URI | http://purl.tuc.gr/dl/dias/C9FA3831-D3B3-4A9C-BA68-A06FE94E88DA | - |
Αναγνωριστικό | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141010792&partnerID=40&md5=f079cfd0f0dc82def882b3e562db78ec | - |
Γλώσσα | en | - |
Μέγεθος | 5 pages | en |
Τίτλος | Evaluating short-term forecasting of multiple time series in IoT environments | en |
Δημιουργός | Tzagkarakis Christos | en |
Δημιουργός | Charalampidis Pavlos | en |
Δημιουργός | Roubakis Stylianos | en |
Δημιουργός | Fragkiadakis Alexandros | en |
Δημιουργός | Ioannidis Sotirios | en |
Δημιουργός | Ιωαννιδης Σωτηριος | el |
Εκδότης | European Signal Processing Conference (EUSIPCO) | en |
Περιγραφή | This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957337 (project MARVEL) and the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH-CREATE-INNOVATE (project code: T1EDK-00070). | en |
Περίληψη | Modern Internet of Things (IoT) environments are monitored via a large number of IoT enabled sensing devices, with the data acquisition and processing infrastructure setting restrictions in terms of computational power and energy resources. To alleviate this issue, sensors are often configured to operate at relatively low sampling frequencies, yielding a reduced set of observations. Nevertheless, this can hamper dramatically subsequent decision-making, such as forecasting. To address this problem, in this work we evaluate short-term forecasting in highly underdetermined cases, i.e., the number of sensor streams is much higher than the number of observations. Several statistical, machine learning and neural network-based models are thoroughly examined with respect to the resulting forecasting accuracy on five different real-world datasets. The focus is given on a unified experimental protocol especially designed for short-term prediction of multiple time series at the IoT edge. The proposed framework can be considered as an important step towards establishing a solid forecasting strategy in resource constrained IoT applications. | en |
Τύπος | Πλήρης Δημοσίευση σε Συνέδριο | el |
Τύπος | Conference Full Paper | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2025-01-07 | - |
Ημερομηνία Δημοσίευσης | 2022 | - |
Θεματική Κατηγορία | Internet of Things | en |
Θεματική Κατηγορία | Μachine learning | en |
Θεματική Κατηγορία | Μultiple time series | en |
Θεματική Κατηγορία | Νeural networks | en |
Θεματική Κατηγορία | Rolling window tuning | en |
Θεματική Κατηγορία | Short-term forecasting | en |
Βιβλιογραφική Αναφορά | C. Tzagkarakis, P. Charalampidis, S. Roubakis, A. Fragkiadakis and S. Ioannidis, "Evaluating short-term forecasting of multiple time series in IoT environments," in Proceedings of the 30th European Signal Processing Conference (EUSIPCO 2022), Belgrade, Serbia, 2022, vol. 2022, pp. 1116-1120, 2022. | en |