URI | http://purl.tuc.gr/dl/dias/6FA02C2C-0C13-469F-B004-8B0B53E50C35 | - |
Αναγνωριστικό | https://doi.org/10.26233/heallink.tuc.103573 | - |
Γλώσσα | en | - |
Μέγεθος | 78 pages | en |
Τίτλος | Machine learning model hyperparameter fine-tuning in a Federated Learning
environment | en |
Τίτλος | Βελτιστοποίηση υπερπαραμέτρων μοντέλων μηχανικής μάθησης σε περιβάλλον Federated Learning | el |
Δημιουργός | Valavanis Georgios | en |
Δημιουργός | Βαλαβανης Γεωργιος | el |
Συντελεστής [Επιβλέπων Καθηγητής] | Ioannidis Sotirios | en |
Συντελεστής [Επιβλέπων Καθηγητής] | Ιωαννιδης Σωτηριος | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Lagoudakis Michail | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Λαγουδακης Μιχαηλ | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Spyropoulos Thrasyvoulos | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Σπυροπουλος Θρασυβουλος | el |
Εκδότης | Πολυτεχνείο Κρήτης | el |
Εκδότης | Technical University of Crete | en |
Ακαδημαϊκή Μονάδα | Technical University of Crete::School of Electrical and Computer Engineering | en |
Ακαδημαϊκή Μονάδα | Πολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών | el |
Περιγραφή | Thesis submitted by Georgios Valavanis in fulfillment of the requirements for the
Diploma of Electrical and Computer Engineering | en |
Περίληψη | Federated Learning (FL) has emerged as a paradigm for training machine learning
models on decentralized data while preserving privacy. Despite its advantages, the
process of hyperparameter fine-tuning remains a critical challenge within FL settings, primarily due to data heterogeneity, communication constraints, and the need for secure collaboration. The present diploma addresses the problem of efficient and privacy-preserving hyperparameter fine-tuning in FL environments by providing a framework that utilizes federated hyperparameter fine-tuning. Here, clients collaboratively explore hyperparameter configurations using local data. Then, after the best hyperparameters are found from the predefined hyperparameter space, a series of secure aggregation rounds takes place at the server. Our system leverages stratified k-fold cross-validation on clients to evaluate hyperparameter combinations locally, encrypted communication to protect model updates, and weighted aggregation to harmonize global model performance. Various classifiers are supported, such as Stochastic Gradient Descent and Gaussian Naive Bayes, providing extended implementation capabilities. Additionally, to ensure data privacy, our framework provides symmetric and asymmetric encryption for the client-server communication. Experimental results demonstrate the efficacy of the approach in achieving similar F1 scores to the implemented non-federated approach while maintaining scalability and security. This work contributes a practical methodology for hyperparameter fine-tuning in FL, balancing performance and privacy. | en |
Περίληψη | Το Federated Learning (FL) έχει αναδειχθεί ως μια μέθοδος εκπαίδευσης Machine Learning (ML) μοντέλων σε αποκεντρωμένα δεδομένα, που διατηρεί την ιδιωτικότητα και την ασφάλεια. Ωστόσο, παρά τα πλεονεκτήματά του, το hyperparameter fine-tuning παραμένει μια κρίσιμη πρόκληση σε περιβάλλοντα FL λόγω της ετερογένειας των δεδομένων, των περιορισμών επικοινωνίας και της ανάγκης για ασφαλή συνεργασία. Σε αυτή τη διπλωματική εργασία θα αντιμετωπιστεί το πρόβλημα του αποδοτικού και ασφαλούς hyperparameter fine-tuning σε περιβάλλον FL. Προτείνεται ένα framework στο οποίο οι clients συνεργάζονται για να εξερευνήσουν συνδυασμούς υπερπαραμέτρων χρησιμοποιώντας τα τοπικά τους δεδομένα. Στη συνέχεια, αφού βρεθούν οι βέλτιστες υπερπαράμετροι, πραγματοποιείται μια σειρά από secure aggregation γύρους στο server. Οι clients αξιοποιούν το stratified k-fold cross validation για την τοπική αξιολόγηση των συνδυασμών υπερπαραμέτρων, την κρυπτογραφημένη επικοινωνία για την προστασία των updates του μοντέλου και το weighted aggregation για την δημιουργία του global model. Το υλοποιημένο framework υποστηρίζει διάφορους classifiers όπως Support Vector Machines και Gaussian Naive Bayes, προσφέροντας εκτεταμένες δυνατότητες. Επιπλέον, για να διασφαλιστεί η ιδιωτικότητα των δεδομένων, παρέχεται symmetric και asymmetric encryption στην επικοινωνία μεταξύ clients και server. Τα πειραματικά αποτελέσματα αποδεικνύουν την αποτελεσματικότητα αυτής της προσέγγισης στην επίτευξη παρόμοιων F1 scores με μια μη federated προσέγγιση, διατηρώντας παράλληλα την επεκτασιμότητα και την ασφάλεια. Η παρούσα εργασία συνεισφέρει μια πρακτική μεθοδολογία για το hyperparameter fine-tuning στο FL, εξισορροπώντας την απόδοση και την ιδιωτικότητα. | el |
Τύπος | Διπλωματική Εργασία | el |
Τύπος | Diploma Work | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2025-06-27 | - |
Ημερομηνία Δημοσίευσης | 2025 | - |
Θεματική Κατηγορία | Machine learning | en |
Θεματική Κατηγορία | Hyperparameter Fine-Tuning in Federated Learning | en |
Θεματική Κατηγορία | Hyperparameter Fine-Tuning | en |
Θεματική Κατηγορία | Federated Learning | en |
Βιβλιογραφική Αναφορά | Georgios Valavanis, "Machine learning model hyperparameter fine-tuning in a Federated Learning environment", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2025 | en |
Βιβλιογραφική Αναφορά | Γεώργιος Βαλαβάνης, "Βελτιστοποίηση υπερπαραμέτρων μοντέλων μηχανικής μάθησης σε περιβάλλον Federated Learning ", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2025 | el |