Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Novel meta-learning techniques for the multiclass image classification problem

Vogiatzis Antonios, Orfanoudakis Stavros, Chalkiadakis Georgios, Moirogiorgou Konstantia, Zervakis Michail

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/A2A25F8C-FE15-4B7C-A134-A43F3F42004E-
Αναγνωριστικόhttps://doi.org/10.3390/s23010009-
Αναγνωριστικόhttps://www.mdpi.com/1424-8220/23/1/9-
Γλώσσαen-
Μέγεθος22 pagesen
ΤίτλοςNovel meta-learning techniques for the multiclass image classification problemen
ΔημιουργόςVogiatzis Antoniosen
ΔημιουργόςΒογιατζης Αντωνιοςel
ΔημιουργόςOrfanoudakis Stavrosen
ΔημιουργόςΟρφανουδακης Σταυροςel
ΔημιουργόςChalkiadakis Georgiosen
ΔημιουργόςΧαλκιαδακης Γεωργιοςel
ΔημιουργόςMoirogiorgou Konstantiaen
ΔημιουργόςΜοιρογιωργου Κωνσταντιαel
ΔημιουργόςZervakis Michailen
ΔημιουργόςΖερβακης Μιχαηλel
ΕκδότηςMDPIen
ΠεριγραφήThis research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH - CREATE -INNOVATE (project code: T1EDK - 03110, ANASA).en
ΠερίληψηMulticlass image classification is a complex task that has been thoroughly investigated in the past. Decomposition-based strategies are commonly employed to address it. Typically, these methods divide the original problem into smaller, potentially simpler problems, allowing the application of numerous well-established learning algorithms that may not apply directly to the original task. This work focuses on the efficiency of decomposition-based methods and proposes several improvements to the meta-learning level. In this paper, four methods for optimizing the ensemble phase of multiclass classification are introduced. The first demonstrates that employing a mixture of experts scheme can drastically reduce the number of operations in the training phase by eliminating redundant learning processes in decomposition-based techniques for multiclass problems. The second technique for combining learner-based outcomes relies on Bayes’ theorem. Combining the Bayes rule with arbitrary decompositions reduces training complexity relative to the number of classifiers even further. Two additional methods are also proposed for increasing the final classification accuracy by decomposing the initial task into smaller ones and ensembling the output of the base learners along with that of a multiclass classifier. Finally, the proposed novel meta-learning techniques are evaluated on four distinct datasets of varying classification difficulty. In every case, the proposed methods present a substantial accuracy improvement over existing traditional image classification techniques.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2025-02-20-
Ημερομηνία Δημοσίευσης2023-
Θεματική ΚατηγορίαEnsemble learningen
Θεματική ΚατηγορίαMixture of expertsen
Θεματική ΚατηγορίαDecomposition-based methodsen
Θεματική ΚατηγορίαMulti-class classificationen
Θεματική ΚατηγορίαBayes ruleen
Θεματική ΚατηγορίαOpinion aggregationen
Θεματική ΚατηγορίαMeta-learningen
Βιβλιογραφική ΑναφοράA. Vogiatzis, S. Orfanoudakis, G. Chalkiadakis, K. Moirogiorgou and M. Zervakis, “Novel meta-learning techniques for the multiclass image classification problem,” Sensors, vol. 23, no. 1, Jan. 2023, doi: 10.3390/s23010009.en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά