Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Regularized optimization applied to clustering and joint estimation of multiple undirected graphical models

Georgogiannis Alexandros

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/E7D9F04C-CAE3-4DEF-858F-1A6B3BEF26EC-
Αναγνωριστικόhttps://doi.org/10.26233/heallink.tuc.21011-
Γλώσσαen-
Μέγεθος62 pagesen
ΤίτλοςRegularized optimization applied to clustering and joint estimation of multiple undirected graphical modelsen
ΔημιουργόςGeorgogiannis Alexandrosen
ΔημιουργόςΓεωργογιαννης Αλεξανδροςel
Συντελεστής [Επιβλέπων Καθηγητής]Digalakis Vasilisen
Συντελεστής [Επιβλέπων Καθηγητής]Διγαλακης Βασιληςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Liavas Athanasiosen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Λιαβας Αθανασιοςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Lagoudakis Michaelen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Λαγουδακης Μιχαηλel
ΕκδότηςΠολυτεχνείο Κρήτηςel
ΕκδότηςTechnical University of Creteen
Ακαδημαϊκή ΜονάδαTechnical University of Crete::School of Electronic and Computer Engineeringen
Ακαδημαϊκή ΜονάδαΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστώνel
ΠεριγραφήSubmitted to the School of Electronic and Computer Engineering in partial fulfillment of the requirements for the Master of Science degreeen
ΠερίληψηSince its earliest days as a discipline, machine learning has made use of optimization formulations and algorithms. Likewise, machine learning has contributed to optimization, driving the develop- ment of new optimization approaches that address the significant challenges presented by machine learning applications. This influence continues to deepen, producing a growing literature at the intersection of the two fields while attracting leading researchers to the effort. While techniques proposed twenty years ago continue to be refined, the increased complexity, size, and variety of today’s machine learning models demand a principled reassessment of existing assumptions and techniques. This thesis makes a small step toward such a reassessment. It describes novel contexts of established frameworks such as convex relaxation, splitting methods, and regularized estimation and how we can use them to solve significant problems in data mining and statistical learning. The thesis is organised in two parts. In the first part, we present a new clustering algorithm. The task of clustering aims at discovering structures in data. This algorithm is an extension of recently proposed convex relaxations of k-means and hierarchical clustering. In the second part, we present a new algorithm for discovering dependencies among common variables in multiple undirected graphical models. Graphical models are useful for the description and modelling of multivariate systems. In the appendix, we comment on a core problem underlying the whole study and we give an alternative solution based on recent advances in convex optimization.en
ΤύποςΜεταπτυχιακή Διατριβήel
ΤύποςMaster Thesisen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2014-09-16-
Ημερομηνία Δημοσίευσης2014-
Θεματική ΚατηγορίαOptimization (Mathematics)en
Θεματική ΚατηγορίαOptimization techniquesen
Θεματική ΚατηγορίαOptimization theoryen
Θεματική ΚατηγορίαSystems optimizationen
Θεματική Κατηγορίαmathematical optimizationen
Θεματική Κατηγορίαoptimization mathematicsen
Θεματική Κατηγορίαoptimization techniquesen
Θεματική Κατηγορίαoptimization theoryen
Θεματική Κατηγορίαsystems optimizationen
Θεματική ΚατηγορίαLearning, Machineen
Θεματική Κατηγορίαmachine learningen
Θεματική Κατηγορίαlearning machineen
Βιβλιογραφική ΑναφοράAlexandros Georgogiannis, "Regularized optimization applied to clustering and joint estimation of multiple undirected graphical models", Master Thesis, School of Electronic and Computer Engineering, Technical University of Crete, Chania, Greece, 2014en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά