URI | http://purl.tuc.gr/dl/dias/08461378-2F3D-48EB-9553-1F54B8FD31CA | - |
Αναγνωριστικό | https://doi.org/10.1016/j.fuproc.2005.11.006 | - |
Αναγνωριστικό | http://www.sciencedirect.com/science/article/pii/S0378382006000051 | - |
Γλώσσα | en | - |
Μέγεθος | 5 pages | en |
Τίτλος | Octane number prediction for gasoline blends | en |
Δημιουργός | Pasadakis Nikos | en |
Δημιουργός | Πασαδακης Νικος | el |
Δημιουργός | Gaganis Vasileios | en |
Δημιουργός | Γαγανης Βασιλειος | el |
Δημιουργός | Foteinopoulos Charalambos | en |
Εκδότης | Elsevier | en |
Περίληψη | Artificial Neural Network (ANN) models have been developed to determine the Research Octane Number (RON) of gasoline blends producedin a Greek refinery. The developed ANN models use as input variables the volumetric content of seven most commonly used fractions in thegasoline production and their respective RON numbers. The model parameters (ANN weights) are presented such that the model can be easilyimplemented by the reader. The predicting ability of the models, in the multi-dimensional space determined by the input variables, was thoroughlyexamined in order to assess their robustness. Based on the developed ANN models, the effect of each gasoline constituent on the formation of the blend RON value, was revealed | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2015-10-12 | - |
Ημερομηνία Δημοσίευσης | 2006 | - |
Θεματική Κατηγορία | RON | en |
Θεματική Κατηγορία | Gasoline | en |
Θεματική Κατηγορία | Neural networks | en |
Βιβλιογραφική Αναφορά | N. Pasadakis, V. Gaganis, Ch. Foteinopoulos, “Octane number prediction for gasoline blends”, Fuel Processing Technology, vol. 87, no. 6, Jun. 2006, pp. 505-509. doi:10.1016/j.fuproc.2005.11.006 | en |