Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

You are what you consume: a bayesian method for personalized recommendations

Evangelos Tripolitakis

Simple record


URIhttp://purl.tuc.gr/dl/dias/3403FC50-24ED-423F-A3F9-5A1312DE0B63-
Identifierhttps://doi.org/10.1145/2507157.2507158 -
Languageen-
Extent7 pagesen
TitleYou are what you consume: a bayesian method for personalized recommendationsen
CreatorEvangelos Tripolitakisen
Creator Georgios Chalkiadakisen
CreatorKonstantinos Babasen
PublisherACMen
Content SummaryIn this paper, we propose a novel Bayesian approach for personalized recommendations. In our approach, we model both user preferences and items under recommendation as multivariate Gaussian distributions; and make use of Normal-Inverse Wishart priors to model the recommendation agent beliefs about user types. We employ a lightweight agent-user interaction process, during which the user is presented with and asked to rate a small number of items. We then interpret these ratings in an innovative way, using them to guide a Bayesian updating process that helps us both capture a user's current mood, and maintain her overall user type. We produced several variants of our approach, and applied them in the movie recommendations domain, evaluating them on data from the MovieLens dataset. Our algorithms are shown to be competitive against a state-of-the-art method, which nevertheless requires a minimum set of ratings from various users to provide recommendations---unlike our entirely personalized approach.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-09-26-
Date of Publication2013-
Bibliographic CitationK. Babas, G.Chalkiadakis, E. Tripolitakis , "You are what you consume: a bayesian method for personalized recommendations ",In the 7th ACM conf. on Rec.systems 2013,pp.221-228.doi :10.1145/2507157.2507158 en

Services

Statistics