Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

The design and performance of an asymmetrical nozzle in Laser Wake Field electron acceleration

Andrianaki Georgia, Grigoriadis Anastasios, Tazes Ioannis, Fitilis Ioannis, Dimitriou Vasilis, Benis Emmanouil, Nikolos Ioannis, Papadogiannis Nektarios, Tatarakis, Michael, 19..-

Full record


URI: http://purl.tuc.gr/dl/dias/A8C44D25-DF9A-4073-ACC9-D85955781A7D
Year 2022
Type of Item Conference Full Paper
License
Details
Bibliographic Citation G. Andrianaki, A. Grigoriadis, I. Tazes, I. Fitilis, V. Dimitriou, E. P. Benis, J. Nicolos, N. Papadogiannis and M. Tatarakis, “The design and performance of an asymmetrical nozzle in Laser Wake Field electron acceleration,” in Proceedings of the 48th European Physical Society Conference on Plasma Physics (EPS 2022), virtual event, 2022.
Appears in Collections

Summary

Laser Wakefield is a method for the acceleration of electrons up to the GeV level, with applications of great importance. Experimentally is realized by focusing an ultra-intense (I>1018 W/cm2), ultra-short (t~50 fs) laser pulse on an under-dense target. The parameters that interplay and lead to the tunability of the acceleration process are the laser pulse characteristics (e.g energy, pulse duration) as well as the gas density profile.We are working on the development of non-symmetric nozzles by conducting 3Dcomputational Fluid Dynamic (CFD) simulations. Previously, we have studied conicalnozzles, which were 3D printed and used in our experiments. In this work, we examine advanced, non-symmetric nozzle designs which are also 3D printed and tested.

Services

Statistics