Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Real-time object detection using an ultra-high-resolution camera on embedded systems

Antonakakis Marios, Tzavaras Aimilios, Tsakos Konstantinos, Spanakis Emmanouil G., Sakkalis, Vangelis, Zervakis Michail, Petrakis Evripidis

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/D56A1139-65C2-4E32-B5B4-64BB221CF0B3-
Αναγνωριστικόhttps://doi.org/10.1109/IST55454.2022.9827742-
Αναγνωριστικόhttps://ieeexplore.ieee.org/document/9827742-
Γλώσσαen-
Μέγεθος6 pagesen
ΤίτλοςReal-time object detection using an ultra-high-resolution camera on embedded systemsen
ΔημιουργόςAntonakakis Mariosen
ΔημιουργόςΑντωνακακης Μαριοςel
ΔημιουργόςTzavaras Aimiliosen
ΔημιουργόςΤζαβαρας Αιμιλιοςel
ΔημιουργόςTsakos Konstantinosen
ΔημιουργόςΤσακος Κωνσταντινοςel
ΔημιουργόςSpanakis Emmanouil G.en
ΔημιουργόςSakkalis, Vangelisen
ΔημιουργόςZervakis Michailen
ΔημιουργόςΖερβακης Μιχαηλel
ΔημιουργόςPetrakis Evripidisen
ΔημιουργόςΠετρακης Ευριπιδηςel
ΕκδότηςInstitute of Electrical and Electronics Engineersen
ΠεριγραφήThe work has received funding from the European Union’s Horizon 2020 – Research and Innovation Framework Programme H2020-SU-SEC-2019, under Grant Agreement No 883272– BorderUAS.en
ΠερίληψηUnnamed Aerial Vehicle (UAV) - based remote sensing is a promising technology that is being applied for inspecting live scenes from high altitudes (e.g., for surveillance and recognizing emergencies). The evolution of hardware and software technologies in the last few years has generated additional interest in embedded systems research and its implementation in energy-independent UAVs for remote sensing. Alongside, ultra-high-resolution optical sensors are mandatory for acquiring high-resolution images which are necessary for accurate object detection from a distance (e.g., 1,000 meters). The processing of ultra-high-resolution images (e.g., 4K or 8K) is beyond the typical resolutions which are used for object detection (e.g., < 2K) emerging a necessity for special treatment in order to succeed a fast object detection. We propose a three-step approach deployed on a Docker runtime environment in an Nvidia Jetson AGX Xavier board. To support fast object detection, the captured images are split into K parts processed in parallel in separate containers running the YOLOv5 object detection algorithm. A final detection is constructed based on each one of the K detections. The experimental results are a good support to our claims of efficiency: the method can achieve close to real-time object detection for ultra-high (i.e., 8K) resolution images (i.e., in less than 1 second per frame).en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2024-08-28-
Ημερομηνία Δημοσίευσης2022-
Θεματική ΚατηγορίαUltra-high-resolution imagesen
Θεματική ΚατηγορίαReal-time object detectionen
Θεματική ΚατηγορίαYOLOv5en
Θεματική ΚατηγορίαEmbedded systemsen
Θεματική ΚατηγορίαRemote sensingen
Βιβλιογραφική ΑναφοράM. Antonakakis, A. Tzavaras, K. Tsakos, E. G. Spanakis, V. Sakkalis, M. Zervakis, and E. G. M. Petrakis, "Real-time object detection using an ultra-high-resolution camera on embedded systems," in Proceedings of the 2022 IEEE International Conference on Imaging Systems and Techniques (IST 2022), Kaohsiung, Taiwan, 2022, doi: 10.1109/IST55454.2022.9827742.en

Υπηρεσίες

Στατιστικά