URI | http://purl.tuc.gr/dl/dias/A2A25F8C-FE15-4B7C-A134-A43F3F42004E | - |
Αναγνωριστικό | https://doi.org/10.3390/s23010009 | - |
Αναγνωριστικό | https://www.mdpi.com/1424-8220/23/1/9 | - |
Γλώσσα | en | - |
Μέγεθος | 22 pages | en |
Τίτλος | Novel meta-learning techniques for the multiclass image classification problem | en |
Δημιουργός | Vogiatzis Antonios | en |
Δημιουργός | Βογιατζης Αντωνιος | el |
Δημιουργός | Orfanoudakis Stavros | en |
Δημιουργός | Ορφανουδακης Σταυρος | el |
Δημιουργός | Chalkiadakis Georgios | en |
Δημιουργός | Χαλκιαδακης Γεωργιος | el |
Δημιουργός | Moirogiorgou Konstantia | en |
Δημιουργός | Μοιρογιωργου Κωνσταντια | el |
Δημιουργός | Zervakis Michail | en |
Δημιουργός | Ζερβακης Μιχαηλ | el |
Εκδότης | MDPI | en |
Περιγραφή | This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH - CREATE -INNOVATE (project code: T1EDK - 03110, ANASA). | en |
Περίληψη | Multiclass image classification is a complex task that has been thoroughly investigated in the past. Decomposition-based strategies are commonly employed to address it. Typically, these methods divide the original problem into smaller, potentially simpler problems, allowing the application of numerous well-established learning algorithms that may not apply directly to the original task. This work focuses on the efficiency of decomposition-based methods and proposes several improvements to the meta-learning level. In this paper, four methods for optimizing the ensemble phase of multiclass classification are introduced. The first demonstrates that employing a mixture of experts scheme can drastically reduce the number of operations in the training phase by eliminating redundant learning processes in decomposition-based techniques for multiclass problems. The second technique for combining learner-based outcomes relies on Bayes’ theorem. Combining the Bayes rule with arbitrary decompositions reduces training complexity relative to the number of classifiers even further. Two additional methods are also proposed for increasing the final classification accuracy by decomposing the initial task into smaller ones and ensembling the output of the base learners along with that of a multiclass classifier. Finally, the proposed novel meta-learning techniques are evaluated on four distinct datasets of varying classification difficulty. In every case, the proposed methods present a substantial accuracy improvement over existing traditional image classification techniques. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2025-02-20 | - |
Ημερομηνία Δημοσίευσης | 2023 | - |
Θεματική Κατηγορία | Ensemble learning | en |
Θεματική Κατηγορία | Mixture of experts | en |
Θεματική Κατηγορία | Decomposition-based methods | en |
Θεματική Κατηγορία | Multi-class classification | en |
Θεματική Κατηγορία | Bayes rule | en |
Θεματική Κατηγορία | Opinion aggregation | en |
Θεματική Κατηγορία | Meta-learning | en |
Βιβλιογραφική Αναφορά | A. Vogiatzis, S. Orfanoudakis, G. Chalkiadakis, K. Moirogiorgou and M. Zervakis, “Novel meta-learning techniques for the multiclass image classification problem,” Sensors, vol. 23, no. 1, Jan. 2023, doi: 10.3390/s23010009. | en |