Η πολλαπλή σκλήρυνση είναι μια αυτοάνοση νόσος που διαταράσσει την επικοινωνία μεταξύ του κεντρικού νευρικού συστήματος και του σώματος, οδηγώντας σε συμπτώματα όπως σπασμούς, παραισθήσεις, απώλεια ισορροπίας, προβλήματα όρασης και κινητικά προβλήματα. Η μαγνητική τομογραφία (MRI) χρησιμοποιείται για την παρακολούθηση των εγκεφάλων των ασθενών και την ανίχνευση πλακών, οι οποίες μπορούν να αυξήσουν την αναπηρία τους. Αυτή η διπλωματική παρουσιάζει ένα λογισμικό σύστημα για την επεξεργασία δεδομένων MRI σχετικά με τη πολλαπλή σκλήρυνση, το οποίο μπορεί να διαχειριστεί, να οπτικοποιήσει, και να προεπεξεργαστεί χρησιμοποιώντας εργαλεία βασισμένα στο PyQt5. Η πλατφόρμα υποστηρίζει κατάτμηση βασισμένη σε βαθιά μάθηση, επιτρέποντας κατάτμηση των βλαβών σε επίπεδο pixel μέσω αυτόματης ανάλυσης που αξιοποιεί ένα συνελικτικό νευρωνικό δίκτυο U-Net. Ακόμη, η πλατφόρμα υποστηρίζει χειροκίνητη κατάτμηση. Οι σύγχρονες συναρτήσεις απώλειας και η ζύγιση των κατηγοριών διαιρούν το σύνολο δεδομένων σε υποσύνολα εκπαίδευσης, επικύρωσης και δοκιμής για να μεγιστοποιήσουν την απόδοση του μοντέλου και να εγγυηθούν αντικειμενική αξιολόγηση. Η αρχιτεκτονική διπλής διαδρομής καθιστά την ανίχνευση βλαβών αποτελεσματική, επιτρέποντας τη συλλογή και αξιολόγηση υψηλής ποιότητας νευροαπεικονιστικών συνόλων δεδομένων για την έρευνα και θεραπεία της ΠΣ.