Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A 21-hub-gene signature in multiple sclerosis identified using machine learning techniques

Tsakaneli Stavroula, Bei Aikaterini, Zervakis Michail

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/1DCC5A2B-CCD5-4B80-8E61-12EF753DDEA1-
Αναγνωριστικόhttps://doi.org/10.1109/BHI56158.2022.9926949-
Αναγνωριστικόhttps://ieeexplore.ieee.org/document/9926949-
Γλώσσαen-
Μέγεθος5 pagesen
ΤίτλοςA 21-hub-gene signature in multiple sclerosis identified using machine learning techniquesen
ΔημιουργόςTsakaneli Stavroulaen
ΔημιουργόςΤσακανελη Σταυρουλαel
ΔημιουργόςBei Aikaterinien
ΔημιουργόςΜπεη Αικατερινηel
ΔημιουργόςZervakis Michailen
ΔημιουργόςΖερβακης Μιχαηλel
ΕκδότηςInstitute of Electrical and Electronics Engineersen
ΠερίληψηMultiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects approximately 2.8 million persons globally. While there is currently no cure for this neurodegenerative disease, MS has become a highly manageable disease through treatment options like disease-modifying medications, that can help to control the symptoms and slow disease progression. Among them, interferon beta (IFNβ) therapy is a first-line treatment for MS but has shown to be only partially effective. Thus, it is important to identify biomarkers that aid in early identification of IFNβ responders. In this study, based on gene expression profiles from untreated and interferon treated patients from a publicly available dataset, we performed differential expression analysis and Pigengene network association (weighted correlation network analysis (WGCNA) and Bayesian networks modeling) in order to construct a high-confidence protein-protein (PPI) interaction network. Subsequently, aiming to find the most significant clustering modules and hub genes, we applied a number of topological analysis methods (cytoHubba plugin) followed by MCODE clustering algorithm. Our approach resulted in highly connected hub genes generating a reliable 21-hubgene signature that could predict the response of interferon beta (IFNβ) therapy in patients with MS. The 21-hub-gene signature showed high classification performance (Accuracy = 91,49%, Sensitivity = 94.55%, Specificity = 87.15%) demonstrating potential clinical benefit.en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2024-08-02-
Ημερομηνία Δημοσίευσης2022-
Θεματική ΚατηγορίαDifferentially expressed genes (DEGs)en
Θεματική ΚατηγορίαLIMMAen
Θεματική ΚατηγορίαSAMen
Θεματική ΚατηγορίαWeighted correlation network analysis (WGCNA)en
Θεματική ΚατηγορίαBayesian networksen
Θεματική ΚατηγορίαPigengeneen
Θεματική ΚατηγορίαcytoHubbaen
Θεματική ΚατηγορίαMCODEen
Θεματική ΚατηγορίαInterferon beta (INFβ)en
Θεματική ΚατηγορίαMultiple sclerosis (MS)en
Βιβλιογραφική ΑναφοράS. Tsakaneli, E. S. Bei and M. E. Zervakis, "A 21-hub-gene signature in multiple sclerosis identified using machine learning techniques," in Proceedings of the 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI 2022), Ioannina, Greece, 2022, doi: 10.1109/BHI56158.2022.9926949.en

Υπηρεσίες

Στατιστικά