Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A data-driven, machine learning scheme used to predict the structural response of masonry arches

Motsa Siphesihle Mpho, Stavroulakis Georgios, Drosopoulos Georgios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/1216A46D-06F0-4344-8786-5367CB56BD47-
Αναγνωριστικόhttps://doi.org/10.1016/j.engstruct.2023.116912-
Αναγνωριστικόhttps://www.sciencedirect.com/science/article/pii/S0141029623013275-
Γλώσσαen-
Μέγεθος20 pagesen
ΤίτλοςA data-driven, machine learning scheme used to predict the structural response of masonry archesen
ΔημιουργόςMotsa Siphesihle Mphoen
ΔημιουργόςStavroulakis Georgiosen
ΔημιουργόςΣταυρουλακης Γεωργιοςel
ΔημιουργόςDrosopoulos Georgiosen
ΔημιουργόςΔροσοπουλος Γεωργιοςel
ΕκδότηςElsevieren
ΠεριγραφήSiphesihle Mpho Motsa has been supported by Erasmus + Program within the framework of action “International Credit Mobility” between the Technical University of Crete, School of Production Engineering and Management and the University of KwaZulu-Natal, department of Civil engineering under Structural Engineering & Computational Mechanics (SECM) Group.en
ΠερίληψηA data-driven methodology is proposed, for the investigation of the ultimate response of masonry arches. Aiming to evaluate their structural response in a computationally efficient framework, machine learning metamodels, in the form of artificial neural networks, are adopted. Datasets are numerically built, integrating Matlab, Python and commercial finite element software. Heyman’s assumptions are adopted within non-linear finite element analysis, incorporating contact-friction laws between adjacent stones, to capture failure in the arch. The artificial neural networks are trained, validated, and tested using the least square minimization technique. It is shown that the proposed scheme can be used to provide a fast and accurate prediction of the deformed geometry, the collapse mechanism and the ultimate load. Cases studies demonstrate the efficiency of the method in random, new arch geometries. Relevant Matlab/Python scripts and datasets are provided. The method can be extended towards structural health monitoring and the concept of digital twin.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2025-07-30-
Ημερομηνία Δημοσίευσης2023-
Θεματική ΚατηγορίαFEMen
Θεματική ΚατηγορίαMachine Learningen
Θεματική ΚατηγορίαArtificial Neural Networken
Θεματική ΚατηγορίαMulti-hinge failureen
Θεματική ΚατηγορίαDamage Predictionen
Θεματική ΚατηγορίαMasonry Archesen
Θεματική ΚατηγορίαData-driven Mechanicsen
Θεματική ΚατηγορίαDigital Twinen
Βιβλιογραφική ΑναφοράS. M. Motsa, G. Ε. Stavroulakis, and G. A. Drosopoulos, “A data-driven, machine learning scheme used to predict the structural response of masonry arches,” Eng. Struct., vol. 296, Dec. 2023, doi: 10.1016/j.engstruct.2023.116912.el

Υπηρεσίες

Στατιστικά