Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Content-based recommendations using similarity distance measures with application in the tourism domain

Ziogas Ioannis-Panagiotis, Streviniotis Errikos, Papadakis Harris, Chalkiadakis Georgios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/67B9A36C-D414-4469-B473-CFA10E45A9DB-
Αναγνωριστικόhttps://doi.org/10.1145/3549737.3549772-
Αναγνωριστικόhttps://dl.acm.org/doi/10.1145/3549737.3549772-
Γλώσσαen-
Μέγεθος10 pagesen
ΤίτλοςContent-based recommendations using similarity distance measures with application in the tourism domainen
ΔημιουργόςZiogas Ioannis-Panagiotisen
ΔημιουργόςΖιωγας Ιωαννης-Παναγιωτηςel
ΔημιουργόςStreviniotis Errikosen
ΔημιουργόςΣτρεβινιωτης Ερρικοςel
ΔημιουργόςPapadakis Harrisen
ΔημιουργόςChalkiadakis Georgiosen
ΔημιουργόςΧαλκιαδακης Γεωργιοςel
ΕκδότηςAssociation for Computing Machinery (ACM)en
ΠεριγραφήThis research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH -CREATE-INNOVATE B cycle (project code: T2EDK-03135). E. Streviniotis was also supported by the Onassis Foundation - Scholarship ID: G ZR 012-1/2021-2022.en
ΠερίληψηIn this paper, we explore the use of similarity distance measures for Content-based recommendations for touristic attractions. First, we study ways of deploying hierarchies of points of interests (POIs) and operate upon them with well-known similarity distance measures originating in the text analysis domain. Then, we progressively build three novel, hierarchy-free, similarity measures, and discuss their strengths and weaknesses. We end up with a measure, the Weighted Extended Jaccard Similarity (WEJS) that combines information regarding the user interests (in the form of user preference-related weights applied on the items’ features) and specific items’ characteristics (in the form of particular values for the items’ features). As such, the use of WEJS allows the provision of recommendations that are effectively personalized. Interestingly, though it is a hierarchy-free measure, it is able to recommend items based on others that would naturally appear close in a features-based POIs hierarchy; while at the same time it is able to capture similarities among items that would be distant to each other in any hierarchy built solely based on the POIs’ features. Our systematic experimental evaluation on a real-world dataset showcases the benefits and limitations of the various measures, and confirms the effectiveness of WEJS in offering “rich” and personalized recommendations.en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2024-09-19-
Ημερομηνία Δημοσίευσης2022-
Θεματική ΚατηγορίαRecommender systemsen
Θεματική ΚατηγορίαContent-baseden
Θεματική ΚατηγορίαHierarchiesen
Θεματική ΚατηγορίαDistance measuresen
Βιβλιογραφική ΑναφοράI.-P. Ziogas, E. Streviniotis, H. Papadakis and G. Chalkiadakis, “Content-based recommendations using similarity distance measures with application in the tourism domain,” in Proceedings of the 12th Hellenic Conference on Artificial Intelligence (SETN 2022), Corfu, Greece, 2022. doi: 10.1145/3549737.3549772.en

Υπηρεσίες

Στατιστικά