Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Soft sensing of LPG processes using deep learning

Sifakis Nikolaos, Sarantinoudis Nikolaos, Tsinarakis Georgios, Politis Christos, Arampatzis Georgios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/0FD7E0E4-71CB-4864-82A7-4B3AE98F5320-
Αναγνωριστικόhttps://doi.org/10.3390/s23187858-
Αναγνωριστικόhttps://www.mdpi.com/1424-8220/23/18/7858-
Γλώσσαen-
Μέγεθος19 pagesen
ΤίτλοςSoft sensing of LPG processes using deep learningen
ΔημιουργόςSifakis Nikolaosen
ΔημιουργόςΣηφακης Νικολαοςel
ΔημιουργόςSarantinoudis Nikolaosen
ΔημιουργόςΣαραντινουδης Νικολαοςel
ΔημιουργόςTsinarakis Georgiosen
ΔημιουργόςΤσιναρακης Γεωργιοςel
ΔημιουργόςPolitis Christosen
ΔημιουργόςΠολιτης Χρηστοςel
ΔημιουργόςArampatzis Georgiosen
ΔημιουργόςΑραμπατζης Γεωργιοςel
ΕκδότηςMDPIen
ΠεριγραφήThis work was supported by the European Union’s Horizon 2020 program project FACTLOG867 under grant agreement number H2020–869951.en
ΠερίληψηThis study investigates the integration of soft sensors and deep learning in the oil-refinery industry to improve monitoring efficiency and predictive accuracy in complex industrial processes, particularly de-ethanization and debutanization. Soft sensor models were developed to estimate critical variables such as the C2 and C5 contents in liquefied petroleum gas (LPG) after distillation and the energy consumption of distillation columns. The refinery’s LPG purification process relies on periodic sampling and laboratory analysis to maintain product specifications. The models were tested using data from actual refinery operations, addressing challenges such as scalability and handling dirty data. Two deep learning models, an artificial neural network (ANN) soft sensor model and an ensemble random forest regressor (RFR) model, were developed. This study emphasizes model interpretability and the potential for real-time updating or online learning. The study also proposes a comprehensive, iterative solution for predicting and optimizing component concentrations within a dual-column distillation system, highlighting its high applicability and potential for replication in similar industrial scenarios.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2025-02-19-
Ημερομηνία Δημοσίευσης2023-
Θεματική ΚατηγορίαIndustrial monitoringen
Θεματική ΚατηγορίαEarly fault detectionen
Θεματική ΚατηγορίαSoft sensorsen
Θεματική ΚατηγορίαDeep learningen
Θεματική ΚατηγορίαIndustrial processesen
Θεματική ΚατηγορίαOil refineryen
Βιβλιογραφική ΑναφοράN. Sifakis, N. Sarantinoudis, G. Tsinarakis, C. Politis and G. Arampatzis, “Soft sensing of LPG processes using deep learning,” Sensors, vol. 23, no. 18, Sep. 2023, doi: 10.3390/s23187858.en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά