URI | http://purl.tuc.gr/dl/dias/05EFFB32-2E4E-44BD-B373-420560B42834 | - |
Αναγνωριστικό | https://doi.org/10.1007/s42979-022-01154-5 | - |
Αναγνωριστικό | https://link.springer.com/article/10.1007/s42979-022-01154-5 | - |
Γλώσσα | en | - |
Μέγεθος | 29 pages | en |
Τίτλος | Discovery and classification of Twitter bots | en |
Δημιουργός | Shevtsov Alexander | en |
Δημιουργός | Oikonomidou Maria | en |
Δημιουργός | Antonakaki Despoina | en |
Δημιουργός | Pratikakis Polyvios | en |
Δημιουργός | Kanterakis Alexandros | en |
Δημιουργός | Fragopoulou, Paraskevi | en |
Δημιουργός | Ioannidis Sotirios | en |
Δημιουργός | Ιωαννιδης Σωτηριος | el |
Εκδότης | Springer Nature | en |
Περιγραφή | This document is the results of the research project co-funded by the European Commission (EUROPEAN COMMISSION Directorate-General Communications Networks, Content and Technology), project CONCORDIA, with Grant number 830927, project CyberSANE, with Grant number 833683, project PUZZLE with Grant number 883540 and by the Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK-02857 and T1EDK-01800). | en |
Περίληψη | Online social networks (OSN) are used by millions of users, daily. This user-base shares and discovers different opinions on popular topics. The social influence of large groups may be affected by user beliefs or be attracted by the interest in particular news or products. A large number of users, gathered in a single group or number of followers, increases the probability to influence more OSN users. Botnets, collections of automated accounts controlled by a single agent, are a common mechanism for exerting maximum influence. Botnets may be used to better infiltrate the social graph over time and create an illusion of community behaviour, amplifying their message and increasing persuasion. This paper investigates Twitter botnets, their behavior, their interaction with user communities, and their evolution over time. We analyze a dense crawl of a subset of Twitter traffic, amounting to nearly all interactions by Greek-speaking Twitter users for a period of 36 months. The collected users are labeled as botnets, based on long-term and frequent content similarity events. We detect over a million events, where seemingly unrelated accounts tweeted nearly identical content, at almost the same time. We filter these concurrent content injection events and detect a set of 1850 accounts that repeatedly exhibit this pattern of behavior, suggesting that they are fully or in part controlled and orchestrated by the same entity. We find botnets that appear for brief intervals and disappear, as well as botnets that evolve and grow, spanning the duration of our dataset. We analyze the statistical differences between the bot accounts and the human users, as well as the botnet interactions with the user communities and the Twitter trending topics. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2024-07-09 | - |
Ημερομηνία Δημοσίευσης | 2022 | - |
Θεματική Κατηγορία | Twitter | en |
Θεματική Κατηγορία | Online social networks | en |
Θεματική Κατηγορία | Botnets | en |
Θεματική Κατηγορία | Concurrent content injection | en |
Θεματική Κατηγορία | Trending topics | en |
Θεματική Κατηγορία | Jaccard similarity | en |
Θεματική Κατηγορία | Bot graph | en |
Θεματική Κατηγορία | Bot evolution | en |
Θεματική Κατηγορία | Classification | en |
Βιβλιογραφική Αναφορά | A. Shevtsov, M. Oikonomidou, D. Antonakaki, P. Pratikakis, A. Kanterakis, P. Fragopoulou and S. Ioannidis, “Discovery and classification of Twitter bots,” SN Comput. Sci., vol. 3, no. 3, Apr. 2022, doi: 10.1007/s42979-022-01154-5. | en |