URI | http://purl.tuc.gr/dl/dias/69449888-E6DE-4ADB-86EA-E4C87B271689 | - |
Αναγνωριστικό | https://doi.org/10.26233/heallink.tuc.104073 | - |
Γλώσσα | el | - |
Μέγεθος | 115 σελίδες | el |
Τίτλος | Επεξεργασία και ερμηνεία γεωφυσικών δεδομένων με τεχνικές μηχανικής μάθησης | el |
Δημιουργός | Sykiotis Angelos | en |
Δημιουργός | Συκιωτης Αγγελος | el |
Συντελεστής [Επιβλέπων Καθηγητής] | Vafeidis Antonios | en |
Συντελεστής [Επιβλέπων Καθηγητής] | Βαφειδης Αντωνιος | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Galetakis Michail | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Γαλετακης Μιχαηλ | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Varouchakis Emmanouil | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Βαρουχακης Εμμανουηλ | el |
Εκδότης | Πολυτεχνείο Κρήτης | el |
Εκδότης | Technical University of Crete | en |
Ακαδημαϊκή Μονάδα | Technical University of Crete::School of Mineral Resources Engineering | en |
Ακαδημαϊκή Μονάδα | Πολυτεχνείο Κρήτης::Σχολή Μηχανικών Ορυκτών Πόρων | el |
Περίληψη | Η παρούσα διπλωματική εργασία εξετάζει τη χρήση της βαθιάς μηχανικής μάθησης (deep learning) σε γεωφυσικές μεθόδους αντιστροφής για να βοηθήσει και να αναδείξει τις παραδοσιακές μεθόδους.
Οι γεωφυσικές μέθοδοι αναπτύχθηκαν για την αναζήτηση ορυκτών πρώτων υλών στο υπέδαφος. Χρησιμοποιούνται μέθοδοι όπως οι αερομεταφερόμενες ηλεκτρομαγνητικές (AEM) και το γεωραντάρ (GPR), αλλά και η τρισδιάστατη ηλεκτρική τομογραφία (3D ERT). Όμως, οι παραδοσιακές τεχνικές συχνά αντιμετωπίζουν προβλήματα όπως ο τεράστιος όγκος δεδομένων, θόρυβος που αποπροσανατολίζει τα σήματα, ελλείψεις σε πληροφορίες και υπολογιστές που δεν ανταποκρίνονται. Εκεί μπαίνει η βαθιά μάθηση, όχι απλά για να μειώσει τον χρόνο συλλογής και επεξεργασίας δεδομένων, αλλά για να αλλάξει εντελώς τον τρόπο που βλέπουμε τις έρευνες στο μέλλον. Με τα νευρωνικά δίκτυα, ειδικά αυτά που δουλεύουν με βάση τη φυσική, οι επιστήμονες μπορούν να βγάλουν πιο ξεκάθαρα, γρήγορα και αξιόπιστα συμπεράσματα, ανοίγοντας νέους δρόμους στη γεωφυσική έρευνα.
Για παράδειγμα, μοντέλα σαν το Physics-Guided Neural Network (PGNN) χειρίζονται τεράστιους όγκους δεδομένων που παλιότερα απαιτούσαν μεγάλη υπολογιστική ισχύ, συνδυάζοντας έξυπνα τους νόμους της φυσικής με ό,τι μαθαίνουν από τα δεδομένα για να χαρτογραφήσουν την ηλεκτρική αγωγιμότητα του υπεδάφους με απίστευτη ακρίβεια. Στο GPR, δίκτυα όπως το DeepLabV3+ εκτιμούν ηλεκτρικές ιδιότητες σε δευτερόλεπτα, κάνοντας μια διαδικασία που κάποτε έπαιρνε ώρες, στιγμιαία. Όσο για την αντιστροφή δεδομένων βαρύτητας, η βαθιά μάθηση μας βοηθά να εντοπίσουμε γεωθερμικά πεδία (όπως στη λεκάνη Gonghe) εντοπίζοντας πηγές ενέργειας με τρόπο που οι παραδοσιακές μέθοδοι θα χρειάζονταν χρόνια να το πετύχουν. Στην τρισδιάστατη ηλεκτρική τομογραφία (3D ERT), παρουσιάζεται ένας αλγόριθμος αντιστροφής, όπου χρησιμοποιώντας την τεχνική "εξαγωγής χαρακτηριστικών γειτονίας" μαζί με ένα τρισδιάστατο νευρωνικό δίκτυο τύπου U-Net, φτιάχνει ακριβή μοντέλα του υπεδάφους. Όλα αυτά δεν είναι απλώς βελτιώσεις αλλά νέα εργαλεία στην εξερεύνηση πόρων, την περιβαλλοντική παρακολούθηση αλλά και την πρόβλεψη φυσικών καταστροφών. | el |
Τύπος | Διπλωματική Εργασία | el |
Τύπος | Diploma Work | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2025-07-18 | - |
Ημερομηνία Δημοσίευσης | 2025 | - |
Θεματική Κατηγορία | Γεωφυσικές μέθοδοι | el |
Θεματική Κατηγορία | Αντιστροφή δεδομένων | el |
Θεματική Κατηγορία | Μοντελοποίηση | el |
Θεματική Κατηγορία | Μηχανική μάθηση | el |
Θεματική Κατηγορία | Νευρωνικά δίκτυα | el |
Βιβλιογραφική Αναφορά | Άγγελος Συκιώτης, "Επεξεργασία και ερμηνεία γεωφυσικών δεδομένων με τεχνικές μηχανικής μάθησης", Διπλωματική Εργασία, Σχολή Μηχανικών Ορυκτών Πόρων, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2025 | el |