Institutional Repository
Technical University of Crete
EN  |  EL



My Space

Syngas production via the biogas dry reforming reaction over Ni supported on zirconia modified with CeO2 or La2O3 catalysts

Goula, Maria, Charisiou Nikolaos D., Siakavelas Georgios, Tzounis, Lazaros 1987-, Tsiaoussis Ioannis, Panagiotopoulou Paraskevi, Goula Grammatiki, Gentekakis Ioannis

Full record

Year 2017
Type of Item Peer-Reviewed Journal Publication
Appears in Collections


The catalytic efficiency and bench scale time on steam stability of Ni dispersed on three commercially available catalytic supports (ZrO2, La2O3–ZrO2 and CeO2–ZrO2) has been studied for the dry reforming of methane (DRM) in the temperature range of 500–800 °C and a CH4/CO2 ratio equal to 1.5, simulating typical biogas quality. Ni supported on LaZr and CeZr carriers that obeyed enhanced basicity and oxygen ion lability values than Zr, exhibited superior catalytic efficiency and stability. A variety of techniques, namely N2 physisorption-desorption (BET method), powder X-ray diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, potentiometric titration and inductively coupled plasma emission spectroscopy (ICP), were applied for the characterization of particles morphology, textural, structural and other physical properties of the materials, as well as the type of carbon deposited on the catalytic surface after exposure to DRM reaction conditions. Post-reaction analysis of the deposited carbon on the catalysts surfaces showed that the prominent trend of the carbon deposits on the Ni/Zr and Ni/LaZr samples was to have a filamentous tube like morphology (graphite-2H). In contrast, on the Ni/CeZr used catalyst, the formation of small amount of carbon tube-like architectures was detected. The enhanced basicity and Ni dispersion of the Ni/LaZr and Ni/CeZr samples as well as the high oxygen ion lability of the lattice oxygen in the latter, were considered to be the major factors involved in the superior efficiency and durability of these samples in comparison to Ni/Zr sample.