( 𝑓𝑙)𝑑𝑙=1 is 𝑆𝑛 𝑗−1+1-
admissible (recall that 𝑖 < 𝑗 since 𝑚𝑖 < 𝑚 𝑗 ) and 𝐷𝑙 ⊂ supp( 𝑓𝑙), 𝑙 = 1, . . . , 𝑑, we conclude that the
sequence (𝐷𝑙)𝑑𝑙=1 is 𝑆𝑛 𝑗−1+1-admissible and

𝐷 = ∪𝑑𝑙=1𝐷𝑙 ∈ 𝑆𝑛 𝑗−1+1 ∗ S(log2 (𝑚 𝑗 )−1) (𝑛 𝑗−1+1) = Slog2 (𝑚 𝑗 ) (𝑛 𝑗−1+1) .

Since x is an (𝑛 𝑗 , 𝜀)-basic s.c.c. and log2(𝑚 𝑗 ) (𝑛 𝑗−1 + 1) < 𝑛 𝑗 , the above implies that
∑

𝑘∈𝐷 𝑐𝑘 < 𝜀,
and, thus

𝑓 (𝑥) = 1
𝑚𝑖

𝑑∑
𝑙=1

𝑓𝑙 (
∑
𝑘∈𝐹

𝑐𝑘𝑒𝑘 ) =
1
𝑚𝑖
(

𝑑∑
𝑙=1

𝑓𝑙 |𝐷 (
∑
𝑘∈𝐹

𝑐𝑘𝑒𝑘 ) +
𝑑∑
𝑙=1

𝑓𝑙 |N\𝐷 (
∑
𝑘∈𝐹

𝑐𝑘𝑒𝑘 ))

≤ 1
𝑚𝑖
(
∑
𝑘∈𝐷

𝑐𝑘 +
1
𝑚 𝑗
) ≤ 1

𝑚𝑖
(𝜀 + 1

𝑚 𝑗
) ≤ 2

𝑚𝑖𝑚 𝑗
.

Finally, if there is a tree analysis ( 𝑓𝛼)𝛼∈A of f with 𝑤( 𝑓𝛼) ≠ 𝑚 𝑗 for every 𝛼 ∈ A, [13, Lemma 3.16]
implies that 𝐷 = {𝑘 ∈ 𝐹 : 𝑓 (𝑒𝑘 ) > 𝑚−2

𝑗 } ∈ S(2 log2 (𝑚 𝑗 )−1) (𝑛 𝑗−1−1) , and since (2 log2(𝑚 𝑗 )−1) (𝑛 𝑗−1−1) <
𝑛 𝑗 , we have that

∑
𝑘∈𝐷 𝑐𝑖 < 𝜀. Hence, we conclude that

𝑓 (𝑥) =
∑
𝑘∈𝐷

𝑐𝑘 𝑓 (𝑥𝑘 ) +
∑

𝑘∈𝐹\𝐷
𝑐𝑘 𝑓 (𝑥𝑘 ) ≤ 𝜀 + 1

𝑚2
𝑗

<
2
𝑚2

𝑗

.
�
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15.2. The basic inequality

Proposition 15.3 (basic inequality). Let (𝑥𝑘 )𝑘∈𝐼 be a (𝐶, ( 𝑗𝑘 )𝑘∈𝐼 )-RIS in 𝔛 (1)awi with 4 ≤
min supp(𝑥min 𝐼 ), (𝑎𝑘 )𝑘∈𝐼 be a sequence of nonzero scalars and 𝑓 ∈ 𝑊(1) with 𝐼 𝑓 ≠ ∅. Define
𝑡𝑘 = max supp(𝑥𝑘 ), 𝑘 ∈ 𝐼. Then there exist

(i) 𝑔 ∈ 𝑊 (1)aux ∪ {0} with 𝑤(𝑔) = 𝑤( 𝑓 ) if 𝑔 ≠ 0 and {𝑘 : 𝑡𝑘 ∈ supp(𝑔)} ⊂ 𝐼 𝑓 ,
(ii) ℎ ∈ {sign(𝑎𝑘 )𝑒∗𝑡𝑘 : 𝑘 ∈ 𝐼 𝑓 } ∪ {0} with 𝑘0 ∈ 𝐼 𝑓 and 𝑘0 < min supp(𝑔) if ℎ = sign(𝑎𝑘0 )𝑒∗𝑡𝑘0

and
(iii) 𝑗0 ≥ min{ 𝑗𝑘 : 𝑘 ∈ 𝐼 𝑓 } ,

such that

| 𝑓 (
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑥𝑘 ) | ≤ 𝐶 (1 + 1
√
𝑚 𝑗0

) [ℎ + 𝑔(
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘 )] . (15.1)

Proof. Recall that 𝑊(1) is the increasing union of the sequence (𝑊𝑛
(1) )
∞
𝑛=0 defined in Remark 5.18. We

prove the statement by induction on 𝑛 = 0, 1, . . . for every 𝑓 ∈ 𝑊𝑛
(1) and every RIS.

For 𝑛 = 0 and 𝑓 ∈ 𝑊0
(1) , the fact that 𝐼 𝑓 ≠ ∅ implies that 𝐼 𝑓 = {𝑘0}, that is, 𝑓 = 𝑒∗𝑡𝑘0

or 𝑓 = −𝑒∗𝑡𝑘0
for some 𝑘0 ∈ 𝐼. In either case, it is immediate to check that ℎ = sign(𝑎𝑘0 )𝑒∗𝑡𝑘0

, 𝑔 = 0 and 𝑗0 = 𝑗𝑘0 are
as desired.

Fix 𝑛 ∈ N, and assume that the conclusion holds for every 𝑓 ∈ 𝑊𝑛
(1) and every RIS. Pick an 𝑓 ∈ 𝑊𝑛+1

(1)
with 𝑓 = 𝑚𝑖

−1∑𝑑
𝑙=1 𝑓𝑙 , where ( 𝑓𝑙)𝑑𝑙=1 is an S𝑛𝑖 -admissible sequence in 𝑊𝑛

(1) . We will first treat the two
extreme cases, namely, the cases where 𝑖 ≥ max{ 𝑗𝑘 : 𝑘 ∈ 𝐼 𝑓 } and 𝑖 < min{ 𝑗𝑘 : 𝑘 ∈ 𝐼 𝑓 }.

For the first case, set 𝑘0 = max 𝐼 𝑓 and 𝑗0 = 𝑗𝑘0 and choose 𝑘1 ∈ 𝐼 𝑓 that maximises the quantity |𝑎𝑘 |
for 𝑘 ∈ 𝐼 𝑓 . Then, since (𝑥𝑘 )𝑘∈𝐼 is a RIS, items (i) and (ii) of Definition 8.5 yield that

| 𝑓 (
∑

𝑘∈𝐼 𝑓 \{𝑘0 }
𝑎𝑘𝑥𝑘 ) | ≤

1
𝑚𝑖

max supp(𝑥𝑘0−1)‖
∑

𝑘∈𝐼 𝑓 \{𝑘0 }
𝑎𝑘𝑥𝑘 ‖∞

≤
max supp(𝑥𝑘0−1)

𝑚 𝑗𝑘0

𝐶 |𝑎𝑘1 | ≤
𝐶√
𝑚 𝑗𝑘0

|𝑎𝑘1 |,

and, thus

| 𝑓 (
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑥𝑘 ) | ≤
𝐶√
𝑚 𝑗𝑘0

|𝑎𝑘1 | + | 𝑓 (𝑎𝑘0𝑥𝑘0) | (15.2)

≤ 𝐶√
𝑚 𝑗𝑘0

|𝑎𝑘1 | + 𝐶 |𝑎𝑘1 | = 𝐶 (1 + 1√
𝑚 𝑗𝑘0

) |𝑎𝑘1 |

= 𝐶 (1 + 1√
𝑚 𝑗𝑘0

)sign(𝑎𝑘1 )𝑒∗𝑡𝑘1
(
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘 ).

That is, ℎ = sign(𝑎𝑘1 )𝑒∗𝑡𝑘1
, 𝑔 = 0 and 𝑗𝑘0 yield the conclusion.

For the second case, the inductive hypothesis implies that, for every 𝑙 = 1, . . . , 𝑑 with 𝐼 𝑓𝑙 ≠ ∅, there
are 𝑔𝑙 , ℎ𝑙 and 𝑗0,𝑙 as in (i)–(iii) of the statement, that satisfy the conclusion for the functional 𝑓𝑙 . Define
𝐽 𝑓 = {𝑘 ∈ 𝐼 𝑓 : 𝑓 (𝑥𝑘 ) ≠ 0} \ ∪𝑑𝑙=1𝐼 𝑓𝑙 . Then, for every 𝑘 ∈ 𝐽 𝑓 , Definition 8.5 (iii) yields that

| 𝑓 (𝑎𝑘𝑥𝑘 ) | ≤
𝐶

𝑚𝑖
|𝑎𝑘 | =

𝐶

𝑚𝑖
sign(𝑎𝑘 )𝑒∗𝑡𝑘

���
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘
���,
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and, hence, we calculate

| 𝑓 (
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑥𝑘 ) | ≤ | 𝑓 (
∑

𝑘∈∪𝑑
𝑙=1𝐼 𝑓𝑙

𝑎𝑘𝑥𝑘 ) | + | 𝑓 (
∑
𝑘∈𝐽 𝑓

𝑎𝑘𝑥𝑘 ) | (15.3)

≤ 𝐶

𝑚𝑖

∑
𝑘∈𝐽 𝑓

sign(𝑎𝑘 )𝑒∗𝑡𝑘 (
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘 ) +
𝐶

𝑚𝑖

𝑑∑
𝑙=1
[(1 + 1

√
𝑚 𝑗0,𝑙

) (ℎ𝑙 + 𝑔𝑙)] (
∑
𝑘∈𝐼 𝑓𝑙

𝑎𝑘𝑒𝑡𝑘 )

≤ 𝐶 (1 + 1√
𝑚 𝑗min 𝐼 𝑓

) [ 1
𝑚𝑖
(
∑
𝑘∈𝐽 𝑓

sign(𝑎𝑘 )𝑒∗𝑡𝑘 +
𝑑∑
𝑙=1

ℎ𝑙 + 𝑔𝑙)] (
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘 ).

Define

𝑔 =
1
𝑚𝑖
(
∑
𝑘∈𝐽 𝑓

sign(𝑎𝑘 )𝑒∗𝑡𝑘 +
𝑑∑
𝑙=1

ℎ𝑙 + 𝑔𝑙).

Moreover, for each 𝑙 = 1, . . . , 𝑑, define

𝐾𝑙 =
{
𝑘 ∈ 𝐽 𝑓 : min{𝑙 ′ = 1, . . . , 𝑑 : supp(𝑥𝑘 ) ∩ range( 𝑓𝑙′ ) ≠ ∅} = 𝑙

}
and

𝐼𝑙 = {𝑡𝑘 : 𝑘 ∈ 𝐾𝑙} ∪ {supp(ℎ𝑙)} ∪ {min supp(𝑔𝑙)}.

Let us make the following remarks. First, observe that #𝐾𝑙 ≤ 2. In particular, consider the case where
𝐾𝑙 = {𝑘1, 𝑘2} for some 𝑙 = 1, . . . , 𝑑. Then, 𝑘1 < min 𝐼 𝑓𝑙 ≤ max 𝐼 𝑓𝑙 < 𝑘2, and since supp(ℎ𝑙) ∪ supp(𝑔𝑙)
is a subset of {𝑡𝑘 : 𝑘 ∈ 𝐼 𝑓𝑙 }, we have 𝑡𝑘1 < supp(ℎ𝑙) < supp(𝑔𝑙) < 𝑡𝑘2 . Moreover, if 𝑙 < 𝑑 and
range( 𝑓𝑙+1) ∩ supp(𝑥𝑘2 ) ≠ ∅, then 𝑘2 ∉ 𝐾𝑙+1 and clearly 𝑘2 < 𝐼𝑙+1. In the case where 𝐾𝑙 is a singleton
for some 𝑙 = 1, . . . , 𝑑, then either supp(ℎ𝑙) < supp(𝑔𝑙) < 𝑘 or 𝑘 < supp(ℎ𝑙) < supp(𝑔𝑙) holds for
𝐾𝑙 = {𝑘}. Hence, we conclude that 𝐼1 < · · · < 𝐼𝑑 . Moreover, let us finally note that min supp( 𝑓𝑙) ≤ 𝐼𝑙
and #𝐼𝑙 ≤ 4 for every 𝑙 = 1, . . . , 𝑑. For each 𝑙 = 1, . . . , 𝑑, let 𝐾𝑙 = {𝑘 𝑙1, 𝑘

𝑙
2}, where 𝑘 𝑙2 or 𝑘 𝑙2 can be

ommited if necessary. Then,

𝑔 =
1
𝑚𝑖

𝑑∑
𝑙=1
(sign(𝑎𝑘𝑙1 )𝑒

∗
𝑡
𝑘𝑙1
+ ℎ𝑙 + 𝑔𝑙 + sign(𝑎𝑘𝑙2 )𝑒

∗
𝑡
𝑘𝑙2
). (15.4)

We will show that the sequence (𝑒∗𝑡𝑘 )𝑘∈𝐽 𝑓
⌢(ℎ𝑙)𝑑𝑙=1

⌢(𝑔𝑙)𝑑𝑙=1 is S𝑛𝑖+1-admissible, when the functionals
ordered as implied by (15.4), that is, according to the minimum of their supports. This yields that
𝑔 ∈ 𝑊 (1)aux, and thus ℎ = 0, g and 𝑗0 = 𝑗min 𝐼 𝑓 satisfy the conclusion, as follows from (15.3). More
specifically, we will show that∪𝑑𝑙=1𝐼𝑙 ∈ S𝑛𝑖+1. To this end, note that (𝐼𝑙)𝑑𝑙=1 isS𝑛𝑖 -admissible, since ( 𝑓𝑙)𝑑𝑙=1
is S𝑛𝑖 -admissible, 𝐼1 < · · · < 𝐼𝑑 and min supp( 𝑓𝑙) ≤ 𝐼𝑙 for every 𝑙 = 1, . . . , 𝑑. Thus, ∪𝑑𝑙=1𝐼𝑙 ∈ S𝑛𝑖 ∗A4,
since #𝐼𝑙 ≤ 4 for all 𝑙 = 1, . . . , 𝑑. Using item (ii) of Lemma 2.1 and the fact that 4 ≤ min supp(𝑥min 𝐼 ),
we conclude that ∪𝑑𝑙=1𝐼𝑙 ∈ S𝑛𝑖+1.

Finally, in the remaining case where min{ 𝑗𝑘 : 𝑘 ∈ 𝐼 𝑓 } ≤ 𝑖 < max{ 𝑗𝑘 : 𝑘 ∈ 𝐼 𝑓 }, define 𝐼1
𝑓 = {𝑘 ∈

𝐼 𝑓 : 𝑗𝑘 ≤ 𝑖} and 𝐼2
𝑓 = {𝑘 ∈ 𝐼 𝑓 : 𝑗𝑘 > 𝑖}, and observe that 𝐼 𝑓 = 𝐼1

𝑓 ∪ 𝐼2
𝑓 , max{ 𝑗𝑘 : 𝑘 ∈ 𝐼1

𝑓 } ≤ 𝑖

and 𝑖 < min{ 𝑗𝑘 : 𝑘 ∈ 𝐼2
𝑓 }. Applying the result of the first case for (𝑥𝑘 )𝑘∈𝐼 1

𝑓
and that of the second for
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(𝑥𝑘 )𝑘∈𝐼 2
𝑓
, we have

| 𝑓 (
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑥𝑘 ) | ≤ | 𝑓 (
∑
𝑘∈𝐼 1

𝑓

𝑎𝑘𝑥𝑘 ) | + | 𝑓 (
∑
𝑘∈𝐼 2

𝑓

𝑎𝑘𝑥𝑘 ) | (15.5)

≤ 𝐶 (1 + 1√
𝑚 𝑗max 𝐼1

𝑓

)ℎ(
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘 ) + | 𝑓 (
∑
𝑘∈𝐼 2

𝑓

𝑎𝑘𝑥𝑘 ) |

≤ 𝐶 (1 + 1√
𝑚 𝑗max 𝐼1

𝑓

)ℎ(
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘 ) + 𝐶 (1 +
1√

𝑚 𝑗min 𝐼2
𝑓

)𝑔(
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘 )

≤ 𝐶 (1 + 1√
𝑚 𝑗max 𝐼1

𝑓

) [ℎ + 𝑔(
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘 )],

where ℎ = sign(𝑎𝑘1 )𝑒∗𝑡𝑘1
, 𝑘1 ∈ 𝐼1

𝑓 maximises the quantity |𝑎𝑘 | for 𝑘 ∈ 𝐼1
𝑓 and 𝑔 ∈ 𝑊 (1)aux with

𝑤(𝑔) = 𝑤( 𝑓 ). �

Remark 15.4. Let (𝑥𝑘 )𝑘∈𝐼 and f be as in the statement of Proposition 15.3.

(i) Define 𝐸 = range( 𝑓 ), and note that the sequence (𝑥 ′𝑘 )𝑘∈𝐼 ′𝑓 , where 𝑥 ′𝑘 = 𝑥𝑘 |𝐸 , 𝑘 ∈ 𝐼 ′𝑓 , is also a
(𝐶, ( 𝑗𝑘 )𝑘∈𝐼 ′

𝑓
)-RIS. Then,

𝑓 (
∑
𝑘∈𝐼

𝑎𝑘𝑥𝑘 ) = 𝑓 (
∑
𝑘∈𝐼 ′

𝑓

𝑎𝑘𝑥
′
𝑘 )

and {𝑘 ∈ 𝐼 ′𝑓 : supp(𝑥 ′𝑘 ) ⊂ range( 𝑓 )} = 𝐼 ′𝑓 . Hence, the basic inequality yields ℎ, 𝑔 and 𝑗0 as in
items (i)–(iii), such that

| 𝑓 (
∑
𝑘∈𝐼

𝑎𝑘𝑥𝑘 ) | ≤ 𝐶 (1 + 1
√
𝑚 𝑗0

) [ℎ + 𝑔(
∑
𝑘∈𝐼 ′

𝑓

𝑎𝑘𝑒𝑧𝑘 )],

where 𝑧𝑘 = max supp(𝑥 ′𝑘 ), 𝑘 ∈ 𝐼
′
𝑓 .

(ii) Let 𝑗 ∈ N. It follows from the proof of Proposition 15.3 that if f has a tree analysis ( 𝑓𝛼)𝛼∈A, such
that 𝐼 𝑓𝛼 = ∅ for every 𝛼 ∈ A with 𝑤( 𝑓𝛼) = 𝑚 𝑗 , then the functional 𝑔 ∈ 𝑊 (1)aux ∪ {0} that the basic
inequality yields for (𝑥𝑘 )𝑘∈𝐼 and f has a tree analysis (𝑔𝛽)𝛽∈B with 𝑤(𝑔𝛽) ≠ 𝑚 𝑗 for every 𝛽 ∈ B,
whenever 𝑔 ≠ 0.

15.3. Evaluations on standard exact pairs

We prove the following lemma, which yields Proposition 8.11 as an immediate corollary.

Lemma 15.5. For every (𝐶, 𝑚 𝑗0)-SEP (𝑥, 𝑓 ), the following hold.

(i) For every 𝑓 ′ ∈ 𝑊(1)



 𝑓 ′(𝑥)

 ≤ ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐶
𝑚 𝑗0
(1 + 1√

𝑚 𝑗0
), 𝑓 ′ = ±𝑒∗𝑖 for some 𝑖 ∈ N

𝐶 (1 + 1√
𝑚 𝑗0
) [ 1

𝑚 𝑗0
+ 𝑚 𝑗0

𝑤 ( 𝑓 ′) ], 𝑤( 𝑓 ′) ≥ 𝑚 𝑗0

𝐶 (1 + 1√
𝑚 𝑗0
) [ 1

𝑚 𝑗0
+ 2

𝑤 ( 𝑓 ′) ], 𝑤( 𝑓 ′) < 𝑚 𝑗0 .
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(ii) If 𝑓 ′ ∈ 𝑊(1) with a tree analysis ( 𝑓 ′𝛼)𝛼∈A, such that 𝐼 𝑓 ′𝛼 = ∅ for every 𝛼 ∈ A with 𝑤( 𝑓 ′𝛼) = 𝑚 𝑗0 , then

| 𝑓 ′(𝑥) | ≤ 3𝐶
𝑚 𝑗0

(1 + 1
√
𝑚 𝑗0

).

Proof. Let (𝑥𝑘 )𝑛𝑘=1 be a (𝐶, ( 𝑗𝑘 )𝑛𝑘=1)-RIS witnessing that (𝑥, 𝑓 ) is a (𝐶, 𝑚 𝑗0 )-SEP. Applying Proposition
15.3, we obtain h and g as in items (i) and (ii), respectively, that satisfy (15.1) for x and 𝑓 ′, namely,

| 𝑓 ′(𝑥) | ≤ 𝐶𝑚 𝑗0 (1 +
1
√
𝑚 𝑗0

) [ℎ(𝑥) + 𝑔(𝑥)],

where 𝑥 =
∑

𝑘∈𝐼 𝑎𝑘𝑒𝑧𝑘 , 𝑧𝑘 = max supp(𝑥𝑘 |range( 𝑓 ′) ) and 𝐼 = {𝑘 = 1, . . . , 𝑛 : supp(𝑥𝑘 )∩range( 𝑓 ′) ≠ ∅}.
Note that 𝑥 is a (𝑛 𝑗0 , 𝑚

−2
𝑗0
)-b.s.c.c. and, hence, since supp(ℎ) ∈ S0, we have ℎ(𝑥) < 𝑚−2

𝑗0
.

To prove (i), first observe that if 𝑔 = 0, which is the case, for example, when 𝑓 ′ = ±𝑒∗𝑖 for some 𝑖 ∈ N,
then we already have established a valid upper bound for | 𝑓 ′(𝑥) |. Hence, suppose that 𝑔 ≠ 0. Then,
using Lemma 15.2 and the fact that 𝑤(𝑔) = 𝑤( 𝑓 ′), we obtain the following upper bounds for 𝑔(𝑥)

𝑔(𝑥) ≤
{ 1
𝑤 ( 𝑓 ′) , 𝑤( 𝑓 ′) ≥ 𝑚 𝑗0

2
𝑤 ( 𝑓 ′)𝑚 𝑗0

, 𝑤( 𝑓 ′) < 𝑚 𝑗0 ,

which yield the desired upper bounds for | 𝑓 ′(𝑥) |.
Finally, item (ii) of Remark 15.4 implies that g admits a tree analysis (𝑔𝛽)𝛽∈B, such that 𝑤(𝑔𝛽) ≠ 𝑚 𝑗0

for every 𝛽 ∈ B. We derive the desired upper bound using item (ii) of Lemma 15.2, which yields that
|𝑔(𝑥) | ≤ 2𝑚−2

𝑗0
. �

16. Appendix B

We prove another version of the basic inequality that reduces evaluations on standard exact pairs of 𝔛 (2)awi
to evaluations on the basis of an auxiliary space. The results are almost identical to those of Appendix
A, and we include them for completeness.

16.1. The auxiliary space

Definition 16.1. Let 𝑊 (2)aux be the minimal subset of 𝑐00 (N), such that

(i) ±𝑒∗𝑖 is in 𝑊 (2)aux for all 𝑖 ∈ N and
(ii) whenever 𝑗 ∈ N, ( 𝑓𝑖)𝑑𝑖=1 is an S𝑛 𝑗+1-admissible sequence in 𝑊 (2)aux and 𝜆1, . . . , 𝜆𝑑 ∈ Q with∑𝑑

𝑖=1 𝜆
2
𝑖 ≤ 1, then 𝑓 = 2𝑚−1

𝑗

∑𝑑
𝑖=1 𝜆𝑖 𝑓𝑖 is in 𝑊 (2)aux.

Remark 16.2. For each 𝑓 ∈ 𝑊 (2)aux, the weight of f is defined as 𝑤( 𝑓 ) = 0 if 𝑓 = ±𝑒∗𝑖 for some 𝑖 ∈ N and
𝑤( 𝑓 ) = 𝑚 𝑗/2 in the case where 𝑓 = 2𝑚−1

𝑗

∑𝑑
𝑖=1 𝜆𝑖 𝑓𝑖 .

The following lemma is a slightly modified version of [13, Lemma 3.16]. We use it to prove
Lemma 16.4.
Lemma 16.3. Let 𝑓 ∈ 𝑊 (2)aux with a tree analysis ( 𝑓𝛼)𝛼∈A.

(i) For all 𝑗 ∈ N, we have

{𝑘 ∈ supp( 𝑓 ) : 𝑤 𝑓 (𝑒∗𝑘 ) < 𝑚 𝑗 } ∈ S(log2 (𝑚 𝑗 )−1) (𝑛 𝑗−1+1) .

(ii) If 𝑗 ∈ N is such that 𝑤( 𝑓𝛼) ≠ 𝑚 𝑗 for each 𝛼 ∈ A, then

{𝑘 ∈ supp( 𝑓 ) : 𝑤 𝑓 (𝑒∗𝑘 ) < 𝑚2
𝑗 } ∈ S(2 log2 (𝑚 𝑗 )−1) (𝑛 𝑗−1+1) .
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Proof. The proof is similar to [13, Lemma 3.16 ]. �

Next, we prove a lemma similar to 15.2, for the evaluations of functionals in 𝑊 (2)aux on the ℓ2 version
of basic special convex combinations.

Lemma 16.4. Let 𝑗 ∈ N and 𝜀 > 0 with 𝜀 ≤ 𝑚−2
𝑗 . For every (2, 𝑛 𝑗 , 𝜀)-basic s.c.c. 𝑥 =

∑
𝑘∈𝐹 𝑐𝑘𝑒𝑘 , the

following hold.

(i) For every 𝑓 ∈ 𝑊 (2)aux 

 𝑓 (𝑥)

 ≤ { 1
𝑤 ( 𝑓 ) , 𝑤( 𝑓 ) ≥ 𝑚 𝑗/2

2
𝑤 ( 𝑓 )𝑚 𝑗

, 𝑤( 𝑓 ) < 𝑚 𝑗/2.

(ii) If 𝑓 ∈ 𝑊 (2)aux with a tree analysis ( 𝑓𝛼)𝛼∈A, such that 𝑤( 𝑓𝛼) ≠ 𝑚 𝑗 for all 𝛼 ∈ A and 𝜀 < 𝑚−4
𝑗 , then

| 𝑓 (𝑥) | < 2𝑚−2
𝑗 .

Proof. Without loss of generality, we may assume that supp( 𝑓 ) ⊂ 𝐹 and 𝑓 (𝑒𝑘 ) ≥ 0 for every 𝑘 ∈ 𝐹. If
𝑚 𝑗/2 ≤ 𝑤( 𝑓 ), then ‖ 𝑓 ‖2 ≤ 1/𝑤( 𝑓 ), and, hence

 𝑓 (𝑥)

 ≤ ‖ 𝑓 ‖2‖𝑥‖2 ≤ 1

𝑤( 𝑓 ) .

Suppose now that 𝑚𝑖 < 𝑚 𝑗 , and let 𝑓 = 2𝑚−1
𝑖

∑𝑑
𝑙=1 𝜆𝑙 𝑓𝑙 , where ( 𝑓𝑙)𝑑𝑙=1 is an S𝑛𝑖+1-admissible sequence

in 𝑊 (2)aux. For 𝑙 = 1, . . . , 𝑑, define

𝐷𝑙 = {𝑘 ∈ supp( 𝑓𝑙) : 𝑤 𝑓𝑙 (𝑒∗𝑘 ) < 𝑚 𝑗 }, 𝐹𝑙 = supp( 𝑓𝑙) \ 𝐷𝑙 .

Then, Lemma 16.3 (i) implies that 𝐷𝑙 ∈ S(2 log2 (𝑚 𝑗 )−1) (𝑛 𝑗−1+1) for each 𝑙 = 1, . . . , 𝑑, and, hence, since
( 𝑓𝑙)𝑑𝑙=1 is 𝑆𝑛 𝑗−1+1-admissible (recall that 𝑖 < 𝑗 since 𝑚𝑖 < 𝑚 𝑗 ) and 𝐷𝑙 ⊂ supp( 𝑓𝑙), 𝑙 = 1, . . . , 𝑑, we have

𝐷 = ∪𝑑𝑙=1𝐷𝑙 ∈ 𝑆𝑛 𝑗−1+1 ∗ S(2 log2 (𝑚 𝑗 )−1) (𝑛 𝑗−1+1) = S2 log2 (𝑚 𝑗 ) (𝑛 𝑗−1+1) .

Therefore, since x is an (2, 𝑛 𝑗 , 𝜀)-basic s.c.c. and 2 log2(𝑚 𝑗 ) (𝑛 𝑗−1 + 1) < 𝑛 𝑗 , we have
∑

𝑘∈𝐷 𝑐2
𝑘 < 𝜀.

Moreover, observe that for 𝑙 = 1, . . . , 𝑑 and 𝑘 ∈ 𝐹𝑙

𝑓𝑙 (𝑒𝑘 ) =
𝜆 𝑓𝑙 ,𝛼𝑘

𝑤 𝑓𝑙 (𝑒∗𝑘 )
≤

𝜆 𝑓𝑙 ,𝛼𝑘

𝑚 𝑗
,

where 𝑎𝑘 is the node in the induced tree analysis of 𝑓𝑙 with 𝑓𝑙,𝛼𝑘 = 𝑒∗𝑘 , and

𝑑∑
𝑙=1

𝜆2
𝑙

∑
𝑘∈𝐹𝑙

𝜆2
𝑓𝑙 ,𝛼𝑘
≤ 1.

We then calculate, using the Cauchy-Schwarz inequality

𝑓 (𝑥) = 2
𝑚𝑖
(

𝑑∑
𝑙=1

𝜆𝑙 𝑓𝑙 |𝐷 (
∑
𝑘∈𝐹

𝑐𝑘𝑒𝑘 ) +
𝑑∑
𝑙=1

𝜆𝑙 𝑓𝑙 |N\𝐷 (
∑
𝑘∈𝐹

𝑐𝑘𝑒𝑘 ))

=
2
𝑚𝑖
(

𝑑∑
𝑙=1

𝜆𝑙
∑
𝑘∈𝐷𝑙

𝑐𝑘𝜆 𝑓𝑙 ,𝛼𝑘

𝑤 𝑓𝑙 (𝑒∗𝑘 )
+

𝑑∑
𝑙=1

𝜆𝑙
∑
𝑘∈𝐹𝑙

𝑐𝑘𝜆 𝑓𝑙 ,𝛼𝑘

𝑤 𝑓𝑙 (𝑒∗𝑘 )
)
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≤ 2
𝑚𝑖
(

𝑑∑
𝑙=1

𝜆𝑙
∑
𝑘∈𝐷𝑙

𝑐𝑘𝜆 𝑓𝑙 ,𝛼𝑘 +
1
𝑚 𝑗

𝑑∑
𝑙=1

𝜆𝑙
∑
𝑘∈𝐹𝑙

𝑐𝑘𝜆 𝑓𝑙 ,𝛼𝑘 )

≤ 2
𝑚𝑖
(

𝑑∑
𝑙=1

𝜆𝑙 (
∑
𝑘∈𝐷𝑙

𝑐2
𝑘 )

1
2 (
∑
𝑘∈𝐷𝑙

𝜆2
𝑓𝑙 ,𝛼𝑘
)

1
2 + 1

𝑚 𝑗

𝑑∑
𝑙=1

𝜆𝑙 (
∑
𝑘∈𝐹𝑙

𝑐2
𝑘 )

1
2 (
∑
𝑘∈𝐹𝑙

𝜆2
𝑓𝑙 ,𝛼𝑘
)

1
2 )

≤ 2
𝑚𝑖
((

𝑑∑
𝑙=1

𝜆2
𝑙 )

1
2 (
∑
𝑘∈𝐷

𝑐2
𝑘 )

1
2 + 1

𝑚 𝑗
(

𝑑∑
𝑙=1

∑
𝑘∈𝐹𝑙

𝑐2
𝑘 )

1
2 (

𝑑∑
𝑙=1

𝜆2
𝑙

∑
𝑘∈𝐹𝑙

𝜆2
𝑓𝑙 ,𝛼𝑘
)

1
2 )

≤ 2
𝑚𝑖
(
√
𝜀 + 1

𝑚 𝑗
) ≤ 4

𝑚𝑖𝑚 𝑗
.

Finally, if there is a tree analysis ( 𝑓𝛼)𝛼∈A of f, such that 𝑤( 𝑓𝛼) ≠ 𝑚 𝑗 for every 𝛼 ∈ A, Lemma 16.3
(ii) implies that

𝐷 = {𝑘 ∈ supp( 𝑓 ) : 𝑤 𝑓 (𝑒∗𝑘 ) < 𝑚2
𝑗 } ∈ S(2 log2 (𝑚 𝑗 )−1) (𝑛 𝑗−1−1) ,

and since (2 log2(𝑚 𝑗 ) − 1) (𝑛 𝑗−1 − 1) < 𝑛 𝑗 , we have that
∑

𝑘∈𝐷 𝑐2
𝑘 < 𝜀. Hence, using similar arguments

as above, we conclude that

𝑓 (𝑥) ≤
√
𝜀 + 1

𝑚2
𝑗

<
2
𝑚2

𝑗

.

�

16.2. The basic inequality

Proposition 16.5 (basic inequality). Let (𝑥𝑘 )𝑘∈𝐼 be a (𝐶, ( 𝑗𝑘 )𝑘∈𝐼 )-RIS in 𝔛 (2)awi with 4 ≤
min supp(𝑥min 𝐼 ), (𝑎𝑘 )𝑘∈𝐼 be a sequence of nonzero scalars and 𝑓 ∈ 𝑊(2) with 𝐼 𝑓 ≠ ∅. Define
𝑡𝑘 = max supp(𝑥𝑘 ), 𝑘 ∈ 𝐼. Then there exist

(i) 𝑔 ∈ 𝑊 (2)aux ∪ {0} with 𝑤(𝑔) = 𝑤( 𝑓 )/2 if 𝑔 ≠ 0 and {𝑘 : 𝑡𝑘 ∈ supp(𝑔)} ⊂ 𝐼 𝑓 ,
(ii) ℎ ∈ {sign(𝑎𝑘 )𝑒∗𝑡𝑘 : 𝑘 ∈ 𝐼 𝑓 } ∪ {0} with 𝑘0 ∈ 𝐼 𝑓 and 𝑘0 < min supp(𝑔) if ℎ = sign(𝑎𝑘0 )𝑒∗𝑡𝑘0

and
(iii) 𝑗0 ≥ min{ 𝑗𝑘 : 𝑘 ∈ 𝐼 𝑓 },
such that

| 𝑓 (
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑥𝑘 ) | ≤ 𝐶 (1 + 1
√
𝑚 𝑗0

) [ℎ + 𝑔(
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘 )] .

Proof. As in Proposition 15.3, we prove the statement by induction on 𝑛 = 0, 1, . . . for every 𝑓 ∈ 𝑊𝑛
(2)

and every RIS. The case of 𝑛 = 0 follows easily.
Fix 𝑛 ∈ N, and assume that the conclusion holds for every 𝑓 ∈ 𝑊𝑛

(2) and every RIS. Pick an
𝑓 ∈ 𝑊𝑛+1

(2) with 𝑓 = 𝑚𝑖
−1∑𝑑

𝑙=1 𝜆𝑙 𝑓𝑙 , where ( 𝑓𝑙)𝑑𝑙=1 is an S𝑛𝑖 -admissible AWI sequence in 𝑊𝑛
(2) and

𝜆1, . . . , 𝜆𝑑 ∈ Q with
∑𝑑

𝑙=1 𝜆
2
𝑙 ≤ 1. The proof of the case where 𝑖 ≥ max{ 𝑗𝑘 : 𝑘 ∈ 𝐼 𝑓 } is identical to that

of Proposition 15.3.
Suppose then that 𝑖 < min{ 𝑗𝑘 : 𝑘 ∈ 𝐼 𝑓 }. The inductive hypothesis implies that, for every 𝑙 = 1, . . . , 𝑑

with 𝐼 𝑓𝑙 ≠ ∅, there are 𝑔𝑙 , ℎ𝑙 and 𝑗0,𝑙 as in (i)–(iii) of the statement, that satisfy the conclusion for the
functional 𝑓𝑙 . Define 𝐽 𝑓 = {𝑘 ∈ 𝐼 𝑓 : 𝑓 (𝑥𝑘 ) ≠ 0} \ ∪𝑑𝑙=1𝐼 𝑓𝑙 . For every 𝑘 ∈ 𝐽 𝑓 , since 𝑖 < 𝑗𝑘 , Definition
8.5 (iii) yields that

| 𝑓 (𝑎𝑘𝑥𝑘 ) | ≤ (
∑
𝑙∈𝐿𝑘

𝜆2
𝑙 )

1
2
𝐶

𝑚𝑖
|𝑎𝑘 | = (

∑
𝑙∈𝐿𝑘

𝜆2
𝑙 )

1
2
𝐶

𝑚𝑖
sign(𝑎𝑘 )𝑒∗𝑡𝑘 (

∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘 ),
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where

𝐿𝑘 = {𝑙 ∈ {1, . . . , 𝑑} : supp(𝑥𝑘 ) ∩ supp( 𝑓𝑙) ≠ ∅}.

Hence, we calculate

| 𝑓 (
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑥𝑘 ) | ≤ | 𝑓 (
∑
𝑘∈𝐽 𝑓

𝑎𝑘𝑥𝑘 ) | + | 𝑓 (
∑

𝑘∈∪𝑑
𝑙=1𝐼 𝑓𝑙

𝑎𝑘𝑥𝑘 ) |

≤ 𝐶

𝑚𝑖

∑
𝑘∈𝐽 𝑓

(
∑
𝑙∈𝐿𝑘

𝜆2
𝑙 )

1
2 sign(𝑎𝑘 )𝑒∗𝑡𝑘 (

∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘 ) +
𝐶

𝑚𝑖

𝑑∑
𝑙=1
[(1 + 1

√
𝑚 𝑗0,𝑙

)𝜆𝑙 (ℎ𝑙 + 𝑔𝑙)] (
∑
𝑘∈𝐼 𝑓𝑙

𝑎𝑘𝑒𝑡𝑘 )

≤ 𝐶 (1 + 1√
𝑚 𝑗min 𝐼 𝑓

) [ 1
𝑚𝑖
(
∑
𝑘∈𝐽 𝑓

(
∑
𝑙∈𝐿𝑘

𝜆2
𝑙 )

1
2 sign(𝑎𝑘 )𝑒∗𝑡𝑘 +

𝑑∑
𝑙=1

𝜆𝑙ℎ𝑙 + 𝜆𝑙𝑔𝑙)] (
∑
𝑘∈𝐼 𝑓

𝑎𝑘𝑒𝑡𝑘 ).

Define

𝑔 =
2
𝑚𝑖
(
∑
𝑘∈𝐽 𝑓

1
2
(
∑
𝑙∈𝐿𝑘

𝜆2
𝑙 )

1
2 sign(𝑎𝑘 )𝑒∗𝑡𝑘 +

𝑑∑
𝑙=1

𝜆𝑙
2
ℎ𝑙 +

𝜆𝑙
2
𝑔𝑙).

Then, observe that each 𝑙 = 1, . . . , 𝑑, belongs to 𝐿𝑘 for at most two 𝑘 ∈ 𝐽 𝑓 , and thus, using the same
arguments as in Proposition 15.3, we have that 𝑔 ∈ 𝑊 (2)aux, and this completes the proof for cases where
𝑖 < 𝑗𝑘 for all 𝑘 ∈ 𝐼 𝑓 .

Finally, the proof of the remaining case is the same as in Proposition 15.3. �

16.3. Evaluations on standard exact pairs

Finally, we prove the following lemma which shows that standard exact pairs are in fact strong exact
pairs.

Lemma 16.6. For every (2, 𝐶, 𝑚 𝑗0)-SEP (𝑥, 𝑓 ), the following hold.

(i) For every 𝑔 ∈ 𝑊



𝑔(𝑥)

 ≤ {2𝐶 (1 + 1√
𝑚 𝑗0
) [ 1

𝑚 𝑗0
+ 𝑚 𝑗0

𝑤 (𝑔) ], 𝑤(𝑔) ≥ 𝑚 𝑗0

2𝐶 (1 + 1√
𝑚 𝑗0
) [ 1

𝑚 𝑗0
+ 2

𝑤 (𝑔) ], 𝑤(𝑔) < 𝑚 𝑗0 .

(ii) If 𝑔 ∈ 𝑊 with a tree analysis (𝑔𝛼)𝛼∈A, such that 𝐼𝑔𝛼 = ∅ for every 𝛼 ∈ A with 𝑤(𝑔𝛼) = 𝑚 𝑗0 , then

|𝑔(𝑥) | ≤ 3𝐶
𝑚 𝑗0

(1 + 1
√
𝑚 𝑗0

).

Proof. Apply the basic inequality and the evaluations of functionals in 𝑊 (2)aux on 2-b.s.c.c. from Lemma
16.4. The proof is identical to that of Lemma 15.5. �
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