Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Evaluating short-term forecasting of multiple time series in IoT environments

Tzagkarakis Christos, Charalampidis Pavlos, Roubakis Stylianos, Fragkiadakis Alexandros, Ioannidis Sotirios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/C9FA3831-D3B3-4A9C-BA68-A06FE94E88DA-
Αναγνωριστικόhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85141010792&partnerID=40&md5=f079cfd0f0dc82def882b3e562db78ec-
Γλώσσαen-
Μέγεθος5 pagesen
ΤίτλοςEvaluating short-term forecasting of multiple time series in IoT environmentsen
ΔημιουργόςTzagkarakis Christosen
ΔημιουργόςCharalampidis Pavlosen
ΔημιουργόςRoubakis Stylianosen
ΔημιουργόςFragkiadakis Alexandrosen
ΔημιουργόςIoannidis Sotiriosen
ΔημιουργόςΙωαννιδης Σωτηριοςel
ΕκδότηςEuropean Signal Processing Conference (EUSIPCO)en
ΠεριγραφήThis work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957337 (project MARVEL) and the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH-CREATE-INNOVATE (project code: T1EDK-00070).en
ΠερίληψηModern Internet of Things (IoT) environments are monitored via a large number of IoT enabled sensing devices, with the data acquisition and processing infrastructure setting restrictions in terms of computational power and energy resources. To alleviate this issue, sensors are often configured to operate at relatively low sampling frequencies, yielding a reduced set of observations. Nevertheless, this can hamper dramatically subsequent decision-making, such as forecasting. To address this problem, in this work we evaluate short-term forecasting in highly underdetermined cases, i.e., the number of sensor streams is much higher than the number of observations. Several statistical, machine learning and neural network-based models are thoroughly examined with respect to the resulting forecasting accuracy on five different real-world datasets. The focus is given on a unified experimental protocol especially designed for short-term prediction of multiple time series at the IoT edge. The proposed framework can be considered as an important step towards establishing a solid forecasting strategy in resource constrained IoT applications.en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2025-01-07-
Ημερομηνία Δημοσίευσης2022-
Θεματική ΚατηγορίαInternet of Thingsen
Θεματική ΚατηγορίαΜachine learningen
Θεματική ΚατηγορίαΜultiple time seriesen
Θεματική ΚατηγορίαΝeural networksen
Θεματική ΚατηγορίαRolling window tuningen
Θεματική ΚατηγορίαShort-term forecastingen
Βιβλιογραφική ΑναφοράC. Tzagkarakis, P. Charalampidis, S. Roubakis, A. Fragkiadakis and S. Ioannidis, "Evaluating short-term forecasting of multiple time series in IoT environments," in Proceedings of the 30th European Signal Processing Conference (EUSIPCO 2022), Belgrade, Serbia, 2022, vol. 2022, pp. 1116-1120, 2022.en

Υπηρεσίες

Στατιστικά