URI | http://purl.tuc.gr/dl/dias/67491AD0-70B0-4AAA-B4A6-D0824580343D | - |
Αναγνωριστικό | https://doi.org/10.26233/heallink.tuc.20331 | - |
Γλώσσα | en | - |
Μέγεθος | 96 pages | en |
Μέγεθος | A4 | en |
Μέγεθος | 12.9 megabytes | en |
Τίτλος | Grammatical inference for event recognition | en |
Τίτλος | Γραμματικός συμπερασμός για αναγνώριση συμβάντων | el |
Δημιουργός | Kofinas Nikolaos | en |
Δημιουργός | Κοφινας Νικολαος | el |
Συντελεστής [Επιβλέπων Καθηγητής] | Lagoudakis Michael | en |
Συντελεστής [Επιβλέπων Καθηγητής] | Λαγουδακης Μιχαηλ | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Bletsas Aggelos | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Μπλετσας Αγγελος | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Garofalakis Minos | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Γαροφαλακης Μινως | el |
Εκδότης | Πολυτεχνείο Κρήτης | el |
Εκδότης | Technical University of Crete | en |
Ακαδημαϊκή Μονάδα | Technical University of Crete::School of Electronic and Computer Engineering | en |
Ακαδημαϊκή Μονάδα | Πολυτεχνείο Κρήτης::Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών | el |
Περιγραφή | A thesis submitted for partial fulfillment of the requirements for the degree of Master of Science in Electronic and Computer Engineering. | en |
Περίληψη | As robot technology finds applications in the real world (search and rescue, daily household tasks, etc.), huge amounts of data are generated during autonomous robot missions. In such applications, it is often desirable to recognize high-level events that may have occurred during a mission either online or offline. Event Recognition in robot missions currently relies on human expertise and time-consuming data annotation. A modern method to recognize events is to employ Probabilistic Context-Free Grammars (PCFGs), which are formal models that can capture complex patterns in discrete sequences and can be used to parse incoming sensor data streams in order to detect patterns that may signal the occurrence of some event of interest. Recent experimentation with such methods on data from Autonomous Underwater Vehicle (AUV) missions indicated that interesting events can be recognized by parsing sequences of sensor data using an intuitive hand-written PCFG. This thesis introduces a generic procedure which can be used to automatically construct PCFGs which encode sensor data sequences that typically appear during normal robot operation using recorded logs from past missions. The resulting PCFGs can be used to recognize abnormal events in new missions evidenced by sensor data sequences which cannot be interpreted as normal. The proposed procedure consists of two parts: (a) the transformation of sensor streams into discrete sequences either to form a training corpus offline or to generate input for online parsing and (b) a Grammatical Inference algorithm in order to learn a compact PCFG consistent with a given training corpus. The learning part relies on a local search method over the space of possible grammars using chunk and merge operations. The search method aims to find a compact grammar that also maximizes its posterior probability, in a Bayesian sense, with respect to a given training corpus. The proposed procedure is evaluated on a variety of domains ranging from data-sets generated by typical context-free grammars to data-sets generated from real robot missions (NAO robot walk and AUV navigation). The results indicate that our approach is capable of producing reliable PCFG-based event recognizers, which may yield some false positive signals, but in general succeed in capturing abnormalities. | en |
Τύπος | Μεταπτυχιακή Διατριβή | el |
Τύπος | Master Thesis | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by-nc/4.0/ | en |
Ημερομηνία | 2014-08-05 | - |
Ημερομηνία Δημοσίευσης | 2014 | - |
Θεματική Κατηγορία | Learning, Machine | en |
Θεματική Κατηγορία | machine learning | en |
Θεματική Κατηγορία | learning machine | en |
Βιβλιογραφική Αναφορά | Nikolaos Kofinas, "Grammatical inference for event recognition", Master Thesis, School of Electronic and Computer Engineering, Technical University of Crete, Chania, Greece, 2014 | en |
Βιβλιογραφική Αναφορά | Νικόλαος Κοφινάς, "Γραμματικός συμπερασμός για αναγνώριση συμβάντων", Μεταπτυχιακή Διατριβή, Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2014 | el |