Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Combination of geostatistics and self-organizing maps for the spatial analysis of groundwater level variations in complex hydrogeological systems

Varouchakis Emmanouil, Solomatine Dimitri, Corzo Perez Gerald A., Jomaa Seifeddine, Karatzas Georgios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/F5573C91-DFE0-4237-9F70-C493BDBF15AA-
Αναγνωριστικόhttps://doi.org/10.1007/s00477-023-02436-x-
Αναγνωριστικόhttps://link.springer.com/article/10.1007/s00477-023-02436-x-
Γλώσσαen-
Μέγεθος12 pagesen
ΤίτλοςCombination of geostatistics and self-organizing maps for the spatial analysis of groundwater level variations in complex hydrogeological systemsen
ΔημιουργόςVarouchakis Emmanouilen
ΔημιουργόςΒαρουχακης Εμμανουηλel
ΔημιουργόςSolomatine Dimitrien
ΔημιουργόςCorzo Perez Gerald A.en
ΔημιουργόςJomaa Seifeddineen
ΔημιουργόςKaratzas Georgiosen
ΔημιουργόςΚαρατζας Γεωργιοςel
ΕκδότηςSpringeren
ΠεριγραφήThe authors would like to thank the Special water secretariat of Greece for providing the data online. The national water monitoring program is presented in http://nmwn.ypeka.gr/?q=en. The InTheMED project, which is part of the PRIMA Programme supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No 1923.en
ΠερίληψηSuccessful modelling of the groundwater level variations in hydrogeological systems in complex formations considerably depends on spatial and temporal data availability and knowledge of the boundary conditions. Geostatistics plays an important role in model-related data analysis and preparation, but has specific limitations when the aquifer system is inhomogeneous. This study combines geostatistics with machine learning approaches to solve problems in complex aquifer systems. Herein, the emphasis is given to cases where the available dataset is large and randomly distributed in the different aquifer types of the hydrogeological system. Self-Organizing Maps can be applied to identify locally similar input data, to substitute the usually uncertain correlation length of the variogram model that estimates the correlated neighborhood, and then by means of Transgaussian Kriging to estimate the bias corrected spatial distribution of groundwater level. The proposed methodology was tested on a large dataset of groundwater level data in a complex hydrogeological area. The obtained results have shown a significant improvement compared to the ones obtained by classical geostatistical approaches.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2025-08-18-
Ημερομηνία Δημοσίευσης2023-
Θεματική ΚατηγορίαTransgaussian Krigingen
Θεματική ΚατηγορίαGeostatisticsen
Θεματική ΚατηγορίαSelf-organizing mapsen
Θεματική ΚατηγορίαMachine learningen
Θεματική ΚατηγορίαGroundwateren
Θεματική ΚατηγορίαBox-Coxen
Βιβλιογραφική ΑναφοράE. A. Varouchakis, D. Solomatine, G. A. Corzo Perez, S. Jomaa and G. P. Karatzas, “Combination of geostatistics and self-organizing maps for the spatial analysis of groundwater level variations in complex hydrogeological systems,” Stoch. Environ. Res. Risk Assess., vol. 37, no. 8, pp. 3009–3020, Aug. 2023, doi: 10.1007/s00477-023-02436-x.en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά