Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Optimization of cell individual offset for handover of flying base stations and users

Madelkhanova Aida, Becvar Zdenek, Spyropoulos Thrasyvoulos

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/ED661B81-24E9-4AEC-AB9B-027A6D4505BF-
Αναγνωριστικόhttps://doi.org/10.1109/TWC.2022.3216342-
Αναγνωριστικόhttps://ieeexplore.ieee.org/document/9932413-
Γλώσσαen-
Μέγεθος14 pagesen
ΤίτλοςOptimization of cell individual offset for handover of flying base stations and usersen
ΔημιουργόςMadelkhanova Aidaen
ΔημιουργόςBecvar Zdeneken
ΔημιουργόςSpyropoulos Thrasyvoulosen
ΔημιουργόςΣπυροπουλος Θρασυβουλοςel
ΕκδότηςInstitute of Electrical and Electronics Engineersen
ΠερίληψηTo ensure a seamless mobility of users in the scenario with flying base stations (FlyBSs) and static ground base stations (GBSs), an efficient handover mechanism is required. In this paper, we introduce new framework simultaneously managing cell individual offset (CIO) for handover of both FlyBSs and mobile users. Our objective is to maximize capacity of the mobile users while considering also a cost of handover to reflect potential excessive signaling and energy consumption due to redundant handovers. This problem is of a very high complexity for conventional optimization methods and optimal solution would require knowledge of information commonly not available to the mobile network. Hence, we adjust the CIO of FlyBSs and GBSs via reinforcement learning. First, we adopt Q- learning to solve the problem. Due to practical limitations implied by a large Q-table, we also propose Q- learning with approximated Q-table. Still, for larger networks, even the approximated Q-table can require a large storage and computation time. Therefore, we apply also actor-critic-based deep reinforcement learning. Simulation results demonstrate that all three proposed algorithms converge promptly and increase the communication capacity by dozens of percent while the handover failure ratio and the handover ping-pong ratio are reduced multiple times compared to state-of-the-art.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2025-07-28-
Ημερομηνία Δημοσίευσης2023-
Θεματική ΚατηγορίαFlying base stationsen
Θεματική ΚατηγορίαHandoveren
Θεματική ΚατηγορίαCell individual offseten
Θεματική ΚατηγορίαReinforcement learningen
Βιβλιογραφική ΑναφοράA. Madelkhanova, Z. Becvar and T. Spyropoulos, "Optimization of cell individual offset for handover of flying base stations and users," IEEE Trans. Wireless Commun., vol. 22, no. 5, pp. 3180-3193, May 2023, doi: 10.1109/TWC.2022.3216342.en

Υπηρεσίες

Στατιστικά