URI | http://purl.tuc.gr/dl/dias/19CAA3F9-26FA-49CE-8FF4-407F39550716 | - |
Αναγνωριστικό | https://doi.org/10.1023/A:1022679020242 | - |
Γλώσσα | en | - |
Μέγεθος | 31 pages | en |
Τίτλος | Solvability theory and projection methods for a class of singular variational inequalities: elastostatic unilateral contact applications
| en |
Δημιουργός | Goeleven, D | en |
Δημιουργός | Panagiotopoulos, P. D., 1950- | en |
Δημιουργός | Salmon, George, 1819-1904 | en |
Δημιουργός | Stavroulakis Georgios | en |
Δημιουργός | Σταυρουλακης Γεωργιος | el |
Εκδότης | Kluwer Academic Publishers-Plenum Publishers | en |
Περίληψη | The mathematical modeling of engineering structures containing members capable of transmitting only certain type of stresses or subjected to noninterpenetration conditions along their boundaries leads generally to variational inequalities of the form (P) u∈C:⟨Mu−q,v−u⟩⩾0, ∀v∈C, where C is a closed convex set of RN (kinematically admissible set), q∈RN (loading strain vector), and M∈RN×N (stiffness matrix). If rigid body displacements and rotations cannot be excluded from these applications, then the resulting matrix M is singular and serious mathematical difficulties occur. The aim of this paper is to discuss the existence and the numerical computation of the solutions of problem (P) for the class of cocoercive matrices. Our theoretical results are applied to two concrete engineering problems: the unilateral cantilever problem and the elastic stamp problem. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2015-10-11 | - |
Ημερομηνία Δημοσίευσης | 1997 | - |
Θεματική Κατηγορία | Greek mathematics | en |
Θεματική Κατηγορία | mathematics greek | en |
Θεματική Κατηγορία | greek mathematics | en |
Βιβλιογραφική Αναφορά | D. Goeleven, G. E. Stavroulakis, G. Salmon, P. D. Panagiotopoulos ,"Solvability theory and projection methods for a class of singular variational inequalities: elastostatic unilateral contact applications ," J. of Opt. Theory and Appl.,
vol. 95, no. 2, pp, 263-293, Nov. 1997.doi:10.1023/A:1022679020242 | en |