Andreas Mertarakis, "An energy autonomous house equipped with a solar PV - hydrogen conversion system.", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2024
https://doi.org/10.26233/heallink.tuc.100905
This thesis investigates the potential for meeting the energy needs of a household of four using a hybrid renewable energy system that combines photovoltaic (PV) technology with hydrogen fuel cells. The proposed system utilizes excess energy generated by photovoltaic panels, converting it into hydrogen via an electrolysis unit. This hydrogen is stored in a dedicated tank and, during periods of limited sunlight, is used in a fuel cell to produce electricity, thereby ensuring that the household's energy demands are consistently met.The system was modeled using the HOMER software and includes an examination of three scenarios, each representing a different system configuration. The scenarios differ based on the proportion of renewable energy sources (RES) contributing to electricity production: the first scenario assumes 50% RES participation, the second 80%, and the third 100%. The comparative analysis of these scenarios aims to identify the optimal solution from both an energy and economic perspective.Initially, the thesis reviews renewable energy sources and their advantages, offering an overview of photovoltaic systems and their importance for sustainable energy. It then presents a detailed analysis of hydrogen technology and fuel cells, highlighting their functionality in conjunction with photovoltaics. Following this, the study explores microgrids and their characteristics, positioning them as contemporary solutions for integrating renewable energy sources into daily life.The experimental section emphasizes the use of HOMER software for the system's modeling. The analysis includes simulating the aforementioned three scenarios to achieve optimal performance and economic feasibility. The results demonstrate that the proposed system can fully meet the household's energy needs, providing a sustainable and efficient solution while significantly reducing the environmental footprint. The thesis concludes with suggestions for future research and improvements, considering technological advancements and market dynamics.