Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Multiwinner election mechanisms for diverse personalized Bayesian recommendations for the tourism domain

Streviniotis Errikos, Chalkiadakis Georgios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/1C20CB72-35A7-4FCD-ABCE-3ADFA58787CF-
Αναγνωριστικόhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85139440492&partnerID=40&md5=d0f65d4aab55b153c8a1f351dd2de52a-
Γλώσσαen-
ΤίτλοςMultiwinner election mechanisms for diverse personalized Bayesian recommendations for the tourism domainen
ΔημιουργόςStreviniotis Errikosen
ΔημιουργόςΣτρεβινιωτης Ερρικοςel
ΔημιουργόςChalkiadakis Georgiosen
ΔημιουργόςΧαλκιαδακης Γεωργιοςel
ΕκδότηςCEUR-WSen
ΠερίληψηIn this work, we employ several multiwinner voting rules from the social choice literature to the personalized recommendations problem. Specifically, we equip with such mechanisms a Bayesian recommender for the tourism domain, allowing for effective personalized recommendations while promoting diverse results with respect to travel-related features. Our system models both users and items-i.e., tourist points of interest (POIs)-as multivariate normal distributions. We employ a novel, lightweight preference elicitation process, during which the user is presented with and asked to rate a small number of POIs-related images. We then use these ratings to guide a Bayesian updating process of beliefs regarding the user's preferences. Moreover, we study the effectiveness of our approach when we equip our system with some prior knowledge regarding the (average) preferences of a specific tourists' type (i.e., tourists of a specific age group), given data collected via questionnaires from actual visitors of a popular tourist resort on a Greek island. Finally, we conduct a systematic experimental evaluation of our approach by applying it on a real-world dataset. Our results (i) highlight the ability of our system to successfully produce personalized recommendations that match the specific interests of a single user; (ii) confirm that the employment of prior knowledge regarding the preferences of tourists, based on their demographics, guides our recommender to avoid the cold-start problem; and (iii) demonstrate that the use of multiwinner mechanisms allows for diverse recommendations with respect to travel-related features, and increased system performance in the case of limited user-system interactions.en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2024-12-20-
Ημερομηνία Δημοσίευσης2022-
Θεματική ΚατηγορίαBayesian recommender systemen
Θεματική ΚατηγορίαPersonalized recommendationsen
Θεματική ΚατηγορίαSocial choice theoryen
Βιβλιογραφική ΑναφοράE. Streviniotis and G. Chalkiadakis, "Multiwinner election mechanisms for diverse personalized Bayesian recommendations for the tourism domain," in Proceedings of the 2022 Workshop on Recommenders in Tourism, (RecTour 2022), 2022.en

Υπηρεσίες

Στατιστικά