Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Short-term load forecasting based on artificial neural networks parallel implementation.

Kalaitzakis Kostas, Stavrakakis Georgios, Anagnostakis E.

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/48FF40D6-9765-4A7F-80B1-78F0206E3D79-
Αναγνωριστικόhttp://www.tuc.gr/fileadmin/users_data/elci/Kalaitzakis/J.22.pdf-
Αναγνωριστικόhttps://doi.org/10.1016/S0378-7796(02)00123-2-
Γλώσσαen-
Μέγεθος12en
ΤίτλοςShort-term load forecasting based on artificial neural networks parallel implementation.en
ΔημιουργόςKalaitzakis Kostasen
ΔημιουργόςΚαλαϊτζακης Κωσταςel
ΔημιουργόςStavrakakis Georgiosen
ΔημιουργόςΣταυρακακης Γεωργιοςel
ΔημιουργόςAnagnostakis E.en
ΕκδότηςElsevieren
ΠεριγραφήΔημοσίευση σε επιστημονικό περιοδικό el
ΠερίληψηThis paper presents the development and application of advanced neural networks to face successfully the problem of the short-term electric load forecasting. Several approaches including Gaussian encoding backpropagation (BP), window random activation, radial basis function networks, real-time recurrent neural networks and their innovative variations are proposed, compared and discussed in this paper. The performance of each presented structure is evaluated by means of an extensive simulation study, using actual hourly load data from the power system of the island of Crete, in Greece. The forecasting error statistical results, corresponding to the minimum and maximum load time-series, indicate that the load forecasting models proposed here provide significantly more accurate forecasts, compared to conventional autoregressive and BP forecasting models. Finally, a parallel processing approach for 24 h ahead forecasting is proposed and applied. According to this procedure, the requested load for each specific hour is forecasted, not only using the load time-series for this specific hour from the previous days, but also using the forecasted load data of the closer previous time steps for the same day. Thus, acceptable accuracy load predictions are obtained without the need of weather data that increase the system complexity, storage requirement and cost.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-09-30-
Ημερομηνία Δημοσίευσης2002-
Θεματική ΚατηγορίαShort-term load forecastingen
Θεματική ΚατηγορίαMoving window regression trainingen
Θεματική ΚατηγορίαGaussian encoding neural networksen
Θεματική ΚατηγορίαRadial basis networksen
Θεματική ΚατηγορίαReal time recurrent neural networksen
Βιβλιογραφική ΑναφοράK. Kalaitzakis, G. Stavrakakis and E. Anagnostakis, "Short-term load forecasting based on artificial neural networks parallel implementation," Electric Power Systems Research, vol. 63, no. 3, pp. 185-196, Oct. 2002. doi:10.1016/S0378-7796(02)00123-2en

Υπηρεσίες

Στατιστικά