URI | http://purl.tuc.gr/dl/dias/32E4BEEA-C3FE-4E15-8562-C1028B8BCFBA | - |
Identifier | https://doi.org/10.26233/heallink.tuc.23781 | - |
Language | en | - |
Extent | 111 pages | en |
Title | Development of optimization algorithms for a smart grid community | en |
Creator | Provata Eleni | en |
Creator | Προβατα Ελενη | el |
Contributor [Thesis Supervisor] | Kolokotsa Dionysia | en |
Contributor [Thesis Supervisor] | Κολοκοτσα Διονυσια | el |
Contributor [Committee Member] | Kalaitzakis Konstantinos | en |
Contributor [Committee Member] | Καλαϊτζακης Κωνσταντινος | el |
Contributor [Committee Member] | Karatzas Giorgos | en |
Contributor [Committee Member] | Καρατζας Γιωργος | el |
Publisher | Technical University of Crete | en |
Publisher | Πολυτεχνείο Κρήτης | el |
Academic Unit | Technical University of Crete::School of Environmental Engineering | en |
Academic Unit | Πολυτεχνείο Κρήτης::Σχολή Μηχανικών Περιβάλλοντος | el |
Content Summary | The aim of this work is the development of an optimization model in order to minimize the cost of Leaf Community microgrid. This cost is a sum of energy cost and the maintenance cost of the Energy storage system. The developed objective function is constrained and the problem here is solved by using the method of genetic algorithms at Matlab. The genetic algorithm decides about the transportation of the energy from or to the ESS and it calculates an optimum cost. The optimization time horizon is 24 h ahead, thus the prediction of energy production and consumption was necessary. This was achieved by using neural networks. In order to verify the performance of the developed optimization model, some scenarios were tested evaluated. This study concludes that a management of a microgrid can achieve energy and money savings. | en |
Type of Item | Μεταπτυχιακή Διατριβή | el |
Type of Item | Master Thesis | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2014-12-15 | - |
Date of Publication | 2014 | - |
Subject | Green energy investment | en |
Subject | Investment in clean energy | en |
Subject | clean energy investment | en |
Subject | green energy investment | en |
Subject | investment in clean energy | en |
Subject | Optimization, Constrained | en |
Subject | constrained optimization | en |
Subject | optimization constrained | en |
Subject | Industrial energy consumption | en |
Subject | industries energy consumption | en |
Subject | industrial energy consumption | en |
Subject | Artificial neural networks | en |
Subject | Nets, Neural (Computer science) | en |
Subject | Networks, Neural (Computer science) | en |
Subject | Neural nets (Computer science) | en |
Subject | neural networks computer science | en |
Subject | artificial neural networks | en |
Subject | nets neural computer science | en |
Subject | networks neural computer science | en |
Subject | neural nets computer science | en |
Subject | Alternate energy sources | en |
Subject | Alternative energy sources | en |
Subject | Energy sources, Renewable | en |
Subject | Renewable energy resources | en |
Subject | Sustainable energy sources | en |
Subject | renewable energy sources | en |
Subject | alternate energy sources | en |
Subject | alternative energy sources | en |
Subject | energy sources renewable | en |
Subject | renewable energy resources | en |
Subject | sustainable energy sources | en |
Bibliographic Citation | Eleni Provata, "Development of optimization algorithms for a smart grid community", Master Thesis, School of Environmental Engineering, Technical University of Crete, Chania, Greece, 2014 | en |
Bibliographic Citation | Ελένη Προβατά, "Development of optimization algorithms for a smart grid community", Μεταπτυχιακή Διατριβή, Σχολή Μηχανικών Περιβάλλοντος, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2014 | el |