Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Scalable end-to-end slice embedding and reconfiguration based on independent DQN agents

Doanis Pavlos, Giannakas, Theodoros, 1990-, Spyropoulos Thrasyvoulos

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/5DA0D5E6-C377-40AE-B2F4-1EE9FEB5FD47-
Αναγνωριστικόhttps://doi.org/10.1109/GLOBECOM48099.2022.10001068-
Αναγνωριστικόhttps://ieeexplore.ieee.org/document/10001068-
Γλώσσαen-
Μέγεθος6 pagesen
ΤίτλοςScalable end-to-end slice embedding and reconfiguration based on independent DQN agentsen
ΔημιουργόςDoanis Pavlosen
ΔημιουργόςGiannakas, Theodoros, 1990-en
ΔημιουργόςSpyropoulos Thrasyvoulosen
ΔημιουργόςΣπυροπουλος Θρασυβουλοςel
ΕκδότηςInstitute of Electrical and Electronics Engineersen
ΠεριγραφήThe research leading to these results has been supported in part by the H2020 MonB5G Project (grant agreement no. 871780) and in part by the H2020 SEMANTIC Project (grant agreement no. 861165).en
ΠερίληψηNetwork slicing in beyond 5G systems facilitates the creation of customized virtual networks/services, referred to as “slices”, on top of the physical network infrastructure. Efficient and dynamic orchestration of slices is needed to ensure the stringent and diverse service level agreements (SLAs) required by different services. In this paper, we provide a model that attempts to capture the problem of dynamic slice embedding and reconfiguration supporting a multi-domain setup and diverse, end-to-end SLAs. We then show that such problems can be optimally solved, in theory, with (tabular) Reinforcement Learning algorithms (e.g., Q-learning) even under, a priori, unknown demand dynamics for each slice. Nevertheless, the state and action complexity of such algorithms is prohibitive, even for very small scenarios. To this end, we propose a novel scheme based on independent DQN agents: The DQN component implements approximate Q-learning, based on simple, generic DNNs for value function approximation, radically reducing state space complexity; the independent agents then tackle the equally important issue of exploding action complexity arising from the combinatorial nature of embedding multiple VNFs per slice, multiple slices, over multiple domains and computing nodes therein. Using realistic data, we show that the proposed algorithm reduces convergence time by orders of magnitude with minimum penalty of decision optimality.en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2024-08-20-
Ημερομηνία Δημοσίευσης2022-
Θεματική ΚατηγορίαVNF placementen
Θεματική ΚατηγορίαNetwork Slicingen
Θεματική Κατηγορία5G Networksen
Θεματική ΚατηγορίαReinforcement Learningen
Θεματική ΚατηγορίαDeep-Q Networken
Βιβλιογραφική ΑναφοράP. Doanis, T. Giannakas and T. Spyropoulos, "Scalable end-to-end slice embedding and reconfiguration based on independent DQN agents," in 2022 IEEE Global Communications Conference - Proceedings (GLOBECOM 2022), Rio de Janeiro, Brazil, 2022, pp. 3429-3434, doi: 10.1109/GLOBECOM48099.2022.10001068.en

Υπηρεσίες

Στατιστικά