Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A novel Hybrid Recommender System for the tourism domain

Chalkiadakis Georgios, Ziogas Ioannis-Panagiotis, Koutsmanis Michail, Streviniotis Errikos, Panagiotakis Costas, Papadakis Harris

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/D215E8AA-AABF-4BF5-942C-7FEBF75B109A-
Αναγνωριστικόhttps://doi.org/10.3390/a16040215-
Αναγνωριστικόhttps://www.mdpi.com/1999-4893/16/4/215-
Γλώσσαen-
Μέγεθος26 pagesen
ΤίτλοςA novel Hybrid Recommender System for the tourism domainen
ΔημιουργόςChalkiadakis Georgiosen
ΔημιουργόςΧαλκιαδακης Γεωργιοςel
ΔημιουργόςZiogas Ioannis-Panagiotisen
ΔημιουργόςΖιωγας Ιωαννης-Παναγιωτηςel
ΔημιουργόςKoutsmanis Michailen
ΔημιουργόςΚουτσμανης Μιχαηλel
ΔημιουργόςStreviniotis Errikosen
ΔημιουργόςΣτρεβινιωτης Ερρικοςel
ΔημιουργόςPanagiotakis Costasen
ΔημιουργόςPapadakis Harrisen
ΕκδότηςMDPIen
ΠεριγραφήThis research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH-CREATE-INNOVATE B cycle (project code: T2EDK-03135).en
ΠερίληψηIn this paper, we develop a novel hybrid recommender system for the tourism domain, which combines (a) a Bayesian preferences elicitation component which operates by asking the user to rate generic images (corresponding to generic types of POIs) in order to build a user model and (b) a novel content-based (CB) recommendations component. The second component can in fact itself be considered a hybrid among two different CB algorithms, each exploiting one of two semantic similarity measures: a hierarchy-based and a non-hierarchy based one. The latter is the recently introduced Weighted Extended Jaccard Similarity (WEJS). We note that WEJS is employed for the first time within a recommender algorithm. We incorporate our algorithm within a real, already available at Google Play, tour-planning mobile application for short-term visitors of the popular touristic destination of Agios Nikolaos, Crete, Greece, and evaluate our approach via extensive simulations conducted on a real-world dataset constructed for the needs of the aforementioned mobile application. Our experiments verify that our algorithms result in effective personalized recommendations of touristic points of interest, while our final hybrid algorithm outperforms our exclusively content-based recommender algorithms in terms of recommendations accuracy. Specifically, when comparing the performance of several hybrid recommender system variants, we are able to come up with a “winner”: the most preferable variant of our hybrid recommender algorithm is one using a ⟨four elicitation slates, six shown images per slate⟩ pair as input to its Bayesian elicitation component. This variant combines increased precision performance with a lightweight preferences elicitation process.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2025-04-24-
Ημερομηνία Δημοσίευσης2023-
Θεματική ΚατηγορίαHybrid recommender systemsen
Θεματική ΚατηγορίαBayesian recommendersen
Θεματική ΚατηγορίαContent-based recommendationsen
Θεματική ΚατηγορίαPersonalized recommendationsen
Θεματική ΚατηγορίαTourism recommendersen
Θεματική ΚατηγορίαSemantic similarity measuresen
Βιβλιογραφική ΑναφοράG. Chalkiadakis, I. Ziogas, M. Koutsmanis, E. Streviniotis, C. Panagiotakis and H. Papadakis, “A novel Hybrid Recommender System for the tourism domain,” Algorithms, vol. 16, no. 4, Apr. 2023, doi: 10.3390/a16040215.en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά