Theodoros Florakis, "Robotic arm construction for plant harvesting in greenhouses", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2025
https://doi.org/10.26233/heallink.tuc.103214
The automation of agricultural production constitutes a significant challenge in the modern world. Emerging technologies and agricultural applications can lead to increased productivity and efficiency, as well as improved product quality. Automation has contributed to various agricultural applications, including planting, harvesting, disease recognition, yield estimation, quality control, water management, crop monitoring, pesticide control, and soil and pest quality assessment. Among these applications, harvesting is the process that has seen the least technological advancement toward satisfactory automation. To this day, the majority of fruit and vegetable harvesting relies primarily on manual techniques.Robotic systems capable of intelligent, automated, and selective harvesting can significantly contribute to the primary agricultural sector. This thesis presents the development and programming of a robotic arm designed for use in tomato and pepper cultivation within greenhouses. The implemented system utilizes computer vision to identify ripe fruits based on color, size, and other visual indicators, enabling precise harvesting decisions.To achieve this goal, machine learning algorithms are employed to analyze vast amounts of data, enhancing predictive accuracy, optimizing harvesting schedules, and reducing waste. The individual components of the robotic arm are fabricated using 3D printing, and their final assembly results in the complete construction of the system. Through this approach, the developed robotic arm optimizes the harvesting process for tomatoes and peppers while simultaneously facilitating smarter decision-making throughout the entire cultivation cycle.