Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Combination of geostatistics and self-organizing maps for the spatial analysis of groundwater level variations in complex hydrogeological systems

Varouchakis Emmanouil, Solomatine Dimitri, Corzo Perez Gerald A., Jomaa Seifeddine, Karatzas Georgios

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/F5573C91-DFE0-4237-9F70-C493BDBF15AA
Έτος 2023
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά E. A. Varouchakis, D. Solomatine, G. A. Corzo Perez, S. Jomaa and G. P. Karatzas, “Combination of geostatistics and self-organizing maps for the spatial analysis of groundwater level variations in complex hydrogeological systems,” Stoch. Environ. Res. Risk Assess., vol. 37, no. 8, pp. 3009–3020, Aug. 2023, doi: 10.1007/s00477-023-02436-x. https://doi.org/10.1007/s00477-023-02436-x
Εμφανίζεται στις Συλλογές

Περίληψη

Successful modelling of the groundwater level variations in hydrogeological systems in complex formations considerably depends on spatial and temporal data availability and knowledge of the boundary conditions. Geostatistics plays an important role in model-related data analysis and preparation, but has specific limitations when the aquifer system is inhomogeneous. This study combines geostatistics with machine learning approaches to solve problems in complex aquifer systems. Herein, the emphasis is given to cases where the available dataset is large and randomly distributed in the different aquifer types of the hydrogeological system. Self-Organizing Maps can be applied to identify locally similar input data, to substitute the usually uncertain correlation length of the variogram model that estimates the correlated neighborhood, and then by means of Transgaussian Kriging to estimate the bias corrected spatial distribution of groundwater level. The proposed methodology was tested on a large dataset of groundwater level data in a complex hydrogeological area. The obtained results have shown a significant improvement compared to the ones obtained by classical geostatistical approaches.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά