URI | http://purl.tuc.gr/dl/dias/857114D5-BE48-4FF5-AE02-64898F5CC3E8 | - |
Αναγνωριστικό | https://doi.org/10.1007/s00477-010-0407-y | - |
Γλώσσα | en | - |
Μέγεθος | 8 pages | en |
Τίτλος | Relationships between correlation lengths and integral scales for covariance models with more than two parameters | en |
Δημιουργός | M. Zukovic | en |
Δημιουργός | D. T. Hristopulos | en |
Εκδότης | Springer-Verlag | en |
Περίληψη | In geostatistical applications, the terms correlation length and range are often used interchangeably and refer to a characteristic covariance length ξ that normalizes the lag distance in the variogram or the covariance model. We present equations that strictly define the correlation length (r c ) and integral range (ℓ c ). We derive analytical expressions for r c and ℓ c of the Whittle–Matérn, fluctuation gradient curvature and rational quadratic covariances. For these covariances, we show that the correlation length and integral range for a given model are not fully determined by ξ. We define non-trivial covariance functions, and we formulate an ergodicity index based on ℓ c . We propose using the ergodicity index to compare coarse-grained measures corresponding to non-trivial covariance functions with different parameters. Finally, we discuss potential applications of the proposed covariance models in stochastic subsurface hydrology. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2015-09-26 | - |
Ημερομηνία Δημοσίευσης | 2011 | - |
Βιβλιογραφική Αναφορά | D. T. Hristopulos,M. Zukovic ," Relationships between correlation lengths and integral scales for covariance models with more than two parameters ", Stoch. Env. Res. and Risk As.,vol. 25, no. 1 , pp. 11-19, 2011.doi:10.1007/s00477-010-0407-y | en |