Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

End-to-end precision agriculture UAV-based functionalities tailored to field characteristics

Raptis Emmanuel K., Krestenitis Marios, Egglezos Konstantinos, Kypris Orfeas, Ioannidis Konstantinos, Doitsidis Eleftherios, Kapoutsis Athanasios Ch., Vrochidis Stefanos, Kompatsiaris Ioannis, Kosmatopoulos Ilias

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/C21F0479-84CF-4F88-B9FC-20C4EAADE8DF-
Αναγνωριστικόhttps://doi.org/10.1007/s10846-022-01761-7-
Αναγνωριστικόhttps://link.springer.com/article/10.1007/s10846-022-01761-7-
Γλώσσαen-
Μέγεθος26 pagesen
ΤίτλοςEnd-to-end precision agriculture UAV-based functionalities tailored to field characteristicsen
ΔημιουργόςRaptis Emmanuel K.en
ΔημιουργόςKrestenitis Mariosen
ΔημιουργόςEgglezos Konstantinosen
ΔημιουργόςKypris Orfeasen
ΔημιουργόςIoannidis Konstantinosen
ΔημιουργόςDoitsidis Eleftheriosen
ΔημιουργόςΔοιτσιδης Ελευθεριοςel
ΔημιουργόςKapoutsis Athanasios Ch.en
ΔημιουργόςVrochidis Stefanosen
ΔημιουργόςKompatsiaris Ioannisen
ΔημιουργόςKosmatopoulos Iliasen
ΔημιουργόςΚοσματοπουλος Ηλιαςel
ΕκδότηςSpringeren
ΠεριγραφήThis research has been financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH - CREATE - INNOVATE (T1EDK-00636).en
ΠερίληψηThis paper presents a novel, low-cost, user-friendly Precision Agriculture platform that attempts to alleviate the drawbacks of limited battery life by carefully designing missions tailored to each field’s specific, time-changing characteristics. The proposed system is capable of designing coverage missions for any type of UAV, integrating field characteristics into the resulting trajectory, such as irregular field shape and obstacles. The collected images are automatically processed to create detailed orthomosaics of the field and extract the corresponding vegetation indices. A novel mechanism is then introduced that automatically extracts possible problematic areas of the field and subsequently designs a follow-up UAV mission to acquire extra information on these regions. The toolchain is finished by using a deep learning module that was made just for finding weeds in the close-examination flight. For the development of such a deep-learning module, a new weed dataset from the UAV’s perspective, which is publicly available for download, was collected and annotated. All the above functionalities are enclosed in an open-source, end-to-end platform, named Cognitional Operations of micro Flying vehicles (CoFly). The effectiveness of the proposed system was tested and validated with extensive experimentation in agricultural fields with cotton in Larissa, Greece during two different crop sessions.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2025-07-31-
Ημερομηνία Δημοσίευσης2023-
Θεματική ΚατηγορίαPrecision agricultureen
Θεματική ΚατηγορίαUAVsen
Θεματική ΚατηγορίαCoverageen
Θεματική ΚατηγορίαRemote sensingen
Θεματική ΚατηγορίαSite-specific inspectionen
Θεματική ΚατηγορίαConvolutional neural networksen
Θεματική ΚατηγορίαWeed detectionen
Βιβλιογραφική ΑναφοράE. K. Raptis, M. Krestenitis, K. Egglezos, O. Kypris, K. Ioannidis, L. Doitsidis, A. Ch. Kapoutsis, S. Vrochidis, I. Kompatsiaris and E. B. Kosmatopoulos “End-to-end precision agriculture UAV-based functionalities tailored to field characteristics,” J. Intell. Robot. Syst., vol. 107, no. 2, Jan. 2023, doi: 10.1007/s10846-022-01761-7.en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά